research communications
E,E)-2′,4′-dihydroxyacetophenone azine dimethylformamide disolvate
of (aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: hfhan001@163.com
In the title compound {systematic name: 4,4′-[1,1′-(hydrazinediylidene)bis(ethan-1-yl-1-ylidene)]bis(benzene-1,3-diol)}, C16H16N2O4·2C3H7NO, the (E,E)-2′,4′-dihydroxyacetophenone azine molecule is centrosymmetric, the mid-point of the N—N bond being located on an inversion centre. All the non-H atoms of the azine molecule are approximately coplanar, the maximum deviation being 0.017 (2) Å. An intramolecular O—H⋯N hydrogen bond occurs between the azine N atom and the hydroxy group. In the crystal, azine and dimethylformamide solvent molecules are linked by O—H⋯O hydrogen bonds.
CCDC reference: 1457201
1. Chemical context
et al., 2009). Many organometallic compounds containing acylhydrazone ligands have also been synthesized for their potential magneto-chemical properties (Guo et al., 2010). In particular, they have received increasing interest for their biological activity as antioxidants (Kitaev et al., 1970), and their antimicrobial (Ramamohan et al., 1995) and antiviral properties (El-Tabl et al., 2008; Rollas & Küçükgüzel, 2007).
are important compounds due to their possible applications in material and coordination chemistry. Fluorescence properties of have been reported (QinAlthough 2′,4′-dihydroxyacetophenone azine has been prepared and studied as a fluorescent probe, its structure has not been reported. As a part of our studies on synthesis and structural peculiarities of Schiff base ligands derived from 2′,4′-dihydroxyacetophenone and hydrazine, we determined the structure of the title compound, (E,E)-2′,4′-dihydroxyacetophenone azine dimethylformamide disolvate, (I).
2. Structural commentary
The molecular structure of the title compound is depicted in Fig. 1. The contains one half-molecule of (E,E)-2′,4′-dihydroxyacetophenone azine and one dimethylformamide (DMF) molecule. The complete azine molecule is centrosymmetric and exists in an E,E configuration with respect to the two C=N bonds. The N1—C2 bond length of 1.301 (3) Å shows double-bond character. The C—O bond lengths [1.349 (3) and 1.358 (3) Å] are comparable with similar bonds in related structures (Chantrapromma et al., 2011; Tai et al., 2008). All the non-H atoms of the azine molecule are approximately coplanar. The nine atoms (i.e. N1, C1 and C2, and the six C atoms in the benzene ring) are essentially planar, with a mean deviation of 0.0024 Å. Each hydroxy group is nearly coplanar with its attached benzene ring; the r.m.s. deviation is 0.0045 Å for the seven non-H atoms. Intramolecular O—H⋯N hydrogen bonds exist in the azine molecule (Table 1).
3. Supramolecular features
In the crystal of (I), intermolecular O—H⋯O hydrogen bonds exist between azine molecules and DMF molecules (Table 1 and Fig. 2).
4. Database survey
A search of Cambridge Structural Database (Groom & Allen, 2014) for acetophenone azine gave 105 hits (excluding organometallics). There are four reported crystal structures of acetophenone azine containing hydroxy groups at the 2-position of benzene rings: (E,E)-2,2′-(1,1′-azinodiethylidyne)diphenol (Tai et al., 2008), (E,E)-4,4′-dichloro-2,2′-(1,1′-azinodiethylidyne)diphenol (Chang et al., 2007), (E,E)-3,3′-diethoxy-2,2′-(1,1′-azinodiethylidyne)diphenol (Fayos et al., 1980) and (E,E)-4,4′-dimethoxy-2,2′-(1,1′-azinodiethylidyne)diphenol (Zhang et al., 2008).
5. Synthesis and crystallization
A mixture of 2′,4′-dihydroxyacetophenone (3.06 g, 20 mmol), hydrazine sulfate (1.28 g, 10 mmol) and triethylamine (3.03 g, 30 mmol) in ethanol (40 ml) was heated under reflux for 24 h. After cooling, the precipitate was filtrated and washed with water to afford a yellow solid. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in DMF at room temperature for 5 d (yield 1.20 g, 75%; m.p: 484–485 K). 1H NMR (300 MHz, CDCl3): δ 13.59 (s, 2H, OH), 10.14 (s, 2H, OH), 7.58–7.61 (d, 2H, ArH), 6.37–6.41 (d, 2H, ArH), 6.30–6.31 (s, 2H, ArH), 3.34 (d, 6H, CH3).
6. Refinement
Crystal data, data collection and structure . H atoms were placed geometrically (C—H = 0.93–0.96 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) for aromatic H atoms or 1.5Ueq(C,O) for methyl and hydroxy groups.
details are summarized in Table 2Supporting information
CCDC reference: 1457201
https://doi.org/10.1107/S2056989016003686/xu5885sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016003686/xu5885Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016003686/xu5885Isup3.cml
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H16N2O4·2C3H7NO | Z = 1 |
Mr = 446.50 | F(000) = 238 |
Triclinic, P1 | Dx = 1.278 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1616 (7) Å | Cell parameters from 1119 reflections |
b = 7.3109 (8) Å | θ = 3.0–26.5° |
c = 13.4537 (15) Å | µ = 0.09 mm−1 |
α = 96.771 (1)° | T = 298 K |
β = 103.049 (2)° | Block, colorless |
γ = 96.607 (1)° | 0.48 × 0.43 × 0.21 mm |
V = 579.96 (11) Å3 |
Bruker SMART CCD area-detector diffractometer | 2001 independent reflections |
Radiation source: fine-focus sealed tube | 1313 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
phi and ω scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −6→7 |
Tmin = 0.956, Tmax = 0.981 | k = −8→7 |
2902 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.187 | w = 1/[σ2(Fo2) + (0.1079P)2 + 0.0859P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2001 reflections | Δρmax = 0.28 e Å−3 |
149 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.17 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.4279 (3) | 0.5237 (2) | 0.53085 (13) | 0.0391 (5) | |
N2 | 0.5727 (4) | 0.1587 (3) | 0.91556 (16) | 0.0566 (6) | |
O1 | 0.2575 (3) | 0.7659 (2) | 0.62846 (12) | 0.0537 (5) | |
H1 | 0.3372 | 0.7270 | 0.5919 | 0.081* | |
O2 | −0.2843 (3) | 0.5582 (3) | 0.80524 (14) | 0.0679 (6) | |
H2 | −0.2793 | 0.6712 | 0.8190 | 0.102* | |
O3 | 0.7469 (4) | −0.0813 (3) | 0.87057 (18) | 0.0899 (8) | |
C1 | 0.3219 (5) | 0.1857 (3) | 0.5203 (2) | 0.0574 (7) | |
H1A | 0.2229 | 0.1462 | 0.4531 | 0.086* | |
H1B | 0.2779 | 0.1098 | 0.5681 | 0.086* | |
H1C | 0.4737 | 0.1732 | 0.5172 | 0.086* | |
C2 | 0.3080 (3) | 0.3858 (3) | 0.55569 (15) | 0.0374 (6) | |
C3 | 0.1542 (3) | 0.4334 (3) | 0.62014 (15) | 0.0368 (6) | |
C4 | 0.1368 (4) | 0.6208 (3) | 0.65420 (16) | 0.0403 (6) | |
C5 | −0.0090 (4) | 0.6624 (3) | 0.71594 (16) | 0.0458 (6) | |
H5 | −0.0180 | 0.7861 | 0.7380 | 0.055* | |
C6 | −0.1404 (4) | 0.5221 (4) | 0.74482 (17) | 0.0479 (6) | |
C7 | −0.1270 (4) | 0.3382 (4) | 0.71238 (18) | 0.0528 (7) | |
H7 | −0.2153 | 0.2431 | 0.7316 | 0.063* | |
C8 | 0.0176 (4) | 0.2968 (3) | 0.65154 (17) | 0.0472 (6) | |
H8 | 0.0249 | 0.1723 | 0.6304 | 0.057* | |
C9 | 0.5795 (5) | −0.0016 (5) | 0.8617 (2) | 0.0696 (9) | |
H9 | 0.4489 | −0.0589 | 0.8136 | 0.084* | |
C10 | 0.7669 (5) | 0.2551 (5) | 0.9909 (2) | 0.0808 (9) | |
H10A | 0.8729 | 0.1706 | 1.0084 | 0.121* | |
H10B | 0.7228 | 0.3039 | 1.0516 | 0.121* | |
H10C | 0.8355 | 0.3556 | 0.9632 | 0.121* | |
C11 | 0.3699 (5) | 0.2460 (5) | 0.8988 (3) | 0.0889 (10) | |
H11A | 0.2480 | 0.1611 | 0.8530 | 0.133* | |
H11B | 0.3951 | 0.3568 | 0.8687 | 0.133* | |
H11C | 0.3324 | 0.2778 | 0.9635 | 0.133* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0427 (11) | 0.0333 (11) | 0.0416 (10) | 0.0063 (8) | 0.0117 (8) | 0.0035 (8) |
N2 | 0.0545 (13) | 0.0620 (15) | 0.0553 (12) | 0.0128 (11) | 0.0150 (10) | 0.0088 (11) |
O1 | 0.0704 (11) | 0.0331 (10) | 0.0647 (11) | 0.0015 (8) | 0.0367 (9) | 0.0024 (7) |
O2 | 0.0738 (13) | 0.0718 (14) | 0.0713 (12) | 0.0124 (10) | 0.0428 (10) | 0.0122 (10) |
O3 | 0.0897 (16) | 0.0827 (17) | 0.1017 (17) | 0.0266 (14) | 0.0354 (13) | −0.0059 (13) |
C1 | 0.0708 (17) | 0.0345 (14) | 0.0745 (17) | 0.0076 (12) | 0.0332 (14) | 0.0080 (12) |
C2 | 0.0380 (12) | 0.0337 (12) | 0.0377 (11) | 0.0037 (9) | 0.0037 (9) | 0.0065 (9) |
C3 | 0.0383 (12) | 0.0346 (12) | 0.0351 (11) | 0.0028 (9) | 0.0048 (9) | 0.0057 (9) |
C4 | 0.0450 (13) | 0.0378 (13) | 0.0364 (11) | 0.0024 (10) | 0.0078 (10) | 0.0064 (9) |
C5 | 0.0532 (14) | 0.0414 (14) | 0.0427 (12) | 0.0066 (11) | 0.0136 (11) | 0.0020 (10) |
C6 | 0.0451 (13) | 0.0583 (16) | 0.0411 (12) | 0.0065 (11) | 0.0120 (10) | 0.0081 (11) |
C7 | 0.0548 (15) | 0.0502 (16) | 0.0561 (15) | −0.0022 (12) | 0.0199 (12) | 0.0155 (11) |
C8 | 0.0539 (14) | 0.0385 (14) | 0.0497 (13) | 0.0031 (11) | 0.0137 (11) | 0.0102 (10) |
C9 | 0.0675 (19) | 0.081 (2) | 0.0575 (16) | −0.0021 (16) | 0.0183 (14) | 0.0061 (15) |
C10 | 0.078 (2) | 0.075 (2) | 0.078 (2) | 0.0069 (17) | 0.0043 (17) | 0.0000 (16) |
C11 | 0.069 (2) | 0.102 (3) | 0.102 (2) | 0.0268 (19) | 0.0191 (18) | 0.032 (2) |
N1—C2 | 1.301 (3) | C3—C4 | 1.417 (3) |
N1—N1i | 1.391 (3) | C4—C5 | 1.389 (3) |
N2—C9 | 1.313 (4) | C5—C6 | 1.380 (3) |
N2—C10 | 1.430 (4) | C5—H5 | 0.9300 |
N2—C11 | 1.453 (3) | C6—C7 | 1.381 (3) |
O1—C4 | 1.349 (3) | C7—C8 | 1.374 (3) |
O1—H1 | 0.8200 | C7—H7 | 0.9300 |
O2—C6 | 1.358 (3) | C8—H8 | 0.9300 |
O2—H2 | 0.8200 | C9—H9 | 0.9300 |
O3—C9 | 1.232 (3) | C10—H10A | 0.9600 |
C1—C2 | 1.503 (3) | C10—H10B | 0.9600 |
C1—H1A | 0.9600 | C10—H10C | 0.9600 |
C1—H1B | 0.9600 | C11—H11A | 0.9600 |
C1—H1C | 0.9600 | C11—H11B | 0.9600 |
C2—C3 | 1.465 (3) | C11—H11C | 0.9600 |
C3—C8 | 1.396 (3) | ||
C2—N1—N1i | 116.3 (2) | O2—C6—C5 | 122.1 (2) |
C9—N2—C10 | 120.9 (2) | O2—C6—C7 | 118.0 (2) |
C9—N2—C11 | 121.2 (3) | C5—C6—C7 | 119.9 (2) |
C10—N2—C11 | 117.9 (3) | C8—C7—C6 | 119.6 (2) |
C4—O1—H1 | 109.5 | C8—C7—H7 | 120.2 |
C6—O2—H2 | 109.5 | C6—C7—H7 | 120.2 |
C2—C1—H1A | 109.5 | C7—C8—C3 | 122.9 (2) |
C2—C1—H1B | 109.5 | C7—C8—H8 | 118.6 |
H1A—C1—H1B | 109.5 | C3—C8—H8 | 118.6 |
C2—C1—H1C | 109.5 | O3—C9—N2 | 124.5 (3) |
H1A—C1—H1C | 109.5 | O3—C9—H9 | 117.8 |
H1B—C1—H1C | 109.5 | N2—C9—H9 | 117.8 |
N1—C2—C3 | 116.96 (19) | N2—C10—H10A | 109.5 |
N1—C2—C1 | 122.62 (19) | N2—C10—H10B | 109.5 |
C3—C2—C1 | 120.4 (2) | H10A—C10—H10B | 109.5 |
C8—C3—C4 | 116.5 (2) | N2—C10—H10C | 109.5 |
C8—C3—C2 | 121.9 (2) | H10A—C10—H10C | 109.5 |
C4—C3—C2 | 121.6 (2) | H10B—C10—H10C | 109.5 |
O1—C4—C5 | 117.0 (2) | N2—C11—H11A | 109.5 |
O1—C4—C3 | 122.42 (19) | N2—C11—H11B | 109.5 |
C5—C4—C3 | 120.6 (2) | H11A—C11—H11B | 109.5 |
C6—C5—C4 | 120.7 (2) | N2—C11—H11C | 109.5 |
C6—C5—H5 | 119.7 | H11A—C11—H11C | 109.5 |
C4—C5—H5 | 119.7 | H11B—C11—H11C | 109.5 |
N1i—N1—C2—C3 | −179.63 (19) | C3—C4—C5—C6 | −0.3 (3) |
N1i—N1—C2—C1 | −0.1 (3) | C4—C5—C6—O2 | 179.9 (2) |
N1—C2—C3—C8 | −179.94 (18) | C4—C5—C6—C7 | 0.2 (3) |
C1—C2—C3—C8 | 0.5 (3) | O2—C6—C7—C8 | −179.7 (2) |
N1—C2—C3—C4 | −0.2 (3) | C5—C6—C7—C8 | 0.0 (4) |
C1—C2—C3—C4 | −179.69 (19) | C6—C7—C8—C3 | −0.1 (4) |
C8—C3—C4—O1 | −179.28 (19) | C4—C3—C8—C7 | −0.1 (3) |
C2—C3—C4—O1 | 0.9 (3) | C2—C3—C8—C7 | 179.7 (2) |
C8—C3—C4—C5 | 0.3 (3) | C10—N2—C9—O3 | 0.1 (4) |
C2—C3—C4—C5 | −179.47 (19) | C11—N2—C9—O3 | 178.5 (3) |
O1—C4—C5—C6 | 179.3 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.82 | 2.543 (2) | 147 |
O2—H2···O3ii | 0.82 | 1.84 | 2.649 (3) | 171 |
Symmetry code: (ii) x−1, y+1, z. |
Acknowledgements
Financial support from the Natural Science Foundation of Shanxi Province (No. 2013011011-4) is gratefully acknowledged.
References
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chang, J.-G., He, G.-F. & Li, Y.-F. (2007). Acta Cryst. E63, o3982. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chantrapromma, S., Jansrisewangwong, P., Chanawanno, K. & Fun, H.-K. (2011). Acta Cryst. E67, o2221–o2222. Web of Science CSD CrossRef IUCr Journals Google Scholar
El-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 71, 90–99. Web of Science PubMed Google Scholar
Fayos, J., Martínez-Ripoll, M., García-Mina, M. C., Gonzalez-Martínez, J. & Arrese, F. (1980). Acta Cryst. B36, 1952–1953. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Guo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538–8539. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kitaev, Y. P., Buzykin, B. I. & Troepol'skaya, T. V. (1970). Russ. Chem. Rev. 39, 441–456. CrossRef Google Scholar
Qin, D.-D., Yang, Z.-Y. & Qi, G.-F. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 415–420. Web of Science CrossRef PubMed Google Scholar
Ramamohan, L., Shikkargol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86–89. Google Scholar
Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tai, X.-S., Xu, J., Feng, Y.-M. & Liang, Z.-P. (2008). Acta Cryst. E64, o905. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, J.-H., Dong, W.-L., Ge, Y.-Q. & Zhao, B.-X. (2008). Acta Cryst. E64, o166. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.