research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E,E)-2′,4′-di­hy­droxy­aceto­phenone azine di­methyl­formamide disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: hfhan001@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 25 February 2016; accepted 3 March 2016; online 8 March 2016)

In the title compound {systematic name: 4,4′-[1,1′-(hydrazinediyl­idene)bis­(ethan-1-yl-1-yl­idene)]bis­(benzene-1,3-diol)}, C16H16N2O4·2C3H7NO, the (E,E)-2′,4′-di­hydroxy­aceto­phenone azine mol­ecule is centrosymmetric, the mid-point of the N—N bond being located on an inversion centre. All the non-H atoms of the azine mol­ecule are approximately coplanar, the maximum deviation being 0.017 (2) Å. An intra­molecular O—H⋯N hydrogen bond occurs between the azine N atom and the hy­droxy group. In the crystal, azine and di­methyl­formamide solvent mol­ecules are linked by O—H⋯O hydrogen bonds.

1. Chemical context

Hydrazones are important compounds due to their possible applications in material and coordination chemistry. Fluorescence properties of hydrazones have been reported (Qin et al., 2009[Qin, D.-D., Yang, Z.-Y. & Qi, G.-F. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 415-420.]). Many organometallic compounds containing acyl­hydrazone ligands have also been synthesized for their potential magneto-chemical properties (Guo et al., 2010[Guo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538-8539.]). In particular, they have received increasing inter­est for their biological activity as anti­oxidants (Kitaev et al., 1970[Kitaev, Y. P., Buzykin, B. I. & Troepol'skaya, T. V. (1970). Russ. Chem. Rev. 39, 441-456.]), and their anti­microbial (Ramamohan et al., 1995[Ramamohan, L., Shikkargol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86-89.]) and anti­viral properties (El-Tabl et al., 2008[El-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 71, 90-99.]; Rollas & Küçükgüzel, 2007[Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910-1939.]).

[Scheme 1]

Although 2′,4′-di­hydroxy­aceto­phenone azine has been pre­pared and studied as a fluorescent probe, its structure has not been reported. As a part of our studies on synthesis and structural peculiarities of Schiff base ligands derived from 2′,4′-di­hydroxy­aceto­phenone and hydrazine, we determined the structure of the title compound, (E,E)-2′,4′-di­hydroxy­aceto­phenone azine di­methyl­formamide disolvate, (I)[link].

2. Structural commentary

The mol­ecular structure of the title compound is depicted in Fig. 1[link]. The asymmetric unit contains one half-mol­ecule of (E,E)-2′,4′-di­hydroxy­aceto­phenone azine and one dimethylformamide (DMF) mol­ecule. The complete azine mol­ecule is centrosymmetric and exists in an E,E configuration with respect to the two C=N bonds. The N1—C2 bond length of 1.301 (3) Å shows double-bond character. The C—O bond lengths [1.349 (3) and 1.358 (3) Å] are comparable with similar bonds in related structures (Chantrapromma et al., 2011[Chantrapromma, S., Jansrisewangwong, P., Chanawanno, K. & Fun, H.-K. (2011). Acta Cryst. E67, o2221-o2222.]; Tai et al., 2008[Tai, X.-S., Xu, J., Feng, Y.-M. & Liang, Z.-P. (2008). Acta Cryst. E64, o905.]). All the non-H atoms of the azine mol­ecule are approximately coplanar. The nine atoms (i.e. N1, C1 and C2, and the six C atoms in the benzene ring) are essentially planar, with a mean deviation of 0.0024 Å. Each hy­droxy group is nearly coplanar with its attached benzene ring; the r.m.s. deviation is 0.0045 Å for the seven non-H atoms. Intra­molecular O—H⋯N hydrogen bonds exist in the azine mol­ecule (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.82 2.543 (2) 147
O2—H2⋯O3i 0.82 1.84 2.649 (3) 171
Symmetry code: (i) x-1, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only one DMF solvent molecule is shown. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

3. Supra­molecular features

In the crystal of (I), inter­molecular O—H⋯O hydrogen bonds exist between azine mol­ecules and DMF mol­ecules (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x − 1, y + 1, z.]

4. Database survey

A search of Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for aceto­phenone azine gave 105 hits (excluding organometallics). There are four reported crystal structures of aceto­phenone azine containing hy­droxy groups at the 2-position of benzene rings: (E,E)-2,2′-(1,1′-azinodi­ethyl­idyne)di­phenol (Tai et al., 2008[Tai, X.-S., Xu, J., Feng, Y.-M. & Liang, Z.-P. (2008). Acta Cryst. E64, o905.]), (E,E)-4,4′-di­chloro-2,2′-(1,1′-azinodi­ethyl­idyne)diphenol (Chang et al., 2007[Chang, J.-G., He, G.-F. & Li, Y.-F. (2007). Acta Cryst. E63, o3982.]), (E,E)-3,3′-dieth­oxy-2,2′-(1,1′-azinodi­ethyl­idyne)diphenol (Fayos et al., 1980[Fayos, J., Martínez-Ripoll, M., García-Mina, M. C., Gonzalez-Martínez, J. & Arrese, F. (1980). Acta Cryst. B36, 1952-1953.]) and (E,E)-4,4′-dimeth­oxy-2,2′-(1,1′-azinodi­ethyl­idyne)diphenol (Zhang et al., 2008[Zhang, J.-H., Dong, W.-L., Ge, Y.-Q. & Zhao, B.-X. (2008). Acta Cryst. E64, o166.]).

5. Synthesis and crystallization

A mixture of 2′,4′-di­hydroxy­aceto­phenone (3.06 g, 20 mmol), hydrazine sulfate (1.28 g, 10 mmol) and tri­ethyl­amine (3.03 g, 30 mmol) in ethanol (40 ml) was heated under reflux for 24 h. After cooling, the precipitate was filtrated and washed with water to afford a yellow solid. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in DMF at room temperature for 5 d (yield 1.20 g, 75%; m.p: 484–485 K). 1H NMR (300 MHz, CDCl3): δ 13.59 (s, 2H, OH), 10.14 (s, 2H, OH), 7.58–7.61 (d, 2H, ArH), 6.37–6.41 (d, 2H, ArH), 6.30–6.31 (s, 2H, ArH), 3.34 (d, 6H, CH3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed geometrically (C—H = 0.93–0.96 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) for aromatic H atoms or 1.5Ueq(C,O) for methyl and hy­droxy groups.

Table 2
Experimental details

Crystal data
Chemical formula C16H16N2O4·2C3H7NO
Mr 446.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 6.1616 (7), 7.3109 (8), 13.4537 (15)
α, β, γ (°) 96.771 (1), 103.049 (2), 96.607 (1)
V3) 579.96 (11)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.48 × 0.43 × 0.21
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.956, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 2902, 2001, 1313
Rint 0.026
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.187, 1.02
No. of reflections 2001
No. of parameters 149
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.25
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4,4'-[1,1'-(Hydrazinediylidene)bis(ethan-1-yl-1-ylidene)]bis(benzene-1,3-diol) top
Crystal data top
C16H16N2O4·2C3H7NOZ = 1
Mr = 446.50F(000) = 238
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1616 (7) ÅCell parameters from 1119 reflections
b = 7.3109 (8) Åθ = 3.0–26.5°
c = 13.4537 (15) ŵ = 0.09 mm1
α = 96.771 (1)°T = 298 K
β = 103.049 (2)°Block, colorless
γ = 96.607 (1)°0.48 × 0.43 × 0.21 mm
V = 579.96 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2001 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.956, Tmax = 0.981k = 87
2902 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.1079P)2 + 0.0859P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2001 reflectionsΔρmax = 0.28 e Å3
149 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.17 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4279 (3)0.5237 (2)0.53085 (13)0.0391 (5)
N20.5727 (4)0.1587 (3)0.91556 (16)0.0566 (6)
O10.2575 (3)0.7659 (2)0.62846 (12)0.0537 (5)
H10.33720.72700.59190.081*
O20.2843 (3)0.5582 (3)0.80524 (14)0.0679 (6)
H20.27930.67120.81900.102*
O30.7469 (4)0.0813 (3)0.87057 (18)0.0899 (8)
C10.3219 (5)0.1857 (3)0.5203 (2)0.0574 (7)
H1A0.22290.14620.45310.086*
H1B0.27790.10980.56810.086*
H1C0.47370.17320.51720.086*
C20.3080 (3)0.3858 (3)0.55569 (15)0.0374 (6)
C30.1542 (3)0.4334 (3)0.62014 (15)0.0368 (6)
C40.1368 (4)0.6208 (3)0.65420 (16)0.0403 (6)
C50.0090 (4)0.6624 (3)0.71594 (16)0.0458 (6)
H50.01800.78610.73800.055*
C60.1404 (4)0.5221 (4)0.74482 (17)0.0479 (6)
C70.1270 (4)0.3382 (4)0.71238 (18)0.0528 (7)
H70.21530.24310.73160.063*
C80.0176 (4)0.2968 (3)0.65154 (17)0.0472 (6)
H80.02490.17230.63040.057*
C90.5795 (5)0.0016 (5)0.8617 (2)0.0696 (9)
H90.44890.05890.81360.084*
C100.7669 (5)0.2551 (5)0.9909 (2)0.0808 (9)
H10A0.87290.17061.00840.121*
H10B0.72280.30391.05160.121*
H10C0.83550.35560.96320.121*
C110.3699 (5)0.2460 (5)0.8988 (3)0.0889 (10)
H11A0.24800.16110.85300.133*
H11B0.39510.35680.86870.133*
H11C0.33240.27780.96350.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0427 (11)0.0333 (11)0.0416 (10)0.0063 (8)0.0117 (8)0.0035 (8)
N20.0545 (13)0.0620 (15)0.0553 (12)0.0128 (11)0.0150 (10)0.0088 (11)
O10.0704 (11)0.0331 (10)0.0647 (11)0.0015 (8)0.0367 (9)0.0024 (7)
O20.0738 (13)0.0718 (14)0.0713 (12)0.0124 (10)0.0428 (10)0.0122 (10)
O30.0897 (16)0.0827 (17)0.1017 (17)0.0266 (14)0.0354 (13)0.0059 (13)
C10.0708 (17)0.0345 (14)0.0745 (17)0.0076 (12)0.0332 (14)0.0080 (12)
C20.0380 (12)0.0337 (12)0.0377 (11)0.0037 (9)0.0037 (9)0.0065 (9)
C30.0383 (12)0.0346 (12)0.0351 (11)0.0028 (9)0.0048 (9)0.0057 (9)
C40.0450 (13)0.0378 (13)0.0364 (11)0.0024 (10)0.0078 (10)0.0064 (9)
C50.0532 (14)0.0414 (14)0.0427 (12)0.0066 (11)0.0136 (11)0.0020 (10)
C60.0451 (13)0.0583 (16)0.0411 (12)0.0065 (11)0.0120 (10)0.0081 (11)
C70.0548 (15)0.0502 (16)0.0561 (15)0.0022 (12)0.0199 (12)0.0155 (11)
C80.0539 (14)0.0385 (14)0.0497 (13)0.0031 (11)0.0137 (11)0.0102 (10)
C90.0675 (19)0.081 (2)0.0575 (16)0.0021 (16)0.0183 (14)0.0061 (15)
C100.078 (2)0.075 (2)0.078 (2)0.0069 (17)0.0043 (17)0.0000 (16)
C110.069 (2)0.102 (3)0.102 (2)0.0268 (19)0.0191 (18)0.032 (2)
Geometric parameters (Å, º) top
N1—C21.301 (3)C3—C41.417 (3)
N1—N1i1.391 (3)C4—C51.389 (3)
N2—C91.313 (4)C5—C61.380 (3)
N2—C101.430 (4)C5—H50.9300
N2—C111.453 (3)C6—C71.381 (3)
O1—C41.349 (3)C7—C81.374 (3)
O1—H10.8200C7—H70.9300
O2—C61.358 (3)C8—H80.9300
O2—H20.8200C9—H90.9300
O3—C91.232 (3)C10—H10A0.9600
C1—C21.503 (3)C10—H10B0.9600
C1—H1A0.9600C10—H10C0.9600
C1—H1B0.9600C11—H11A0.9600
C1—H1C0.9600C11—H11B0.9600
C2—C31.465 (3)C11—H11C0.9600
C3—C81.396 (3)
C2—N1—N1i116.3 (2)O2—C6—C5122.1 (2)
C9—N2—C10120.9 (2)O2—C6—C7118.0 (2)
C9—N2—C11121.2 (3)C5—C6—C7119.9 (2)
C10—N2—C11117.9 (3)C8—C7—C6119.6 (2)
C4—O1—H1109.5C8—C7—H7120.2
C6—O2—H2109.5C6—C7—H7120.2
C2—C1—H1A109.5C7—C8—C3122.9 (2)
C2—C1—H1B109.5C7—C8—H8118.6
H1A—C1—H1B109.5C3—C8—H8118.6
C2—C1—H1C109.5O3—C9—N2124.5 (3)
H1A—C1—H1C109.5O3—C9—H9117.8
H1B—C1—H1C109.5N2—C9—H9117.8
N1—C2—C3116.96 (19)N2—C10—H10A109.5
N1—C2—C1122.62 (19)N2—C10—H10B109.5
C3—C2—C1120.4 (2)H10A—C10—H10B109.5
C8—C3—C4116.5 (2)N2—C10—H10C109.5
C8—C3—C2121.9 (2)H10A—C10—H10C109.5
C4—C3—C2121.6 (2)H10B—C10—H10C109.5
O1—C4—C5117.0 (2)N2—C11—H11A109.5
O1—C4—C3122.42 (19)N2—C11—H11B109.5
C5—C4—C3120.6 (2)H11A—C11—H11B109.5
C6—C5—C4120.7 (2)N2—C11—H11C109.5
C6—C5—H5119.7H11A—C11—H11C109.5
C4—C5—H5119.7H11B—C11—H11C109.5
N1i—N1—C2—C3179.63 (19)C3—C4—C5—C60.3 (3)
N1i—N1—C2—C10.1 (3)C4—C5—C6—O2179.9 (2)
N1—C2—C3—C8179.94 (18)C4—C5—C6—C70.2 (3)
C1—C2—C3—C80.5 (3)O2—C6—C7—C8179.7 (2)
N1—C2—C3—C40.2 (3)C5—C6—C7—C80.0 (4)
C1—C2—C3—C4179.69 (19)C6—C7—C8—C30.1 (4)
C8—C3—C4—O1179.28 (19)C4—C3—C8—C70.1 (3)
C2—C3—C4—O10.9 (3)C2—C3—C8—C7179.7 (2)
C8—C3—C4—C50.3 (3)C10—N2—C9—O30.1 (4)
C2—C3—C4—C5179.47 (19)C11—N2—C9—O3178.5 (3)
O1—C4—C5—C6179.3 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.543 (2)147
O2—H2···O3ii0.821.842.649 (3)171
Symmetry code: (ii) x1, y+1, z.
 

Acknowledgements

Financial support from the Natural Science Foundation of Shanxi Province (No. 2013011011-4) is gratefully acknowledged.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, J.-G., He, G.-F. & Li, Y.-F. (2007). Acta Cryst. E63, o3982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P., Chanawanno, K. & Fun, H.-K. (2011). Acta Cryst. E67, o2221–o2222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 71, 90–99.  Web of Science PubMed Google Scholar
First citationFayos, J., Martínez-Ripoll, M., García-Mina, M. C., Gonzalez-Martínez, J. & Arrese, F. (1980). Acta Cryst. B36, 1952–1953.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538–8539.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKitaev, Y. P., Buzykin, B. I. & Troepol'skaya, T. V. (1970). Russ. Chem. Rev. 39, 441–456.  CrossRef Google Scholar
First citationQin, D.-D., Yang, Z.-Y. & Qi, G.-F. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 415–420.  Web of Science CrossRef PubMed Google Scholar
First citationRamamohan, L., Shikkargol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86–89.  Google Scholar
First citationRollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Xu, J., Feng, Y.-M. & Liang, Z.-P. (2008). Acta Cryst. E64, o905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J.-H., Dong, W.-L., Ge, Y.-Q. & Zhao, B.-X. (2008). Acta Cryst. E64, o166.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds