research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{bis­­(azido-κN)bis­­[bis­­(pyridin-2-yl-κN)amine]cobalt(III)} sulfate dihydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDepartment of Chemistry, Mathematics and Physics, Clarion University, 840 Wood Street, Clarion, PA 16214, USA, and cLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP524, 60000, Oujda, Morocco, and, Faculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco
*Correspondence e-mail: fat_setifi@yahoo.fr, jknaust@clarion.edu, touzanir@yahoo.fr

Edited by M. Zeller, Youngstown State University, USA (Received 4 February 2016; accepted 2 March 2016; online 8 March 2016)

The search for new mol­ecular materials with inter­esting magnetic properties, using the pseudohalide azide ion and di-2-pyridyl­amine (dpa, C10H9N3) as a chelating ligand, led to the synthesis and structure determination of the title compound, [Co(N3)2(dpa)2]2SO4·2H2O. The crystal structure comprises discrete [Co(dpa)2(N3)2]+ cations, sulfate anions, as well as H2O solvent mol­ecules. The CoIII cations display a slightly distorted octa­hedral coordination sphere defined by two N atoms from azide anions and four N atoms from the pyridyl rings of two dpa ligands. In the crystal, extensive C—H⋯O, N—H⋯O, and O—H⋯O inter­actions result in supra­molecular sheets that lie parallel to the ab plane. The sheets are further linked through O—H⋯N inter­actions between the water mol­ecules of one sheet and azide anions of another sheet, forming a supra­molecular framework.

1. Chemical context

In recent years, mol­ecular magnetism has attracted great attention due to the inter­est in designing new mol­ecular materials with inter­esting magnetic properties and potential applications (Kahn, 1993[Kahn, O. (1993). In Molecular Magnetism. New York: VCH.]; Miller & Gatteschi, 2011[Miller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065-3066.]). Connecting paramagnetic ions by use of bridging polynitrile or pseudohalide ligands is an important strategy in the design of such materials (Setifi et al., 2002[Setifi, F., Ota, A., Ouahab, L., Golhen, S., Yamochi, A. & Saito, G. (2002). J. Solid State Chem. 168, 450-456.], 2003[Setifi, F., Ouahab, L., Golhen, S., Miyazaki, A., Enoki, A. & Yamada, J. I. (2003). C. R. Chim. 6, 309-316.], 2013[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12-m13.], 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]; Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856-3862.], 2009[Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308-1314.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]). As a short bridging ligand and efficient superexchange mediator, the pseudohalide azide ion has proven to be very versatile and diverse in both coordination chemistry and magnetism. It can link metal ions in μ-1,1 (end-on, EO), μ-1,3 (end-to-end, EE) and μ-1,1,1 coordination modes among others, and effectively mediate either ferromagnetic or anti­ferromagnetic coupling. Many azide-bridged systems with different dimensionality and topology have been synthesized by using various auxiliary ligands, and a great diversity of magnetic behaviors have been demonstrated (Ribas et al., 1999[Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193-195, 1027-1068.]; Gao et al., 2004[Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z., Zhang, S.-W. & Yan, C.-H. (2004). Chem. Mater. 16, 1590-1596.]; Liu et al., 2007[Liu, F.-C., Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Bu, X.-H., Ribas, J. & Cano, J. (2007). Inorg. Chem. 46, 1520-1522.]; Mautner et al., 2010[Mautner, F. A., Egger, A., Sodin, B., Goher, M. A. S., Abu-Youssef, M. A. M., Massoud, A., Escuer, A. & Vicente, R. (2010). J. Mol. Struct. 969, 192-196.]). In view of the possible roles of the versatile azido ligand, we have been inter­ested in using it in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the field of mol­ecular materials exhibiting inter­esting magnetic exchange coupling. During the course of attempts to prepare such complexes with di-2-pyridyl­amine, we isolated the title compound, whose structure is described herein.

[Scheme 1]

2. Structural commentary

The structure of the title compound is composed of discrete [Co(dpa)2(N3)2]+ cations, SO42− anions, and solvent water mol­ecules in a 2:1:2 ratio (Fig. 1[link]). The sulfate anion is located on a twofold rotational axis, and all other atoms lie on general positions. The central CoIII ion has an approximately octa­hedral coordination geometry formed by four N-donors from the pyridyl rings of two chelating bidentate dpa ligands and two N-donors from the terminal azide anions with the cisoid angles ranging from 84.97 (8) to 94.15 (8)° and transoid angles ranging from 174.02 (8) to 176.36 (8)° (Table 1[link]). While the bite angles of the dpa ligands are both less than 90° the smallest cisoid angle observed is for N4—Co1—N10 (Table 1[link]), and the pyridyl ring containing N4 and azide anion containing N10 are involved in a weak C—H⋯N inter­action (C11—H11⋯N10) (Table 2[link]). The two pyridyl rings of each chelating dpa ligand coordinate to the metal in a cis-disposition, and the azide anions are also coordinating cis to each other.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 1.9534 (17) Co1—N10 1.951 (2)
Co1—N3 1.9680 (18) N7—N8 1.208 (3)
Co1—N4 1.9699 (17) N8—N9 1.142 (3)
Co1—N6 1.9533 (16) N10—N11 1.181 (2)
Co1—N7 1.9334 (18) N11—N12 1.148 (3)
       
N1—Co1—N3 86.48 (7) N7—N8—N9 175.7 (2)
N1—Co1—N4 91.77 (7) N10—N11—N12 175.3 (3)
N1—Co1—N6 176.36 (8) Co1—N7—N8 122.05 (15)
N1—Co1—N7 90.68 (7) Co1—N10—N11 126.09 (17)
N1—Co1—N10 89.46 (8) C5—N2—C6 123.44 (17)
N3—Co1—N4 92.28 (7) C15—N5—C16 125.87 (19)
N3—Co1—N6 89.89 (7) N1—C5—N2 119.38 (18)
N3—Co1—N7 93.31 (8) N2—C6—N3 119.1 (2)
N3—Co1—N10 175.02 (7) N4—C15—N5 119.30 (18)
N4—Co1—N6 88.08 (7) N5—C16—N6 120.16 (18)
N4—Co1—N7 174.02 (8) C5—N1—Co1 120.94 (14)
N4—Co1—N10 84.97 (8) C6—N3—Co1 120.49 (14)
N6—Co1—N7 89.82 (7) C15—N4—Co1 122.47 (15)
N6—Co1—N10 94.15 (8) C16—N6—Co1 121.35 (13)
N7—Co1—N10 89.61 (9)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯N12i 0.86 2.24 3.095 (4) 173
O3—H3A⋯O2ii 0.86 2.02 2.832 (3) 158
N2—H2N⋯O2iii 0.86 1.94 2.708 (2) 147
N5—H5N⋯O1 0.86 2.08 2.742 (2) 134
C4—H4⋯O2iii 0.93 2.67 3.346 (3) 130
C10—H10⋯O3 0.93 2.51 3.203 (3) 131
C11—H11⋯N10 0.93 2.55 2.911 (3) 104
C14—H14⋯O1iv 0.93 2.49 3.399 (3) 165
C17—H17⋯O1 0.93 2.56 3.261 (3) 132
C20—H20⋯N7 0.93 2.42 2.837 (3) 107
C20—H20⋯N11 0.93 2.60 3.101 (3) 114
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) x, y-1, z; (iv) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of the title compound drawn with displacement ellipsoids at the 50% probability level for non-H atoms and spheres of arbitrary size for H atoms. [Symmetry code: (iv) −x + 1, y, −z + [{1\over 2}].]

A similar arrangement of ligands is observed in four of the five transition metal compounds reported with coordination environments comprised of two chelating dpa ligands and two terminal azide anions [CSD refcodes: ATAFEG (Du et al., 2004[Du, M. & Zhao, X.-J. (2004). Appl. Organomet. Chem. 18, 93-94.]); EYOWEU (Villanueva et al., 2004[Villanueva, M., Urtiaga, M. K., Mesa, J. L. & Arriortua, M. I. (2004). Acta Cryst. E60, m1175-m1177.]); HUFNUR (Du et al., 2001[Du, M., Guo, Y.-M., Leng, X.-B. & Bu, X.-H. (2001). Acta Cryst. E57, m97-m99.]); JANPOE (Bose et al., 2005[Bose, D., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 747-758.]); ATAFEG01 and EYOWEU01 (Rahaman et al., 2005[Rahaman, S. H., Bose, D., Chowdhury, H., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 1837-1844.])]; in the fifth compound, [Cu(dpa)2(N3)2]·2H2O, the two pyridyl rings of each chelating dpa ligand still coordinate to the metal in a cis-disposition, but the azide anions are coordinated trans to each other [CSD refcode: XUYWIX (Du et al., 2003[Du, M., Guo, Y.-M., Chen, S.-T., Bu, X.-H. & Ribas, J. (2003). Inorg. Chim. Acta, 346, 207-214.])]. The six Co—N bond lengths are comparable to those observed in [Co(dpa)2(N3)2]ClO4 [CSD refcode; HUFNUR; Du et al., 2001[Du, M., Guo, Y.-M., Leng, X.-B. & Bu, X.-H. (2001). Acta Cryst. E57, m97-m99.])] and range from 1.9334 (18) to 1.9699 (17) Å with a mean bond length of 1.955 Å (Table 1[link]). Both of the coordin­ating azide anions are nearly linear with N—N—N bond angles of 175.7 (2) and 175.3 (3)° for N7—N8—N9 and N10—N11—N12, respectively (Table 1[link]). Not unexpectedly, the Co1—N7—N8 and Co1—N10—N11 bond angles are 122.05 (15) and 126.09 (17)°, respectively, and the N—N bond lengths are slightly longer for the bonds involving nitro­gen atoms coord­inating to the CoIII ion at 1.208 (3) and 1.181 (2) Å for N7—N8 and N10—N11, respectively, versus 1.142 (3) and 1.148 (3) Å for N8—N9 and N11—N12, respectively (Dori & Ziolo, 1973[Dori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247-254.]) (Table 1[link]).

Three conformations are known for dpa, cis–cis, cis–trans, or trans–trans (Fig. 2[link]); cis and trans refer to the relation of the pyridyl nitro­gen atoms to the amine nitro­gen (Gornitzka & Stalke, 1998[Gornitzka, H. & Stalke, D. (1998). Eur. J. Inorg. Chem. pp. 311-317.]). Several bonding modes are possible involving just the pyridyl nitro­gen atoms (Fig. 3[link]). Only bonding modes III and IV–VI are observed for dpa with transition metals, but additional bonding modes are possible for anionic dpa involving coordination via the amide nitro­gen, and there are also a few reports of coordination at the deprotonated ortho carbon of one of the pyridyl rings (Brogden & Berry, 2016[Brogden, D. W. & Berry, J. F. (2016). Comments Inorg. Chem. 36, 17-37.]). In the title compound, as in the vast majority of structures where neutral dpa coordinates to a transition metal (see Database Survey), dpa adopts the trans–trans conformation and acts as a chelating ligand in bonding mode VI. The flexible nature of the dpa ligand is well recognized (Carranza et al., 2008[Carranza, J., Sletten, J., Lloret, F. & Julve, M. (2008). J. Mol. Struct. 890, 31-40.]; Du et al., 2004[Du, M. & Zhao, X.-J. (2004). Appl. Organomet. Chem. 18, 93-94.]; Wang et al., 2009[Wang, X.-T., Wang, H.-H., Wang, Z.-M. & Gao, S. (2009). Inorg. Chem. 48, 1301-1308.]), and as is often observed for coordinating dpa ligands, each dpa ligand in the title complex is quite distorted from planarity due to folding of the pyridyl rings about the line connecting the amino nitro­gen atom and the metal cation with a 46.18 (5)° angle between plane 1 (defined by atoms Co1/N1/C1–C5/N2) and plane 2 (defined by atoms N2/C6–C10/N3/Co1) and a 37.40 (6)° angle between plane 3 (defined by atoms Co1/N4/C11–C15/N5) and plane 4 (defined by atoms N5/C16–C20/N6/Co1) (Table 3[link]). For dpa ligands coordinating to a metal atom via bonding mode VI, a wide range of pyridine centroid–amine nitro­gen–pyridine centroid (Pycent—Na—Pycent) angles and pyridine nitro­gen–metal–pyridine nitro­gen (NpyM—Npy) bite angles are reported, but no simple trend between the two angles is observed (Brogden & Berry, 2016[Brogden, D. W. & Berry, J. F. (2016). Comments Inorg. Chem. 36, 17-37.]).

Table 3
Deviations of atoms from the least-squares planes and angle between planes (Å, °)

Note: (*) an atom that was not used to define the plane.

Atom Plane 1a Plane 2b Plane 3c Plane 4d Plane 5e Plane 6f
Co1 −0.1338 (10) −0.1647 (11) 0.1345 (11) 0.1699 (11) −0.8678 (25)* 0.7703 (27)*
N1 0.0362 (16)       −0.0061 (9)  
N2 0.1351 (14) 0.1438 (13)     −0.3360 (28)*  
N3   0.0556 (14)     0.0061 (9)  
N4     −0.0521 (16)     0.0091 (10)
N5     −0.0985 (14) −0.1311 (14)   0.2776 (29)*
N6       −0.0726 (16)   −0.0091 (9)
C1 0.0931 (18)          
C2 0.0613 (18)          
C3 −0.0736 (18)          
C4 −0.1218 (18)          
C5 0.0036 (14)       0.0067 (10)  
C6   0.0126 (18)     −0.0067 (10)  
C7   −0.1227 (20)        
C8   −0.1026 (22)        
C9   0.0577 (20)        
C10   0.1204 (18)        
C11     −0.1083 (18)      
C12     −0.0322 (20)      
C13     0.0909 (23)      
C14     0.0806 (22)      
C15     −0.0150 (20)     −0.0101 (11)
C16       −0.0248 (19)   0.0101 (11)
C17       0.1239 (18)    
C18       0.1050 (18)    
C19       −0.0558 (18)    
C20       −0.1144 (18)    
  Angle Between planes (°)          
  Plane 1 Plane 3        
Plane 2 46.18 (5)          
Plane 4   37.400 (6)        
Least-squares planes (x, y, z in crystal coordinates) and r.m.s. deviation of fitted atoms (a) 17.6944 (0.0050) x − 3.3356 (0.0034) y + 6.4703 (0.0175) z = 11.4816 (0.0019); 0.0936. (b) 10.8385 (0.0107) x − 6.6693 (0.0036) y − 9.4426 (0.0122) z = 5.6865 (0.0073); 0.1087. (c) 3.1401 (0.0101) x − 6.8035 (0.0036) y + 16.3074 (0.0138) z = 2.5612 (0.0063); 0.0853. (d) 14.1733 (0.0085) x − 4.0917 (0.0033) y + 13.8837 (0.0152) z = 9.4863 (0.0050): 0.1087. (e) 14.7476 (0.0151) x − 5.8441 (0.0074) y − 0.5348 (0.0288) z = 9.6107 (0.0074); 0.0064. (f) 9.4731 (0.0138) x − 6.0570 (0.0073) y + 14.4127 (0.0340) z = 5.8151 (0.0082); 0.0096.
[Figure 2]
Figure 2
Conformations of dpa. Cis and trans refer to the relation of the pyridyl N atoms to the amine N atom.
[Figure 3]
Figure 3
Possible coordination modes of dpa involving only pyridyl N atoms. Only modes III and IVVI are observed with transition metals.

In [Co(dpa)2(N3)2]+, the Py1cent—N2—Py3cent and N1—Co1—N3 angles are 120.92 (7) and 86.48 (7)°, and the Py4cent—N5—Py5cent and N4—Co1—N6 angles are 125.49 (7) and 88.08 (7)° (Py1, Py3, Py4, and Py6 are the pyridyl rings containing N1, N3, N4, and N6 respectively) (Table 1[link]). The C—N—C angles around the amino nitro­gen are larger than expected for a trigonal planar nitro­gen atom at 123.44 (17)° for C5—N2—C6 and 125.87 (19)° for C15—N5—C16, but N—C—N angles at the ring junctions are closer to 120° [N1—C5—N2 = 119.38 (18)°; N2—C6—N3 = 119.1 (2)°; N4—C15—N5 = 119.30 (18)°; N5—C16—N6 = 120.16 (18)°], and the metal lies less than 2.5° from the lone-pair direction for each pyridyl nitro­gen atom [C5—N1—Co1 = 120.94 (14); C6—N3—Co1 = 120.49 (14); C15—N4—Co1=122.47 (15); C16—N6—Co1 = 121.35 (13)°; Table 1[link]]. Both of the dpa ligands form six-membered chelate rings with boat conformations. For chelate ring –Co1–N1–C5–N2–C6–N3–, atoms Co1 and N2 lie 0.868 (3) and 0.336 (3) Å below the mean plane defined by atoms N1/C5/C6/N3, and for chelate ring –Co–N4–C15–N5–C16–N6–, atoms Co1 and N5 lie 0.770 (3) and 0.278 (3) Å above the mean plane defined by atoms N4/C15/C16/N6 (Table 3[link]).

3. Supra­molecular features

Stabilizing C—H⋯N inter­actions (C11—H11⋯N10, C20—H20⋯N7, C20—H20⋯N11) are observed between neighboring dpa ligands and azide anions within the coordination sphere of the CoIII cation (Table 2[link]). The complex cations and water mol­ecules aggregate into layers parallel to the ab plane, and each [Co(C10H9H3)2(N3)2]+ complex cation inter­acts with one water mol­ecule through a C—H⋯O hydrogen bond (C10—H10⋯O3). The sulfate anions are sandwiched between two symmetry-related layers of complex cations and water mol­ecules (Fig. 4[link]). Each sulfate anion inter­acts with two water mol­ecules and four [Co(C10H9H3)2(N3)2]+ cations through twelve hydrogen bonds (Fig. 5[link]). As the sulfate anion is located on a twofold rotational axis, only six of the twelve hydrogen bonds are unique (O3—H3A⋯O2ii, N2—H2N⋯O2iii, N5—H5N⋯O1, C4—H4⋯O2iii, C14—H14⋯O1iv, and C17—H17⋯O1). The extensive C—H⋯O, N—H⋯O, and O—H⋯O inter­actions result in two-dimensional supra­molecular sheets parallel to the ab plane (Fig. 5[link]). Finally, the sheets are linked via O—H⋯N inter­actions between the water mol­ecules of one sheet and the azide anions of another sheet (O3—H3B⋯N12i), forming a supra­molecular framework (Fig. 6[link]).

[Figure 4]
Figure 4
The sulfate anions, highlighted in space-filling mode, are sandwiched between two symmetry related layers of complex cations and water mol­ecules.
[Figure 5]
Figure 5
Extensive C—H⋯O, N—H⋯O, and O—H⋯O hydrogen bonding, represented by dashed red lines, links the anions, complex cations, and water mol­ecules into sheets parallel to the ab plane. For clarity, the pyridine C and H atoms not involved in hydrogen-bonding inter­actions have been omitted, and only the N atom coordinating to the CoIII cation is shown for the azide anions. [Symmetry codes: (iv) −x + 1, y, −z + [{1\over 2}]; (v) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vi) −x + 1, y + 1, −z + [{1\over 2}].]
[Figure 6]
Figure 6
The two-dimensional supra­molecular sheets that lie parallel to the ab plane are linked via O—H⋯N inter­actions, represented by dashed blue lines, between the water mol­ecules of one sheet and azide anions of another sheet to form a three-dimensional supra­molecular framework. The discussed C—H⋯N hydrogen bonds between neighboring dpa ligands and azide anions within the coordination sphere of the CoIII cation are represented by dashed yellow lines, and the C—H⋯O, N—H⋯O, and O—H⋯O hydrogen bonds linking the anions, complex cations, and water mol­ecules into sheets are represented by dashed red lines. For clarity hydrogen atoms not involved in hydrogen-bonding inter­actions have been omitted.

4. Database survey

Free dpa crystallizes as one of several polymorphs, but only in the cis–trans conformation with an intra­molecular C—H⋯N hydrogen bond between the two pyridyl rings [CSD refcodes: DPYRAM (Johnson & Jacobson, 1973[Johnson, J. E. & Jacobson, R. A. (1973). Acta Cryst. B29, 1669-1674.]); DPYRAM01 (Pyrka & Pinkerton, 1992[Pyrka, G. J. & Pinkerton, A. A. (1992). Acta Cryst. C48, 91-94.]); DPYRAM03 and DPYRAM04 (Schödel et al., 1996[Schödel, H., Näther, C., Bock, H. & Butenschön, F. (1996). Acta Cryst. B52, 842-853.])]. Theoretical calculations by Wu et al. (2013[Wu, L.-C., Lee, G.-H., Chen, C.-K. & Wang, C.-C. (2013). J. Chin. Chem. Soc. 60, 823-830.]) give the cis–trans conformation at 2.5 and 8.0. kcal mol−1 more stable than the cis–cis and trans–trans conformations, respectively, and the authors suggest that the instability of free dpa in the trans–trans conformation is due to repulsive inter­actions between of the pyridyl nitro­gen lone pairs. However, when dpa coordinates to a transition metal, the trans–trans conformation is preferred. A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returned 735 hits for structures involving a dpa ligand coordinating to a transition metal cation via at least one of its pyridyl rings (structures involving anionic dpa and coordination to a metal via the amide nitro­gen were excluded from the search). Of the 735 hits, only 15 structures involve dpa acting as a monodentate ligand in either the cis–cis or cis–trans conformations (bonding modes I and II, respectively) are reported. Dpa acts as a bridging ligand in only three structures in either the cis–cis or cis–trans conformations (bonding modes IV and V, respectively). No structures are observed with dpa in bonding mode III. In the remainder of the structures, dpa adopts the trans–trans conformation and acts as a chelating ligand in bonding mode VI.

As mentioned in the Structural commentary, dpa is a flexible ligand and adopts a wide range of Pycent—Na—Pycent and NpyM—Npy bite angles in transition metal complexes. A comparison of these angles in the title compound to those observed in all structures reported to the CSD involving dpa coordinating to a transition metal in bonding mode VI reveals no simple trend (Brogden & Berry, 2016[Brogden, D. W. & Berry, J. F. (2016). Comments Inorg. Chem. 36, 17-37.]) (Fig. 7[link]). Comparison of the folding angle about NaM versus the NpyM—Npy bite angle (Fig. 8[link]) as well as the folding angle about NaM versus the mean Npy—M distance (Fig. 9[link]) in the title compound to those observed in all structures reported to the CSD involving dpa coordinating to a transition metal in bonding mode VI also supports the flexible nature of dpa as a chelating ligand; however, no simple trend between the folding angle and the bite angle or the folding angle and the mean NpyM distance is indicated.

[Figure 7]
Figure 7
Scatter plot of pycent—Na—pycent angles versus NpyM—Npy bite angles for all transition metal complexes reported to the CSD with dpa in coordination mode VI. Blue dots represent all complexes with dpa coordinating in bonding mode VI to a transition metal. Red dots represent compounds where the metal has a coordination environment similar to the title compound: two dpa in bonding mode VI and two terminal azide anions. Black dots represent the title compound.
[Figure 8]
Figure 8
Scatter plot of the folding angles about NaM versus NpyM—Npy bite angles for all transition metal complexes reported to the CSD with dpa in coordination mode VI. Blue dots represent all complexes with dpa coordinating in bonding mode VI to a transition metal. Red dots represent compounds where the metal has a coordination environment similar to the title compound: two dpa in bonding mode VI and two terminal azide anions. Black dots represent the title compound.
[Figure 9]
Figure 9
Scatter plot of the folding angles about NaM versus mean M—Npy bond length for all transition metal complexes reported to the CSD with dpa in coordination mode VI. Blue dots represent all complexes with dpa coordinating in bonding mode VI to a transition metal. Red dots represent compounds where the metal has a coordination environment similar to the title compound: two dpa in bonding mode VI and two terminal azide anions. Black dots represent the title compound.

A more narrow search for structures involving at least one terminal azide anion and one dpa ligand in bonding mode VI within the coordination sphere of a transition metal cation returned 30 hits for 25 unique structures. Of the 25 structures, 23 involve MII cations; there is one report for CoIII [CSD refcode: HUFNUR (Du et al., 2001[Du, M., Guo, Y.-M., Leng, X.-B. & Bu, X.-H. (2001). Acta Cryst. E57, m97-m99.])] and another report for PtIV[CSD refcode: YATYOJ (Ha, 2012[Ha, K. (2012). Acta Cryst. E68, m447.])]. Five structures are reported where the metal cation has a coordination sphere similar to that of the title compound. In each case, an approximately octa­hedral coordination geometry is formed by four N-donors from the pyridyl rings of two dpa ligands and two N-donors from terminal azide anions. In [M(dpa)2(N3)2]·H2O with M = Mn [CSD refcode: JANPOE (Bose et al., 2005[Bose, D., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 747-758.])], Ni [CSD refcodes: EYOWEU (Villanueva et al., 2004[Villanueva, M., Urtiaga, M. K., Mesa, J. L. & Arriortua, M. I. (2004). Acta Cryst. E60, m1175-m1177.]) and EYOWEU01 (Rahaman et al. 2005[Rahaman, S. H., Bose, D., Chowdhury, H., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 1837-1844.])], and Zn [CSD refcodes: ATAFEG (Du et al., 2004[Du, M. & Zhao, X.-J. (2004). Appl. Organomet. Chem. 18, 93-94.]) and ATAFEG01 (Rahaman et al., 2005[Rahaman, S. H., Bose, D., Chowdhury, H., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 1837-1844.])], neutral complexes are observed. In each case, the azide anions coordinate to the metal cation in a cis-fashion, and hydrogen bonding, face-to-face ππ stacking, and edge-to-face C–H⋯π inter­actions result in a three-dimensional supra­molecular framework. In [Cu(dpa)2(N3)2]·2H2O, the azide anions coordinate to the CuII ion weakly in a trans-fashion, resulting in a tetra­gonally elongated octa­hedral coordination sphere for the CuII ion, and hydrogen bonding and face-to-face ππ stacking inter­actions result in two-dimensional supra­molecular sheets that lie parallel to the bc-plane [CSD refcode: XUYWIX (Du et al., 2003[Du, M., Guo, Y.-M., Chen, S.-T., Bu, X.-H. & Ribas, J. (2003). Inorg. Chim. Acta, 346, 207-214.])]. [Co(dpa)2(N3)2]ClO4 is most closely related to the title complex in that the CoIII ions are coordinated by two chelating dpa ligands and two azide anions in a cis-fashion to form [Co(dpa)2(N3)2]+ complex cations [CSD refcode: HUFNUR (Du et al., 2001[Du, M., Guo, Y.-M., Leng, X.-B. & Bu, X.-H. (2001). Acta Cryst. E57, m97-m99.])]. The structure is stabilized by strong N—H⋯O inter­actions between the complex cation and perchlorate anions. Consideration of additional weak C—H⋯N inter­actions between the cations (which were not discussed by the authors) results in supra­molecular ribbons that run parallel to the c axis.

5. Synthesis and crystallization

The title compound was synthesized hydro­thermally under autogenous pressure from a mixture of cobalt(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), di-2-pyridyl­amine (17 mg, 0.1 mmol) and sodium azide NaN3 (13 mg, 0.2 mmol) in water–methanol (4:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and heated at 423 K for two days and cooled to room temperature at 10 K h−1. The crystals were obtained in ca 20% yield based on cobalt.

CAUTION! Although not encountered in our experiments, azido compounds of metal ions are potentially explosive. Only a small amount of the materials should be prepared, and it should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The N—H and O—H-atoms were located in difference Fourier maps and then refined as riding on the carrying nitro­gen or oxygen atom with Uiso(H) = 1.2Ueq(N) or Uiso(H) = 1.5Ueq(O). Two reflections considered to be affected by beam stop inter­ference, 0 0 2 and 2 0 0, were omitted from the refinement.

Table 4
Experimental details

Crystal data
Chemical formula [Co(N3)2(C10H9N3)2]2SO4·2H2O
Mr 1102.88
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 19.9014 (4), 8.7044 (2), 27.1181 (5)
β (°) 90.753 (1)
V3) 4697.25 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.83
Crystal size (mm) 0.26 × 0.17 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.808, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 50250, 6893, 3940
Rint 0.096
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.094, 0.90
No. of reflections 6893
No. of parameters 331
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Bis{bis(azido-κN)bis[bis(pyridin-2-yl-κN)amine]cobalt(III)} sulfate dihydrate top
Crystal data top
[Co(N3)2(C10H9N3)2]2SO4·2H2OF(000) = 2264
Mr = 1102.88Dx = 1.560 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.9014 (4) ÅCell parameters from 7924 reflections
b = 8.7044 (2) Åθ = 2.5–24.6°
c = 27.1181 (5) ŵ = 0.83 mm1
β = 90.753 (1)°T = 293 K
V = 4697.25 (17) Å3Block, red
Z = 40.26 × 0.17 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
6893 independent reflections
Radiation source: sealed tube3940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
φ and ω scansθmax = 30.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2828
Tmin = 0.808, Tmax = 0.875k = 1212
50250 measured reflectionsl = 3838
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.001
6893 reflectionsΔρmax = 0.49 e Å3
331 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.62803 (2)0.08164 (3)0.07843 (2)0.02579 (9)
S10.50000.58900 (9)0.25000.0362 (2)
O10.55892 (9)0.4950 (2)0.24043 (8)0.0631 (6)
O20.48452 (10)0.6853 (3)0.20752 (7)0.0753 (7)
O30.86029 (11)0.2512 (3)0.15996 (8)0.0925 (8)
H3A0.89610.20700.17080.139*
H3B0.86030.23240.12890.139*
N10.60151 (9)0.13172 (19)0.06724 (7)0.0277 (4)
N20.57170 (9)0.1581 (2)0.15044 (7)0.0316 (4)
H2N0.53660.17270.16800.038*
N30.66233 (8)0.01273 (19)0.14314 (6)0.0263 (4)
N40.53936 (9)0.13277 (19)0.10540 (7)0.0282 (4)
N50.58666 (9)0.30108 (19)0.16366 (7)0.0323 (4)
H5N0.58860.31590.19500.039*
N60.65632 (8)0.29126 (18)0.09387 (7)0.0274 (4)
N70.71278 (10)0.0457 (2)0.04634 (7)0.0374 (5)
N80.75070 (10)0.0551 (2)0.05942 (8)0.0404 (5)
N90.78932 (12)0.1472 (3)0.06960 (11)0.0730 (9)
N100.58775 (10)0.1370 (2)0.01490 (8)0.0420 (5)
N110.61222 (10)0.2161 (2)0.01536 (8)0.0369 (5)
N120.63226 (14)0.2907 (3)0.04682 (10)0.0783 (9)
C10.60855 (11)0.1984 (3)0.02241 (9)0.0356 (6)
H10.63120.14450.00190.043*
C20.58399 (12)0.3408 (3)0.01124 (9)0.0394 (6)
H20.59080.38450.01960.047*
C30.54857 (12)0.4186 (3)0.04718 (10)0.0418 (6)
H30.52980.51410.04020.050*
C40.54117 (11)0.3552 (3)0.09263 (9)0.0354 (5)
H40.51650.40540.11660.042*
C50.57136 (10)0.2132 (2)0.10264 (8)0.0276 (5)
C60.62535 (11)0.0810 (2)0.17145 (8)0.0292 (5)
C70.64101 (14)0.1050 (3)0.22072 (9)0.0443 (6)
H70.61260.16320.24030.053*
C80.69828 (15)0.0430 (3)0.24052 (10)0.0560 (8)
H80.70920.05820.27360.067*
C90.74015 (13)0.0436 (3)0.21047 (10)0.0492 (7)
H90.78060.08270.22260.059*
C100.72045 (11)0.0694 (2)0.16294 (9)0.0357 (5)
H100.74800.12870.14300.043*
C110.48315 (11)0.0676 (2)0.08557 (9)0.0364 (5)
H110.48700.01310.05620.044*
C120.42166 (12)0.0780 (3)0.10643 (11)0.0476 (7)
H120.38440.03070.09200.057*
C130.41593 (13)0.1606 (3)0.14953 (11)0.0590 (8)
H130.37480.16600.16530.071*
C140.47057 (12)0.2342 (3)0.16911 (10)0.0494 (7)
H140.46690.29270.19760.059*
C150.53216 (11)0.2201 (2)0.14548 (9)0.0323 (5)
C160.63826 (10)0.3604 (2)0.13612 (8)0.0277 (5)
C170.67037 (11)0.4937 (2)0.15335 (9)0.0343 (5)
H170.65990.53440.18400.041*
C180.71738 (11)0.5632 (2)0.12447 (10)0.0382 (6)
H180.73910.65190.13520.046*
C190.73217 (11)0.5000 (3)0.07916 (9)0.0378 (6)
H190.76200.54870.05820.045*
C200.70238 (11)0.3651 (2)0.06560 (9)0.0331 (5)
H200.71400.32130.03560.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02576 (15)0.02659 (15)0.02507 (17)0.00383 (12)0.00259 (12)0.00118 (13)
S10.0488 (5)0.0334 (4)0.0268 (5)0.0000.0147 (4)0.000
O10.0534 (12)0.0569 (11)0.0795 (16)0.0011 (9)0.0266 (11)0.0322 (11)
O20.0638 (13)0.1057 (17)0.0562 (14)0.0388 (12)0.0109 (11)0.0498 (12)
O30.0682 (15)0.146 (2)0.0629 (16)0.0251 (15)0.0010 (13)0.0020 (15)
N10.0285 (9)0.0291 (9)0.0254 (11)0.0028 (8)0.0012 (8)0.0009 (8)
N20.0323 (10)0.0350 (10)0.0276 (11)0.0087 (8)0.0047 (8)0.0016 (8)
N30.0266 (9)0.0248 (9)0.0276 (11)0.0034 (7)0.0005 (8)0.0003 (8)
N40.0270 (10)0.0284 (9)0.0291 (11)0.0031 (8)0.0007 (8)0.0026 (8)
N50.0343 (10)0.0355 (10)0.0272 (11)0.0066 (8)0.0077 (9)0.0044 (8)
N60.0267 (9)0.0274 (9)0.0281 (11)0.0018 (7)0.0037 (8)0.0028 (8)
N70.0351 (11)0.0390 (11)0.0384 (13)0.0021 (9)0.0121 (10)0.0002 (9)
N80.0339 (11)0.0355 (11)0.0522 (14)0.0056 (10)0.0186 (10)0.0002 (10)
N90.0521 (15)0.0533 (14)0.114 (2)0.0157 (13)0.0311 (16)0.0267 (15)
N100.0423 (12)0.0517 (12)0.0319 (12)0.0151 (10)0.0032 (10)0.0126 (10)
N110.0403 (11)0.0410 (11)0.0293 (12)0.0046 (9)0.0040 (10)0.0013 (10)
N120.0860 (19)0.102 (2)0.0463 (16)0.0462 (17)0.0125 (14)0.0355 (15)
C10.0356 (13)0.0394 (13)0.0319 (14)0.0042 (10)0.0025 (11)0.0033 (11)
C20.0410 (14)0.0396 (13)0.0376 (15)0.0036 (11)0.0032 (12)0.0133 (11)
C30.0437 (14)0.0332 (12)0.0483 (17)0.0081 (11)0.0124 (12)0.0067 (12)
C40.0349 (13)0.0337 (12)0.0376 (15)0.0071 (10)0.0034 (11)0.0039 (11)
C50.0264 (11)0.0271 (11)0.0291 (13)0.0016 (9)0.0019 (10)0.0010 (9)
C60.0325 (12)0.0269 (10)0.0283 (13)0.0008 (10)0.0003 (10)0.0008 (10)
C70.0569 (16)0.0452 (14)0.0308 (14)0.0159 (12)0.0038 (12)0.0051 (11)
C80.073 (2)0.0597 (17)0.0351 (16)0.0154 (15)0.0165 (15)0.0079 (13)
C90.0467 (15)0.0543 (16)0.0461 (18)0.0139 (13)0.0202 (13)0.0050 (13)
C100.0324 (12)0.0359 (12)0.0386 (15)0.0059 (10)0.0054 (11)0.0029 (11)
C110.0330 (12)0.0379 (13)0.0383 (15)0.0012 (11)0.0049 (11)0.0044 (11)
C120.0267 (12)0.0571 (16)0.0588 (19)0.0071 (12)0.0020 (12)0.0002 (14)
C130.0330 (15)0.0762 (19)0.068 (2)0.0085 (14)0.0181 (15)0.0124 (17)
C140.0375 (14)0.0573 (16)0.0538 (18)0.0063 (13)0.0162 (13)0.0148 (14)
C150.0298 (12)0.0297 (11)0.0376 (14)0.0027 (10)0.0052 (11)0.0022 (10)
C160.0252 (11)0.0265 (10)0.0313 (13)0.0023 (9)0.0007 (10)0.0020 (10)
C170.0331 (12)0.0321 (12)0.0376 (15)0.0013 (10)0.0011 (11)0.0044 (11)
C180.0304 (12)0.0318 (12)0.0522 (17)0.0077 (10)0.0040 (11)0.0017 (11)
C190.0333 (13)0.0350 (13)0.0452 (16)0.0067 (11)0.0048 (12)0.0056 (12)
C200.0291 (12)0.0364 (12)0.0339 (14)0.0034 (10)0.0046 (10)0.0037 (10)
Geometric parameters (Å, º) top
Co1—N11.9534 (17)C1—H10.9300
Co1—N31.9680 (18)C2—C31.387 (3)
Co1—N41.9699 (17)C2—H20.9300
Co1—N61.9533 (16)C3—C41.360 (3)
Co1—N71.9334 (18)C3—H30.9300
Co1—N101.951 (2)C4—C51.399 (3)
S1—O21.4544 (19)C4—H40.9300
S1—O2i1.4544 (19)C6—C71.384 (3)
S1—O1i1.4559 (17)C7—C81.365 (4)
S1—O11.4559 (17)C7—H70.9300
O3—H3A0.8578C8—C91.394 (4)
O3—H3B0.8578C8—H80.9300
N1—C51.342 (3)C9—C101.361 (3)
N1—C11.356 (3)C9—H90.9300
N2—C61.378 (3)C10—H100.9300
N2—C51.382 (3)C11—C121.358 (3)
N2—H2N0.8600C11—H110.9300
N3—C61.346 (3)C12—C131.378 (4)
N3—C101.361 (3)C12—H120.9300
N4—C151.336 (3)C13—C141.364 (4)
N4—C111.359 (3)C13—H130.9300
N5—C161.378 (2)C14—C151.396 (3)
N5—C151.379 (3)C14—H140.9300
N5—H5N0.8600C16—C171.402 (3)
N6—C161.347 (3)C17—C181.369 (3)
N6—C201.364 (3)C17—H170.9300
N7—N81.208 (3)C18—C191.382 (3)
N8—N91.142 (3)C18—H180.9300
N10—N111.181 (2)C19—C201.364 (3)
N11—N121.148 (3)C19—H190.9300
C1—C21.365 (3)C20—H200.9300
N1—Co1—N386.48 (7)C1—C2—H2121.0
N1—Co1—N491.77 (7)C3—C2—H2121.0
N1—Co1—N6176.36 (8)C4—C3—C2120.1 (2)
N1—Co1—N790.68 (7)C4—C3—H3120.0
N1—Co1—N1089.46 (8)C2—C3—H3120.0
N3—Co1—N492.28 (7)C3—C4—C5118.9 (2)
N3—Co1—N689.89 (7)C3—C4—H4120.6
N3—Co1—N793.31 (8)C5—C4—H4120.6
N3—Co1—N10175.02 (7)N1—C5—C4121.6 (2)
N4—Co1—N688.08 (7)N2—C5—C4119.04 (19)
N4—Co1—N7174.02 (8)N3—C6—C7121.6 (2)
N4—Co1—N1084.97 (8)N2—C6—C7119.27 (19)
N6—Co1—N789.82 (7)C8—C7—C6119.7 (2)
N6—Co1—N1094.15 (8)C8—C7—H7120.1
N7—Co1—N1089.61 (9)C6—C7—H7120.1
N7—N8—N9175.7 (2)C7—C8—C9119.1 (3)
N10—N11—N12175.3 (3)C7—C8—H8120.4
Co1—N7—N8122.05 (15)C9—C8—H8120.4
Co1—N10—N11126.09 (17)C10—C9—C8118.4 (2)
C5—N2—C6123.44 (17)C10—C9—H9120.8
C15—N5—C16125.87 (19)C8—C9—H9120.8
N1—C5—N2119.38 (18)C9—C10—N3123.1 (2)
N2—C6—N3119.1 (2)C9—C10—H10118.4
N4—C15—N5119.30 (18)N3—C10—H10118.4
N5—C16—N6120.16 (18)C12—C11—N4123.3 (2)
C5—N1—Co1120.94 (14)C12—C11—H11118.4
C6—N3—Co1120.49 (14)N4—C11—H11118.4
C15—N4—Co1122.47 (15)C11—C12—C13118.2 (2)
C16—N6—Co1121.35 (13)C11—C12—H12120.9
O2—S1—O2i109.6 (2)C13—C12—H12120.9
O2—S1—O1i107.60 (11)C14—C13—C12120.1 (2)
O2i—S1—O1i110.20 (12)C14—C13—H13120.0
O2—S1—O1110.20 (12)C12—C13—H13120.0
O2i—S1—O1107.60 (11)C13—C14—C15118.7 (2)
O1i—S1—O1111.63 (15)C13—C14—H14120.7
H3A—O3—H3B103.8C15—C14—H14120.7
C5—N1—C1117.87 (18)N4—C15—C14121.9 (2)
C1—N1—Co1121.02 (14)N5—C15—C14118.8 (2)
C6—N2—H2N118.3N6—C16—C17121.85 (19)
C5—N2—H2N118.3N5—C16—C17117.99 (19)
C6—N3—C10117.6 (2)C18—C17—C16119.2 (2)
C10—N3—Co1121.60 (14)C18—C17—H17120.4
C15—N4—C11117.58 (18)C16—C17—H17120.4
C11—N4—Co1119.71 (15)C17—C18—C19119.2 (2)
C16—N5—H5N117.1C17—C18—H18120.4
C15—N5—H5N117.1C19—C18—H18120.4
C16—N6—C20117.15 (18)C20—C19—C18119.1 (2)
C20—N6—Co1120.92 (15)C20—C19—H19120.5
N1—C1—C2123.1 (2)C18—C19—H19120.5
N1—C1—H1118.4C19—C20—N6123.2 (2)
C2—C1—H1118.4C19—C20—H20118.4
C1—C2—C3118.1 (2)N6—C20—H20118.4
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···N12ii0.862.243.095 (4)173
O3—H3A···O2iii0.862.022.832 (3)158
N2—H2N···O2iv0.861.942.708 (2)147
N5—H5N···O10.862.082.742 (2)134
C4—H4···O2iv0.932.673.346 (3)130
C10—H10···O30.932.513.203 (3)131
C11—H11···N100.932.552.911 (3)104
C14—H14···O1i0.932.493.399 (3)165
C17—H17···O10.932.563.261 (3)132
C20—H20···N70.932.422.837 (3)107
C20—H20···N110.932.603.101 (3)114
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x, y1, z.
Deviations of atoms from the least-squares planes and angle between plane (Å, °) top
Note: (*) an atom that was not used to define the plane.
AtomPlane 1aPlane 2bPlane 3cPlane 4dPlane 5ePlane 6f
Co1-0.1338 (10)-0.1647 (11)0.1345 (11)0.1699 (11)-0.8678 (25)*0.7703 (27)*
N10.0362 (16)-0.0061 (9)
N20.1351 (14)0.1438 (13)-0.3360 (28)*
N30.0556 (14)0.0061 (9)
N4-0.0521 (16)0.0091 (10)
N5-0.0985 (14)-0.1311 (14)0.2776 (29)*
N6-0.0726 (16)-0.0091 (9)
C10.0931 (18)
C20.0613 (18)
C3-0.0736 (18)
C4-0.1218 (18)
C50.0036 (14)0.0067 (10)
C60.0126 (18)-0.0067 (10)
C7-0.1227 (20)
C8-0.1026 (22)
C90.0577 (20)
C100.1204 (18)
C11-0.1083( 18)
C12-0.0322 (20)
C130.0909 (23)
C140.0806 (22)
C15-0.0150 (20)-0.0101 (11)
C16-0.0248 (19)0.0101 (11)
C170.1239 (18)
C180.1050 (18)
C19-0.0558 (18)
C20-0.1144 (18)
Angle Between planes (°)
Plane 1Plane 3
Plane 246.18 (5)
Plane 437.400 (6)
Least-squares planes (x, y, z in crystal coordinates) and r.m.s. deviation of fitted atoms (a) 17.6944 (0.0050) x - 3.3356 (0.0034) y + 6.4703 (0.0175) z = 11.4816 (0.0019); 0.0936. (b) 10.8385 (0.0107) x - 6.6693 (0.0036) y - 9.4426 (0.0122) z = 5.6865 (0.0073); 0.1087. (c) 3.1401 (0.0101) x - 6.8035 (0.0036) y + 16.3074 (0.0138) z = 2.5612 (0.0063) ; 0.0853. (d) 14.1733 (0.0085) x - 4.0917 (0.0033) y + 13.8837 (0.0152) z = 9.4863 (0.0050): 0.1087. (e) 14.7476 (0.0151) x - 5.8441 (0.0074) y - 0.5348 (0.0288) z = 9.6107 (0.0074); 0.0064. (f) 9.4731 (0.0138) x - 6.0570 (0.0073) y + 14.4127 (0.0340) z = 5.8151 (0.0082); 0.0096.
 

Acknowledgements

The authors acknowledge the Algerian agency MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique), as well as the Université Ferhat Abbas Sétif 1 and Clarion University for financial support.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314.  Web of Science CSD CrossRef CAS Google Scholar
First citationBose, D., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 747–758.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrogden, D. W. & Berry, J. F. (2016). Comments Inorg. Chem. 36, 17–37.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarranza, J., Sletten, J., Lloret, F. & Julve, M. (2008). J. Mol. Struct. 890, 31–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationDori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationDu, M., Guo, Y.-M., Chen, S.-T., Bu, X.-H. & Ribas, J. (2003). Inorg. Chim. Acta, 346, 207–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M., Guo, Y.-M., Leng, X.-B. & Bu, X.-H. (2001). Acta Cryst. E57, m97–m99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDu, M. & Zhao, X.-J. (2004). Appl. Organomet. Chem. 18, 93–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z., Zhang, S.-W. & Yan, C.-H. (2004). Chem. Mater. 16, 1590–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationGornitzka, H. & Stalke, D. (1998). Eur. J. Inorg. Chem. pp. 311–317.  CrossRef Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, m447.  CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, J. E. & Jacobson, R. A. (1973). Acta Cryst. B29, 1669–1674.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKahn, O. (1993). In Molecular Magnetism. New York: VCH.  Google Scholar
First citationLiu, F.-C., Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Bu, X.-H., Ribas, J. & Cano, J. (2007). Inorg. Chem. 46, 1520–1522.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMautner, F. A., Egger, A., Sodin, B., Goher, M. A. S., Abu-Youssef, M. A. M., Massoud, A., Escuer, A. & Vicente, R. (2010). J. Mol. Struct. 969, 192–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065–3066.  Web of Science CrossRef PubMed Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationPyrka, G. J. & Pinkerton, A. A. (1992). Acta Cryst. C48, 91–94.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRahaman, S. H., Bose, D., Chowdhury, H., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 1837–1844.  Web of Science CSD CrossRef CAS Google Scholar
First citationRibas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193–195, 1027–1068.  Web of Science CrossRef CAS Google Scholar
First citationSchödel, H., Näther, C., Bock, H. & Butenschön, F. (1996). Acta Cryst. B52, 842–853.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, F., Ota, A., Ouahab, L., Golhen, S., Yamochi, A. & Saito, G. (2002). J. Solid State Chem. 168, 450–456.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Ouahab, L., Golhen, S., Miyazaki, A., Enoki, A. & Yamada, J. I. (2003). C. R. Chim. 6, 309–316.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVillanueva, M., Urtiaga, M. K., Mesa, J. L. & Arriortua, M. I. (2004). Acta Cryst. E60, m1175–m1177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X.-T., Wang, H.-H., Wang, Z.-M. & Gao, S. (2009). Inorg. Chem. 48, 1301–1308.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, L.-C., Lee, G.-H., Chen, C.-K. & Wang, C.-C. (2013). J. Chin. Chem. Soc. 60, 823–830.  Web of Science CrossRef CAS Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds