research communications
Bis{bis(azido-κN)bis[bis(pyridin-2-yl-κN)amine]cobalt(III)} sulfate dihydrate
aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDepartment of Chemistry, Mathematics and Physics, Clarion University, 840 Wood Street, Clarion, PA 16214, USA, and cLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP524, 60000, Oujda, Morocco, and, Faculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco
*Correspondence e-mail: fat_setifi@yahoo.fr, jknaust@clarion.edu, touzanir@yahoo.fr
The search for new molecular materials with interesting magnetic properties, using the pseudohalide azide ion and di-2-pyridylamine (dpa, C10H9N3) as a chelating ligand, led to the synthesis and of the title compound, [Co(N3)2(dpa)2]2SO4·2H2O. The comprises discrete [Co(dpa)2(N3)2]+ cations, sulfate anions, as well as H2O solvent molecules. The CoIII cations display a slightly distorted octahedral coordination sphere defined by two N atoms from azide anions and four N atoms from the pyridyl rings of two dpa ligands. In the crystal, extensive C—H⋯O, N—H⋯O, and O—H⋯O interactions result in supramolecular sheets that lie parallel to the ab plane. The sheets are further linked through O—H⋯N interactions between the water molecules of one sheet and azide anions of another sheet, forming a supramolecular framework.
Keywords: crystal structure; coordination compound; CoIII complex; di-2-pyridylamine (dpa); azide; hydrogen bonding; supramolecular structure.
CCDC reference: 1457112
1. Chemical context
In recent years, molecular magnetism has attracted great attention due to the interest in designing new molecular materials with interesting magnetic properties and potential applications (Kahn, 1993; Miller & Gatteschi, 2011). Connecting paramagnetic ions by use of bridging polynitrile or pseudohalide ligands is an important strategy in the design of such materials (Setifi et al., 2002, 2003, 2013, 2014; Miyazaki et al., 2003; Benmansour et al., 2008, 2009; Yuste et al., 2009). As a short bridging ligand and efficient superexchange mediator, the pseudohalide azide ion has proven to be very versatile and diverse in both coordination chemistry and magnetism. It can link metal ions in μ-1,1 (end-on, EO), μ-1,3 (end-to-end, EE) and μ-1,1,1 coordination modes among others, and effectively mediate either ferromagnetic or antiferromagnetic coupling. Many azide-bridged systems with different dimensionality and topology have been synthesized by using various auxiliary ligands, and a great diversity of magnetic behaviors have been demonstrated (Ribas et al., 1999; Gao et al., 2004; Liu et al., 2007; Mautner et al., 2010). In view of the possible roles of the versatile azido ligand, we have been interested in using it in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the field of molecular materials exhibiting interesting magnetic exchange coupling. During the course of attempts to prepare such complexes with di-2-pyridylamine, we isolated the title compound, whose structure is described herein.
2. Structural commentary
The structure of the title compound is composed of discrete [Co(dpa)2(N3)2]+ cations, SO42− anions, and solvent water molecules in a 2:1:2 ratio (Fig. 1). The sulfate anion is located on a twofold rotational axis, and all other atoms lie on general positions. The central CoIII ion has an approximately octahedral coordination geometry formed by four N-donors from the pyridyl rings of two chelating bidentate dpa ligands and two N-donors from the terminal azide anions with the cisoid angles ranging from 84.97 (8) to 94.15 (8)° and transoid angles ranging from 174.02 (8) to 176.36 (8)° (Table 1). While the bite angles of the dpa ligands are both less than 90° the smallest cisoid angle observed is for N4—Co1—N10 (Table 1), and the pyridyl ring containing N4 and azide anion containing N10 are involved in a weak C—H⋯N interaction (C11—H11⋯N10) (Table 2). The two pyridyl rings of each chelating dpa ligand coordinate to the metal in a cis-disposition, and the azide anions are also coordinating cis to each other.
|
A similar arrangement of ligands is observed in four of the five transition metal compounds reported with coordination environments comprised of two chelating dpa ligands and two terminal azide anions [CSD refcodes: ATAFEG (Du et al., 2004); EYOWEU (Villanueva et al., 2004); HUFNUR (Du et al., 2001); JANPOE (Bose et al., 2005); ATAFEG01 and EYOWEU01 (Rahaman et al., 2005)]; in the fifth compound, [Cu(dpa)2(N3)2]·2H2O, the two pyridyl rings of each chelating dpa ligand still coordinate to the metal in a cis-disposition, but the azide anions are coordinated trans to each other [CSD refcode: XUYWIX (Du et al., 2003)]. The six Co—N bond lengths are comparable to those observed in [Co(dpa)2(N3)2]ClO4 [CSD refcode; HUFNUR; Du et al., 2001)] and range from 1.9334 (18) to 1.9699 (17) Å with a mean bond length of 1.955 Å (Table 1). Both of the coordinating azide anions are nearly linear with N—N—N bond angles of 175.7 (2) and 175.3 (3)° for N7—N8—N9 and N10—N11—N12, respectively (Table 1). Not unexpectedly, the Co1—N7—N8 and Co1—N10—N11 bond angles are 122.05 (15) and 126.09 (17)°, respectively, and the N—N bond lengths are slightly longer for the bonds involving nitrogen atoms coordinating to the CoIII ion at 1.208 (3) and 1.181 (2) Å for N7—N8 and N10—N11, respectively, versus 1.142 (3) and 1.148 (3) Å for N8—N9 and N11—N12, respectively (Dori & Ziolo, 1973) (Table 1).
Three conformations are known for dpa, cis–cis, cis–trans, or trans–trans (Fig. 2); cis and trans refer to the relation of the pyridyl nitrogen atoms to the amine nitrogen (Gornitzka & Stalke, 1998). Several bonding modes are possible involving just the pyridyl nitrogen atoms (Fig. 3). Only bonding modes I–II and IV–VI are observed for dpa with transition metals, but additional bonding modes are possible for anionic dpa involving coordination via the amide nitrogen, and there are also a few reports of coordination at the deprotonated ortho carbon of one of the pyridyl rings (Brogden & Berry, 2016). In the title compound, as in the vast majority of structures where neutral dpa coordinates to a transition metal (see Database Survey), dpa adopts the trans–trans conformation and acts as a chelating ligand in bonding mode VI. The flexible nature of the dpa ligand is well recognized (Carranza et al., 2008; Du et al., 2004; Wang et al., 2009), and as is often observed for coordinating dpa ligands, each dpa ligand in the title complex is quite distorted from planarity due to folding of the pyridyl rings about the line connecting the amino nitrogen atom and the metal cation with a 46.18 (5)° angle between plane 1 (defined by atoms Co1/N1/C1–C5/N2) and plane 2 (defined by atoms N2/C6–C10/N3/Co1) and a 37.40 (6)° angle between plane 3 (defined by atoms Co1/N4/C11–C15/N5) and plane 4 (defined by atoms N5/C16–C20/N6/Co1) (Table 3). For dpa ligands coordinating to a metal atom via bonding mode VI, a wide range of pyridine centroid–amine nitrogen–pyridine centroid (Pycent—Na—Pycent) angles and pyridine nitrogen–metal–pyridine nitrogen (Npy—M—Npy) bite angles are reported, but no simple trend between the two angles is observed (Brogden & Berry, 2016).
|
In [Co(dpa)2(N3)2]+, the Py1cent—N2—Py3cent and N1—Co1—N3 angles are 120.92 (7) and 86.48 (7)°, and the Py4cent—N5—Py5cent and N4—Co1—N6 angles are 125.49 (7) and 88.08 (7)° (Py1, Py3, Py4, and Py6 are the pyridyl rings containing N1, N3, N4, and N6 respectively) (Table 1). The C—N—C angles around the amino nitrogen are larger than expected for a trigonal planar nitrogen atom at 123.44 (17)° for C5—N2—C6 and 125.87 (19)° for C15—N5—C16, but N—C—N angles at the ring junctions are closer to 120° [N1—C5—N2 = 119.38 (18)°; N2—C6—N3 = 119.1 (2)°; N4—C15—N5 = 119.30 (18)°; N5—C16—N6 = 120.16 (18)°], and the metal lies less than 2.5° from the lone-pair direction for each pyridyl nitrogen atom [C5—N1—Co1 = 120.94 (14); C6—N3—Co1 = 120.49 (14); C15—N4—Co1=122.47 (15); C16—N6—Co1 = 121.35 (13)°; Table 1]. Both of the dpa ligands form six-membered chelate rings with boat conformations. For chelate ring –Co1–N1–C5–N2–C6–N3–, atoms Co1 and N2 lie 0.868 (3) and 0.336 (3) Å below the mean plane defined by atoms N1/C5/C6/N3, and for chelate ring –Co–N4–C15–N5–C16–N6–, atoms Co1 and N5 lie 0.770 (3) and 0.278 (3) Å above the mean plane defined by atoms N4/C15/C16/N6 (Table 3).
3. Supramolecular features
Stabilizing C—H⋯N interactions (C11—H11⋯N10, C20—H20⋯N7, C20—H20⋯N11) are observed between neighboring dpa ligands and azide anions within the coordination sphere of the CoIII cation (Table 2). The complex cations and water molecules aggregate into layers parallel to the ab plane, and each [Co(C10H9H3)2(N3)2]+ complex cation interacts with one water molecule through a C—H⋯O hydrogen bond (C10—H10⋯O3). The sulfate anions are sandwiched between two symmetry-related layers of complex cations and water molecules (Fig. 4). Each sulfate anion interacts with two water molecules and four [Co(C10H9H3)2(N3)2]+ cations through twelve hydrogen bonds (Fig. 5). As the sulfate anion is located on a twofold rotational axis, only six of the twelve hydrogen bonds are unique (O3—H3A⋯O2ii, N2—H2N⋯O2iii, N5—H5N⋯O1, C4—H4⋯O2iii, C14—H14⋯O1iv, and C17—H17⋯O1). The extensive C—H⋯O, N—H⋯O, and O—H⋯O interactions result in two-dimensional supramolecular sheets parallel to the ab plane (Fig. 5). Finally, the sheets are linked via O—H⋯N interactions between the water molecules of one sheet and the azide anions of another sheet (O3—H3B⋯N12i), forming a supramolecular framework (Fig. 6).
4. Database survey
Free dpa crystallizes as one of several polymorphs, but only in the cis–trans conformation with an intramolecular C—H⋯N hydrogen bond between the two pyridyl rings [CSD refcodes: DPYRAM (Johnson & Jacobson, 1973); DPYRAM01 (Pyrka & Pinkerton, 1992); DPYRAM03 and DPYRAM04 (Schödel et al., 1996)]. Theoretical calculations by Wu et al. (2013) give the cis–trans conformation at 2.5 and 8.0. kcal mol−1 more stable than the cis–cis and trans–trans conformations, respectively, and the authors suggest that the instability of free dpa in the trans–trans conformation is due to repulsive interactions between of the pyridyl nitrogen lone pairs. However, when dpa coordinates to a transition metal, the trans–trans conformation is preferred. A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014) returned 735 hits for structures involving a dpa ligand coordinating to a transition metal cation via at least one of its pyridyl rings (structures involving anionic dpa and coordination to a metal via the amide nitrogen were excluded from the search). Of the 735 hits, only 15 structures involve dpa acting as a monodentate ligand in either the cis–cis or cis–trans conformations (bonding modes I and II, respectively) are reported. Dpa acts as a bridging ligand in only three structures in either the cis–cis or cis–trans conformations (bonding modes IV and V, respectively). No structures are observed with dpa in bonding mode III. In the remainder of the structures, dpa adopts the trans–trans conformation and acts as a chelating ligand in bonding mode VI.
As mentioned in the Structural commentary, dpa is a flexible ligand and adopts a wide range of Pycent—Na—Pycent and Npy—M—Npy bite angles in transition metal complexes. A comparison of these angles in the title compound to those observed in all structures reported to the CSD involving dpa coordinating to a transition metal in bonding mode VI reveals no simple trend (Brogden & Berry, 2016) (Fig. 7). Comparison of the folding angle about Na—M versus the Npy—M—Npy bite angle (Fig. 8) as well as the folding angle about Na—M versus the mean Npy—M distance (Fig. 9) in the title compound to those observed in all structures reported to the CSD involving dpa coordinating to a transition metal in bonding mode VI also supports the flexible nature of dpa as a chelating ligand; however, no simple trend between the folding angle and the bite angle or the folding angle and the mean Npy—M distance is indicated.
A more narrow search for structures involving at least one terminal azide anion and one dpa ligand in bonding mode VI within the coordination sphere of a transition metal cation returned 30 hits for 25 unique structures. Of the 25 structures, 23 involve MII cations; there is one report for CoIII [CSD refcode: HUFNUR (Du et al., 2001)] and another report for PtIV[CSD refcode: YATYOJ (Ha, 2012)]. Five structures are reported where the metal cation has a coordination sphere similar to that of the title compound. In each case, an approximately octahedral coordination geometry is formed by four N-donors from the pyridyl rings of two dpa ligands and two N-donors from terminal azide anions. In [M(dpa)2(N3)2]·H2O with M = Mn [CSD refcode: JANPOE (Bose et al., 2005)], Ni [CSD refcodes: EYOWEU (Villanueva et al., 2004) and EYOWEU01 (Rahaman et al. 2005)], and Zn [CSD refcodes: ATAFEG (Du et al., 2004) and ATAFEG01 (Rahaman et al., 2005)], neutral complexes are observed. In each case, the azide anions coordinate to the metal cation in a cis-fashion, and hydrogen bonding, face-to-face π–π stacking, and edge-to-face C–H⋯π interactions result in a three-dimensional supramolecular framework. In [Cu(dpa)2(N3)2]·2H2O, the azide anions coordinate to the CuII ion weakly in a trans-fashion, resulting in a tetragonally elongated octahedral coordination sphere for the CuII ion, and hydrogen bonding and face-to-face π–π stacking interactions result in two-dimensional supramolecular sheets that lie parallel to the bc-plane [CSD refcode: XUYWIX (Du et al., 2003)]. [Co(dpa)2(N3)2]ClO4 is most closely related to the title complex in that the CoIII ions are coordinated by two chelating dpa ligands and two azide anions in a cis-fashion to form [Co(dpa)2(N3)2]+ complex cations [CSD refcode: HUFNUR (Du et al., 2001)]. The structure is stabilized by strong N—H⋯O interactions between the complex cation and perchlorate anions. Consideration of additional weak C—H⋯N interactions between the cations (which were not discussed by the authors) results in supramolecular ribbons that run parallel to the c axis.
5. Synthesis and crystallization
The title compound was synthesized hydrothermally under autogenous pressure from a mixture of cobalt(II) sulfate heptahydrate (28 mg, 0.1 mmol), di-2-pyridylamine (17 mg, 0.1 mmol) and sodium azide NaN3 (13 mg, 0.2 mmol) in water–methanol (4:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and heated at 423 K for two days and cooled to room temperature at 10 K h−1. The crystals were obtained in ca 20% yield based on cobalt.
CAUTION! Although not encountered in our experiments, azido compounds of metal ions are potentially explosive. Only a small amount of the materials should be prepared, and it should be handled with care.
6. Refinement
Crystal data, data collection and structure . All aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The N—H and O—H-atoms were located in difference Fourier maps and then refined as riding on the carrying nitrogen or oxygen atom with Uiso(H) = 1.2Ueq(N) or Uiso(H) = 1.5Ueq(O). Two reflections considered to be affected by beam stop interference, 0 0 2 and 2 0 0, were omitted from the refinement.
details are summarized in Table 4
|
Supporting information
CCDC reference: 1457112
https://doi.org/10.1107/S2056989016003662/zl2656sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016003662/zl2656Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).[Co(N3)2(C10H9N3)2]2SO4·2H2O | F(000) = 2264 |
Mr = 1102.88 | Dx = 1.560 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.9014 (4) Å | Cell parameters from 7924 reflections |
b = 8.7044 (2) Å | θ = 2.5–24.6° |
c = 27.1181 (5) Å | µ = 0.83 mm−1 |
β = 90.753 (1)° | T = 293 K |
V = 4697.25 (17) Å3 | Block, red |
Z = 4 | 0.26 × 0.17 × 0.09 mm |
Bruker APEXII CCD diffractometer | 6893 independent reflections |
Radiation source: sealed tube | 3940 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.096 |
φ and ω scans | θmax = 30.1°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −28→28 |
Tmin = 0.808, Tmax = 0.875 | k = −12→12 |
50250 measured reflections | l = −38→38 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0412P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.90 | (Δ/σ)max = 0.001 |
6893 reflections | Δρmax = 0.49 e Å−3 |
331 parameters | Δρmin = −0.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.62803 (2) | 0.08164 (3) | 0.07843 (2) | 0.02579 (9) | |
S1 | 0.5000 | 0.58900 (9) | 0.2500 | 0.0362 (2) | |
O1 | 0.55892 (9) | 0.4950 (2) | 0.24043 (8) | 0.0631 (6) | |
O2 | 0.48452 (10) | 0.6853 (3) | 0.20752 (7) | 0.0753 (7) | |
O3 | 0.86029 (11) | 0.2512 (3) | 0.15996 (8) | 0.0925 (8) | |
H3A | 0.8961 | 0.2070 | 0.1708 | 0.139* | |
H3B | 0.8603 | 0.2324 | 0.1289 | 0.139* | |
N1 | 0.60151 (9) | −0.13172 (19) | 0.06724 (7) | 0.0277 (4) | |
N2 | 0.57170 (9) | −0.1581 (2) | 0.15044 (7) | 0.0316 (4) | |
H2N | 0.5366 | −0.1727 | 0.1680 | 0.038* | |
N3 | 0.66233 (8) | 0.01273 (19) | 0.14314 (6) | 0.0263 (4) | |
N4 | 0.53936 (9) | 0.13277 (19) | 0.10540 (7) | 0.0282 (4) | |
N5 | 0.58666 (9) | 0.30108 (19) | 0.16366 (7) | 0.0323 (4) | |
H5N | 0.5886 | 0.3159 | 0.1950 | 0.039* | |
N6 | 0.65632 (8) | 0.29126 (18) | 0.09387 (7) | 0.0274 (4) | |
N7 | 0.71278 (10) | 0.0457 (2) | 0.04634 (7) | 0.0374 (5) | |
N8 | 0.75070 (10) | −0.0551 (2) | 0.05942 (8) | 0.0404 (5) | |
N9 | 0.78932 (12) | −0.1472 (3) | 0.06960 (11) | 0.0730 (9) | |
N10 | 0.58775 (10) | 0.1370 (2) | 0.01490 (8) | 0.0420 (5) | |
N11 | 0.61222 (10) | 0.2161 (2) | −0.01536 (8) | 0.0369 (5) | |
N12 | 0.63226 (14) | 0.2907 (3) | −0.04682 (10) | 0.0783 (9) | |
C1 | 0.60855 (11) | −0.1984 (3) | 0.02241 (9) | 0.0356 (6) | |
H1 | 0.6312 | −0.1445 | −0.0019 | 0.043* | |
C2 | 0.58399 (12) | −0.3408 (3) | 0.01124 (9) | 0.0394 (6) | |
H2 | 0.5908 | −0.3845 | −0.0196 | 0.047* | |
C3 | 0.54857 (12) | −0.4186 (3) | 0.04718 (10) | 0.0418 (6) | |
H3 | 0.5298 | −0.5141 | 0.0402 | 0.050* | |
C4 | 0.54117 (11) | −0.3552 (3) | 0.09263 (9) | 0.0354 (5) | |
H4 | 0.5165 | −0.4054 | 0.1166 | 0.042* | |
C5 | 0.57136 (10) | −0.2132 (2) | 0.10264 (8) | 0.0276 (5) | |
C6 | 0.62535 (11) | −0.0810 (2) | 0.17145 (8) | 0.0292 (5) | |
C7 | 0.64101 (14) | −0.1050 (3) | 0.22072 (9) | 0.0443 (6) | |
H7 | 0.6126 | −0.1632 | 0.2403 | 0.053* | |
C8 | 0.69828 (15) | −0.0430 (3) | 0.24052 (10) | 0.0560 (8) | |
H8 | 0.7092 | −0.0582 | 0.2736 | 0.067* | |
C9 | 0.74015 (13) | 0.0436 (3) | 0.21047 (10) | 0.0492 (7) | |
H9 | 0.7806 | 0.0827 | 0.2226 | 0.059* | |
C10 | 0.72045 (11) | 0.0694 (2) | 0.16294 (9) | 0.0357 (5) | |
H10 | 0.7480 | 0.1287 | 0.1430 | 0.043* | |
C11 | 0.48315 (11) | 0.0676 (2) | 0.08557 (9) | 0.0364 (5) | |
H11 | 0.4870 | 0.0131 | 0.0562 | 0.044* | |
C12 | 0.42166 (12) | 0.0780 (3) | 0.10643 (11) | 0.0476 (7) | |
H12 | 0.3844 | 0.0307 | 0.0920 | 0.057* | |
C13 | 0.41593 (13) | 0.1606 (3) | 0.14953 (11) | 0.0590 (8) | |
H13 | 0.3748 | 0.1660 | 0.1653 | 0.071* | |
C14 | 0.47057 (12) | 0.2342 (3) | 0.16911 (10) | 0.0494 (7) | |
H14 | 0.4669 | 0.2927 | 0.1976 | 0.059* | |
C15 | 0.53216 (11) | 0.2201 (2) | 0.14548 (9) | 0.0323 (5) | |
C16 | 0.63826 (10) | 0.3604 (2) | 0.13612 (8) | 0.0277 (5) | |
C17 | 0.67037 (11) | 0.4937 (2) | 0.15335 (9) | 0.0343 (5) | |
H17 | 0.6599 | 0.5344 | 0.1840 | 0.041* | |
C18 | 0.71738 (11) | 0.5632 (2) | 0.12447 (10) | 0.0382 (6) | |
H18 | 0.7391 | 0.6519 | 0.1352 | 0.046* | |
C19 | 0.73217 (11) | 0.5000 (3) | 0.07916 (9) | 0.0378 (6) | |
H19 | 0.7620 | 0.5487 | 0.0582 | 0.045* | |
C20 | 0.70238 (11) | 0.3651 (2) | 0.06560 (9) | 0.0331 (5) | |
H20 | 0.7140 | 0.3213 | 0.0356 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02576 (15) | 0.02659 (15) | 0.02507 (17) | −0.00383 (12) | 0.00259 (12) | 0.00118 (13) |
S1 | 0.0488 (5) | 0.0334 (4) | 0.0268 (5) | 0.000 | 0.0147 (4) | 0.000 |
O1 | 0.0534 (12) | 0.0569 (11) | 0.0795 (16) | 0.0011 (9) | 0.0266 (11) | −0.0322 (11) |
O2 | 0.0638 (13) | 0.1057 (17) | 0.0562 (14) | −0.0388 (12) | −0.0109 (11) | 0.0498 (12) |
O3 | 0.0682 (15) | 0.146 (2) | 0.0629 (16) | −0.0251 (15) | 0.0010 (13) | 0.0020 (15) |
N1 | 0.0285 (9) | 0.0291 (9) | 0.0254 (11) | −0.0028 (8) | 0.0012 (8) | −0.0009 (8) |
N2 | 0.0323 (10) | 0.0350 (10) | 0.0276 (11) | −0.0087 (8) | 0.0047 (8) | 0.0016 (8) |
N3 | 0.0266 (9) | 0.0248 (9) | 0.0276 (11) | −0.0034 (7) | 0.0005 (8) | −0.0003 (8) |
N4 | 0.0270 (10) | 0.0284 (9) | 0.0291 (11) | −0.0031 (8) | −0.0007 (8) | 0.0026 (8) |
N5 | 0.0343 (10) | 0.0355 (10) | 0.0272 (11) | −0.0066 (8) | 0.0077 (9) | −0.0044 (8) |
N6 | 0.0267 (9) | 0.0274 (9) | 0.0281 (11) | −0.0018 (7) | 0.0037 (8) | 0.0028 (8) |
N7 | 0.0351 (11) | 0.0390 (11) | 0.0384 (13) | −0.0021 (9) | 0.0121 (10) | −0.0002 (9) |
N8 | 0.0339 (11) | 0.0355 (11) | 0.0522 (14) | −0.0056 (10) | 0.0186 (10) | −0.0002 (10) |
N9 | 0.0521 (15) | 0.0533 (14) | 0.114 (2) | 0.0157 (13) | 0.0311 (16) | 0.0267 (15) |
N10 | 0.0423 (12) | 0.0517 (12) | 0.0319 (12) | −0.0151 (10) | −0.0032 (10) | 0.0126 (10) |
N11 | 0.0403 (11) | 0.0410 (11) | 0.0293 (12) | −0.0046 (9) | −0.0040 (10) | −0.0013 (10) |
N12 | 0.0860 (19) | 0.102 (2) | 0.0463 (16) | −0.0462 (17) | −0.0125 (14) | 0.0355 (15) |
C1 | 0.0356 (13) | 0.0394 (13) | 0.0319 (14) | −0.0042 (10) | 0.0025 (11) | −0.0033 (11) |
C2 | 0.0410 (14) | 0.0396 (13) | 0.0376 (15) | −0.0036 (11) | −0.0032 (12) | −0.0133 (11) |
C3 | 0.0437 (14) | 0.0332 (12) | 0.0483 (17) | −0.0081 (11) | −0.0124 (12) | −0.0067 (12) |
C4 | 0.0349 (13) | 0.0337 (12) | 0.0376 (15) | −0.0071 (10) | −0.0034 (11) | 0.0039 (11) |
C5 | 0.0264 (11) | 0.0271 (11) | 0.0291 (13) | −0.0016 (9) | −0.0019 (10) | 0.0010 (9) |
C6 | 0.0325 (12) | 0.0269 (10) | 0.0283 (13) | −0.0008 (10) | −0.0003 (10) | −0.0008 (10) |
C7 | 0.0569 (16) | 0.0452 (14) | 0.0308 (14) | −0.0159 (12) | −0.0038 (12) | 0.0051 (11) |
C8 | 0.073 (2) | 0.0597 (17) | 0.0351 (16) | −0.0154 (15) | −0.0165 (15) | 0.0079 (13) |
C9 | 0.0467 (15) | 0.0543 (16) | 0.0461 (18) | −0.0139 (13) | −0.0202 (13) | 0.0050 (13) |
C10 | 0.0324 (12) | 0.0359 (12) | 0.0386 (15) | −0.0059 (10) | −0.0054 (11) | 0.0029 (11) |
C11 | 0.0330 (12) | 0.0379 (13) | 0.0383 (15) | −0.0012 (11) | −0.0049 (11) | 0.0044 (11) |
C12 | 0.0267 (12) | 0.0571 (16) | 0.0588 (19) | −0.0071 (12) | −0.0020 (12) | 0.0002 (14) |
C13 | 0.0330 (15) | 0.0762 (19) | 0.068 (2) | −0.0085 (14) | 0.0181 (15) | −0.0124 (17) |
C14 | 0.0375 (14) | 0.0573 (16) | 0.0538 (18) | −0.0063 (13) | 0.0162 (13) | −0.0148 (14) |
C15 | 0.0298 (12) | 0.0297 (11) | 0.0376 (14) | −0.0027 (10) | 0.0052 (11) | 0.0022 (10) |
C16 | 0.0252 (11) | 0.0265 (10) | 0.0313 (13) | 0.0023 (9) | 0.0007 (10) | 0.0020 (10) |
C17 | 0.0331 (12) | 0.0321 (12) | 0.0376 (15) | −0.0013 (10) | −0.0011 (11) | −0.0044 (11) |
C18 | 0.0304 (12) | 0.0318 (12) | 0.0522 (17) | −0.0077 (10) | −0.0040 (11) | −0.0017 (11) |
C19 | 0.0333 (13) | 0.0350 (13) | 0.0452 (16) | −0.0067 (11) | 0.0048 (12) | 0.0056 (12) |
C20 | 0.0291 (12) | 0.0364 (12) | 0.0339 (14) | −0.0034 (10) | 0.0046 (10) | 0.0037 (10) |
Co1—N1 | 1.9534 (17) | C1—H1 | 0.9300 |
Co1—N3 | 1.9680 (18) | C2—C3 | 1.387 (3) |
Co1—N4 | 1.9699 (17) | C2—H2 | 0.9300 |
Co1—N6 | 1.9533 (16) | C3—C4 | 1.360 (3) |
Co1—N7 | 1.9334 (18) | C3—H3 | 0.9300 |
Co1—N10 | 1.951 (2) | C4—C5 | 1.399 (3) |
S1—O2 | 1.4544 (19) | C4—H4 | 0.9300 |
S1—O2i | 1.4544 (19) | C6—C7 | 1.384 (3) |
S1—O1i | 1.4559 (17) | C7—C8 | 1.365 (4) |
S1—O1 | 1.4559 (17) | C7—H7 | 0.9300 |
O3—H3A | 0.8578 | C8—C9 | 1.394 (4) |
O3—H3B | 0.8578 | C8—H8 | 0.9300 |
N1—C5 | 1.342 (3) | C9—C10 | 1.361 (3) |
N1—C1 | 1.356 (3) | C9—H9 | 0.9300 |
N2—C6 | 1.378 (3) | C10—H10 | 0.9300 |
N2—C5 | 1.382 (3) | C11—C12 | 1.358 (3) |
N2—H2N | 0.8600 | C11—H11 | 0.9300 |
N3—C6 | 1.346 (3) | C12—C13 | 1.378 (4) |
N3—C10 | 1.361 (3) | C12—H12 | 0.9300 |
N4—C15 | 1.336 (3) | C13—C14 | 1.364 (4) |
N4—C11 | 1.359 (3) | C13—H13 | 0.9300 |
N5—C16 | 1.378 (2) | C14—C15 | 1.396 (3) |
N5—C15 | 1.379 (3) | C14—H14 | 0.9300 |
N5—H5N | 0.8600 | C16—C17 | 1.402 (3) |
N6—C16 | 1.347 (3) | C17—C18 | 1.369 (3) |
N6—C20 | 1.364 (3) | C17—H17 | 0.9300 |
N7—N8 | 1.208 (3) | C18—C19 | 1.382 (3) |
N8—N9 | 1.142 (3) | C18—H18 | 0.9300 |
N10—N11 | 1.181 (2) | C19—C20 | 1.364 (3) |
N11—N12 | 1.148 (3) | C19—H19 | 0.9300 |
C1—C2 | 1.365 (3) | C20—H20 | 0.9300 |
N1—Co1—N3 | 86.48 (7) | C1—C2—H2 | 121.0 |
N1—Co1—N4 | 91.77 (7) | C3—C2—H2 | 121.0 |
N1—Co1—N6 | 176.36 (8) | C4—C3—C2 | 120.1 (2) |
N1—Co1—N7 | 90.68 (7) | C4—C3—H3 | 120.0 |
N1—Co1—N10 | 89.46 (8) | C2—C3—H3 | 120.0 |
N3—Co1—N4 | 92.28 (7) | C3—C4—C5 | 118.9 (2) |
N3—Co1—N6 | 89.89 (7) | C3—C4—H4 | 120.6 |
N3—Co1—N7 | 93.31 (8) | C5—C4—H4 | 120.6 |
N3—Co1—N10 | 175.02 (7) | N1—C5—C4 | 121.6 (2) |
N4—Co1—N6 | 88.08 (7) | N2—C5—C4 | 119.04 (19) |
N4—Co1—N7 | 174.02 (8) | N3—C6—C7 | 121.6 (2) |
N4—Co1—N10 | 84.97 (8) | N2—C6—C7 | 119.27 (19) |
N6—Co1—N7 | 89.82 (7) | C8—C7—C6 | 119.7 (2) |
N6—Co1—N10 | 94.15 (8) | C8—C7—H7 | 120.1 |
N7—Co1—N10 | 89.61 (9) | C6—C7—H7 | 120.1 |
N7—N8—N9 | 175.7 (2) | C7—C8—C9 | 119.1 (3) |
N10—N11—N12 | 175.3 (3) | C7—C8—H8 | 120.4 |
Co1—N7—N8 | 122.05 (15) | C9—C8—H8 | 120.4 |
Co1—N10—N11 | 126.09 (17) | C10—C9—C8 | 118.4 (2) |
C5—N2—C6 | 123.44 (17) | C10—C9—H9 | 120.8 |
C15—N5—C16 | 125.87 (19) | C8—C9—H9 | 120.8 |
N1—C5—N2 | 119.38 (18) | C9—C10—N3 | 123.1 (2) |
N2—C6—N3 | 119.1 (2) | C9—C10—H10 | 118.4 |
N4—C15—N5 | 119.30 (18) | N3—C10—H10 | 118.4 |
N5—C16—N6 | 120.16 (18) | C12—C11—N4 | 123.3 (2) |
C5—N1—Co1 | 120.94 (14) | C12—C11—H11 | 118.4 |
C6—N3—Co1 | 120.49 (14) | N4—C11—H11 | 118.4 |
C15—N4—Co1 | 122.47 (15) | C11—C12—C13 | 118.2 (2) |
C16—N6—Co1 | 121.35 (13) | C11—C12—H12 | 120.9 |
O2—S1—O2i | 109.6 (2) | C13—C12—H12 | 120.9 |
O2—S1—O1i | 107.60 (11) | C14—C13—C12 | 120.1 (2) |
O2i—S1—O1i | 110.20 (12) | C14—C13—H13 | 120.0 |
O2—S1—O1 | 110.20 (12) | C12—C13—H13 | 120.0 |
O2i—S1—O1 | 107.60 (11) | C13—C14—C15 | 118.7 (2) |
O1i—S1—O1 | 111.63 (15) | C13—C14—H14 | 120.7 |
H3A—O3—H3B | 103.8 | C15—C14—H14 | 120.7 |
C5—N1—C1 | 117.87 (18) | N4—C15—C14 | 121.9 (2) |
C1—N1—Co1 | 121.02 (14) | N5—C15—C14 | 118.8 (2) |
C6—N2—H2N | 118.3 | N6—C16—C17 | 121.85 (19) |
C5—N2—H2N | 118.3 | N5—C16—C17 | 117.99 (19) |
C6—N3—C10 | 117.6 (2) | C18—C17—C16 | 119.2 (2) |
C10—N3—Co1 | 121.60 (14) | C18—C17—H17 | 120.4 |
C15—N4—C11 | 117.58 (18) | C16—C17—H17 | 120.4 |
C11—N4—Co1 | 119.71 (15) | C17—C18—C19 | 119.2 (2) |
C16—N5—H5N | 117.1 | C17—C18—H18 | 120.4 |
C15—N5—H5N | 117.1 | C19—C18—H18 | 120.4 |
C16—N6—C20 | 117.15 (18) | C20—C19—C18 | 119.1 (2) |
C20—N6—Co1 | 120.92 (15) | C20—C19—H19 | 120.5 |
N1—C1—C2 | 123.1 (2) | C18—C19—H19 | 120.5 |
N1—C1—H1 | 118.4 | C19—C20—N6 | 123.2 (2) |
C2—C1—H1 | 118.4 | C19—C20—H20 | 118.4 |
C1—C2—C3 | 118.1 (2) | N6—C20—H20 | 118.4 |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3B···N12ii | 0.86 | 2.24 | 3.095 (4) | 173 |
O3—H3A···O2iii | 0.86 | 2.02 | 2.832 (3) | 158 |
N2—H2N···O2iv | 0.86 | 1.94 | 2.708 (2) | 147 |
N5—H5N···O1 | 0.86 | 2.08 | 2.742 (2) | 134 |
C4—H4···O2iv | 0.93 | 2.67 | 3.346 (3) | 130 |
C10—H10···O3 | 0.93 | 2.51 | 3.203 (3) | 131 |
C11—H11···N10 | 0.93 | 2.55 | 2.911 (3) | 104 |
C14—H14···O1i | 0.93 | 2.49 | 3.399 (3) | 165 |
C17—H17···O1 | 0.93 | 2.56 | 3.261 (3) | 132 |
C20—H20···N7 | 0.93 | 2.42 | 2.837 (3) | 107 |
C20—H20···N11 | 0.93 | 2.60 | 3.101 (3) | 114 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+3/2, −y+1/2, −z; (iii) x+1/2, y−1/2, z; (iv) x, y−1, z. |
Note: (*) an atom that was not used to define the plane. |
Atom | Plane 1a | Plane 2b | Plane 3c | Plane 4d | Plane 5e | Plane 6f |
Co1 | -0.1338 (10) | -0.1647 (11) | 0.1345 (11) | 0.1699 (11) | -0.8678 (25)* | 0.7703 (27)* |
N1 | 0.0362 (16) | -0.0061 (9) | ||||
N2 | 0.1351 (14) | 0.1438 (13) | -0.3360 (28)* | |||
N3 | 0.0556 (14) | 0.0061 (9) | ||||
N4 | -0.0521 (16) | 0.0091 (10) | ||||
N5 | -0.0985 (14) | -0.1311 (14) | 0.2776 (29)* | |||
N6 | -0.0726 (16) | -0.0091 (9) | ||||
C1 | 0.0931 (18) | |||||
C2 | 0.0613 (18) | |||||
C3 | -0.0736 (18) | |||||
C4 | -0.1218 (18) | |||||
C5 | 0.0036 (14) | 0.0067 (10) | ||||
C6 | 0.0126 (18) | -0.0067 (10) | ||||
C7 | -0.1227 (20) | |||||
C8 | -0.1026 (22) | |||||
C9 | 0.0577 (20) | |||||
C10 | 0.1204 (18) | |||||
C11 | -0.1083( 18) | |||||
C12 | -0.0322 (20) | |||||
C13 | 0.0909 (23) | |||||
C14 | 0.0806 (22) | |||||
C15 | -0.0150 (20) | -0.0101 (11) | ||||
C16 | -0.0248 (19) | 0.0101 (11) | ||||
C17 | 0.1239 (18) | |||||
C18 | 0.1050 (18) | |||||
C19 | -0.0558 (18) | |||||
C20 | -0.1144 (18) | |||||
Angle Between planes (°) | ||||||
Plane 1 | Plane 3 | |||||
Plane 2 | 46.18 (5) | |||||
Plane 4 | 37.400 (6) |
Least-squares planes (x, y, z in crystal coordinates) and r.m.s. deviation of fitted atoms (a) 17.6944 (0.0050) x - 3.3356 (0.0034) y + 6.4703 (0.0175) z = 11.4816 (0.0019); 0.0936. (b) 10.8385 (0.0107) x - 6.6693 (0.0036) y - 9.4426 (0.0122) z = 5.6865 (0.0073); 0.1087. (c) 3.1401 (0.0101) x - 6.8035 (0.0036) y + 16.3074 (0.0138) z = 2.5612 (0.0063) ; 0.0853. (d) 14.1733 (0.0085) x - 4.0917 (0.0033) y + 13.8837 (0.0152) z = 9.4863 (0.0050): 0.1087. (e) 14.7476 (0.0151) x - 5.8441 (0.0074) y - 0.5348 (0.0288) z = 9.6107 (0.0074); 0.0064. (f) 9.4731 (0.0138) x - 6.0570 (0.0073) y + 14.4127 (0.0340) z = 5.8151 (0.0082); 0.0096. |
Acknowledgements
The authors acknowledge the Algerian agency MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique), as well as the Université Ferhat Abbas Sétif 1 and Clarion University for financial support.
References
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314. Web of Science CSD CrossRef CAS Google Scholar
Bose, D., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 747–758. Web of Science CSD CrossRef CAS Google Scholar
Brogden, D. W. & Berry, J. F. (2016). Comments Inorg. Chem. 36, 17–37. Web of Science CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carranza, J., Sletten, J., Lloret, F. & Julve, M. (2008). J. Mol. Struct. 890, 31–40. Web of Science CSD CrossRef CAS Google Scholar
Dori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247–254. CrossRef CAS Web of Science Google Scholar
Du, M., Guo, Y.-M., Chen, S.-T., Bu, X.-H. & Ribas, J. (2003). Inorg. Chim. Acta, 346, 207–214. Web of Science CSD CrossRef CAS Google Scholar
Du, M., Guo, Y.-M., Leng, X.-B. & Bu, X.-H. (2001). Acta Cryst. E57, m97–m99. Web of Science CSD CrossRef IUCr Journals Google Scholar
Du, M. & Zhao, X.-J. (2004). Appl. Organomet. Chem. 18, 93–94. Web of Science CSD CrossRef CAS Google Scholar
Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z., Zhang, S.-W. & Yan, C.-H. (2004). Chem. Mater. 16, 1590–1596. Web of Science CSD CrossRef CAS Google Scholar
Gornitzka, H. & Stalke, D. (1998). Eur. J. Inorg. Chem. pp. 311–317. CrossRef Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Ha, K. (2012). Acta Cryst. E68, m447. CSD CrossRef IUCr Journals Google Scholar
Johnson, J. E. & Jacobson, R. A. (1973). Acta Cryst. B29, 1669–1674. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kahn, O. (1993). In Molecular Magnetism. New York: VCH. Google Scholar
Liu, F.-C., Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Bu, X.-H., Ribas, J. & Cano, J. (2007). Inorg. Chem. 46, 1520–1522. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mautner, F. A., Egger, A., Sodin, B., Goher, M. A. S., Abu-Youssef, M. A. M., Massoud, A., Escuer, A. & Vicente, R. (2010). J. Mol. Struct. 969, 192–196. Web of Science CSD CrossRef CAS Google Scholar
Miller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065–3066. Web of Science CrossRef PubMed Google Scholar
Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196. Web of Science CrossRef CAS Google Scholar
Pyrka, G. J. & Pinkerton, A. A. (1992). Acta Cryst. C48, 91–94. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rahaman, S. H., Bose, D., Chowdhury, H., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 1837–1844. Web of Science CSD CrossRef CAS Google Scholar
Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193–195, 1027–1068. Web of Science CrossRef CAS Google Scholar
Schödel, H., Näther, C., Bock, H. & Butenschön, F. (1996). Acta Cryst. B52, 842–853. CSD CrossRef Web of Science IUCr Journals Google Scholar
Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, F., Ota, A., Ouahab, L., Golhen, S., Yamochi, A. & Saito, G. (2002). J. Solid State Chem. 168, 450–456. Web of Science CSD CrossRef CAS Google Scholar
Setifi, F., Ouahab, L., Golhen, S., Miyazaki, A., Enoki, A. & Yamada, J. I. (2003). C. R. Chim. 6, 309–316. Web of Science CSD CrossRef CAS Google Scholar
Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Villanueva, M., Urtiaga, M. K., Mesa, J. L. & Arriortua, M. I. (2004). Acta Cryst. E60, m1175–m1177. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, X.-T., Wang, H.-H., Wang, Z.-M. & Gao, S. (2009). Inorg. Chem. 48, 1301–1308. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wu, L.-C., Lee, G.-H., Chen, C.-K. & Wang, C.-C. (2013). J. Chin. Chem. Soc. 60, 823–830. Web of Science CrossRef CAS Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.