research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 747-750

Crystal structure of 3-benzamido-1-(4-nitro­benz­yl)quinolinium tri­fluoro­methane­sulfonate

CROSSMARK_Color_square_no_text.svg

aCentro Conjunto de Investigacion en Quimica Sustentable UAEM–UNAM, Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Carretera Toluca-Atlacomulco, Km 14.5 CP 50200 Toluca, Estado de Mexico, Mexico, and bLaboratorio de Rayos-X, Instituto de Quimica, UNAM, Circuito Exterior, Ciudad Universitaria Deleg. Coyoacán México 04510, México DF, México, Mexico
*Correspondence e-mail: adg@unam.mx

Edited by P. C. Healy, Griffith University, Australia (Received 24 February 2016; accepted 15 April 2016; online 29 April 2016)

In the title compound, C23H18N3O3+·CF3SO3, the asymmetric unit contains two crystallographically independent organic cations with similar conformations. Each cation shows a moderate distortion between the planes of the amide groups and the quinolinium rings with dihedral angles of 14.90 (2) and 31.66 (2)°. The quinolinium and phenyl rings are slightly twisted with respect to each other at dihedral angles of 6.99 (4) and 8.54 (4)°. The tri­fluoro­methane­sulfonate anions are linked to the organic cations via N—H⋯O hydrogen-bonding inter­actions involving the NH amide groups. In the crystal, the organic cations are linked by weak C—H⋯O(nitro group) inter­actions into supramol­ecular chains propagating along the b-axis direction.

1. Chemical context

Quinoline-based quaternary salts have attracted the attention of researchers in different areas of organic chemistry for their relevant applications such as DNA-inter­calators (Mazzoli et al., 2011[Mazzoli, A., Carlotti, B., Fortuna, C. G. & Spalletti, A. (2011). Photochem. Photobiol. Sci. 10, 973-979.]), fluorescent pH-sensors (Badugu et al., 2005a[Badugu, R., Lakowicz, J. R. & Geddes, C. D. (2005a). Bioorg. Med. Chem. 13, 113-119.]), fluorescent labels for anti­biotics (Zeng et al., 2010[Zeng, L., Liu, W., Zhuang, X., Wu, J., Wang, P. & Zhang, W. (2010). Chem. Commun. 46, 2435-2437.]), proteins (Hong et al., 2004[Hong, S., Yoon, S. S., Kang, C. & Suh, B. M. (2004). Korean Chem. Soc. 25, 345-346.]), heparin (Sauceda et al., 2007[Sauceda, J. C., Duke, R. M. & Nitz, M. (2007). ChemBioChem, 8, 391-394.]), sacharides (Badugu et al., 2005b[Badugu, R., Lakowicz, J. R. & Geddes, C. D. (2005b). Talanta, 66, 569-574.]), fluorescent probes for fluoride and cyanide ions (Badugu et al., 2004[Badugu, R., Lakowicz, J. R. & Geddes, C. D. (2004). Anal. Biochem. 327, 82-90.]) and nucleotides (Dorazco-González et al., 2014[Dorazco-González, A., Alamo, M. F., Godoy-Alcántar, C., Höpfl, H. & Yatsimirsky, A. K. (2014). RSC Adv. 4, 455-466.]). These cationic organic compounds are probably the most used fluorescent sensors for chloride ions in aqueous media (Bazany-Rodríguez et al., 2015[Bazany-Rodríguez, I. J., Martínez-Otero, D., Barroso-Flores, J., Yatsimirsky, A. K. & Dorazco-González, A. (2015). Sens. Actuators B Chem. 221, 1348-1355.]) and intra­cell samples (Baù et al., 2012[Baù, L., Selvestrel, F., Arduini, M., Zamparo, I., Lodovichi, C. & Mancin, F. (2012). Org. Lett. 14, 2984-2987.]). On the other hand, benzamide compounds are used as inter­mediaries for the synthesis of species with biological activity such as 1,4-benzodiazepinones, thia­zoles and oxazoles (Majumdar & Ganai, 2011[Majumdar, K. C. & Ganai, S. (2011). Synlett, pp. 1881-1887.]; Majumdar & Ghosh, 2013[Majumdar, K. C. & Ghosh, D. (2013). Tetrahedron Lett. 54, 4422-4424.]; Majumdar et al., 2012[Majumdar, K. C., Ganai, S., Nandi, R. K. & Ray, K. (2012). Tetrahedron Lett. 53, 1553-1557.]) and bicyclic N-hetero­cycles and nitro­gen-rich medium-size heterocycles (Mondal et al., 2012[Mondal, S., Nechab, M., Vanthuyne, N. & Bertrand, M. P. (2012). Chem. Commun. 48, 2549-2551.]; Zeni & Larock, 2006[Zeni, G. & Larock, R. C. (2006). Chem. Rev. 106, 4644-4680.]; Ohta et al., 2008[Ohta, Y., Chiba, H., Oishi, S., Fujii, N. & Ohno, H. (2008). Org. Lett. 10, 3535-3538.]; Majumdar et al., 2008[Majumdar, K. C., Mondal, S. & De, N. (2008). Synlett, pp. 2851-2855.]; Raju et al., 2009[Raju, R., Piggott, A. M., Conte, M., Aalbersberg, W. G. L., Feussner, K. & Capon, R. J. (2009). Org. Lett. 11, 3862-3865.]; Evdokimov et al., 2011[Evdokimov, N. M., Van slambrouck, S., Heffeter, P., Tu, L., Le Calvé, B., Lamoral-Theys, D., Hooten, C. J., Uglinskii, P. Y., Rogelj, S., Kiss, R., Steelant, W. F. A., Berger, W., Yang, J. J., Bologa, C. G., Kornienko, A. & Magedov, I. V. (2011). J. Med. Chem. 54, 2012-2021.]).

2. Structural commentary

The asymmetric unit of the title compound comprises two independent organic [N-[3-N′-(p-nitro­benz­yl)quinolinium]benzamide] cations, each of which is linked to one triflate anion through hydrogen-bonding inter­actions (N—H⋯O) between the amide groups and anions (Figs. 1[link] and 2[link]; Table 1[link]). Each cation shows a distortion between the mean planes of the amide groups and the quinolinium rings, with dihedral angles of 14.90 (2) and 31.66 (2)°. The phenyl and quinolinium rings are practically coplanar with dihedral angles of 6.99 (4) and 8.54 (4)°.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N18—H18⋯O4i 0.88 (3) 2.15 (3) 2.982 (3) 156 (3)
N44—H44⋯O24ii 0.87 (2) 1.97 (3) 2.811 (3) 164 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z+1.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (A) x, −y + [{1\over 2}], z + [{1\over 2}]; (B) x − 1, y, z + 1.]
[Figure 2]
Figure 2
Perspective view of a fragment of the crystal structure of the title compound with hydrogen bonds N—H⋯O shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

3. Supra­molecular features

The supra­molecular structure involves triflate ion pairing with the bulky cation via N—H⋯O hydrogen bonds (Table 1[link]) between amide groups and anions. The crystal structure also features face-to-face π-stacking inter­actions between benzamide and quinolinium rings [inter-centroid distance, 3.71 (3) Å] forming chains along the b-axis direction, as shown in Figs. 3[link] and 4[link]. The triflate anions are located on the periphery of the quinolinium groups, establishing C—H⋯O interactions (Table 1[link]).

[Figure 3]
Figure 3
A view approximately along the a axis, showing the offset face-to-face π-inter­actions between the benzamide and the quinolinium group. H atoms and tri­fluoro­methane­sulfonate anions have been omitted for clarity.
[Figure 4]
Figure 4
View of the π-aggregated structure. Hydrogen atoms and tri­fluoro­methane­sulfonate anions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 35.6, last update 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using N-(naphthalen-3-yl)benzamide as the main structure, reveals 26 hits; however using a closer structure, N-(quinolin-3-yl)benz­amide, shows only one hit, which corresponds to the triflate salt of N-(3-N′-methyl­quinolinium)benzamide (RISQEP) (Dorazco-González et al., 2014[Dorazco-González, A., Alamo, M. F., Godoy-Alcántar, C., Höpfl, H. & Yatsimirsky, A. K. (2014). RSC Adv. 4, 455-466.]). Additionally, N-methyl­ated and benzyl­ated isomers were found; N-(5-N′-methyl­quino­linium)benzamide triflate and N-(6-N′-methyl­quinolinium)benzamide triflate (RISQOB and RISQIV, respectively; Dorazco-González et al., 2014[Dorazco-González, A., Alamo, M. F., Godoy-Alcántar, C., Höpfl, H. & Yatsimirsky, A. K. (2014). RSC Adv. 4, 455-466.]) and N-(6-N′-benzyl­quino­linium)benzamide bromide (AJEREO;Bazany-Rodríguez et al., 2015[Bazany-Rodríguez, I. J., Martínez-Otero, D., Barroso-Flores, J., Yatsimirsky, A. K. & Dorazco-González, A. (2015). Sens. Actuators B Chem. 221, 1348-1355.]). On the other hand, the related (1,10-phenanthrolin-5-yl)benzamide IrIII complex (FAPLEP; Castillo et al., 2012[Castillo, C. E., Davies, D. L., Klair, A. D., Singh, K. & Singh, S. (2012). Dalton Trans. 41, 628-635.]) and RuII and ReI complexes containing the chemical fragment N-(quinolin-3-yl)benzamide (NILFAQ and NILFEU; Batey et al., 2007[Batey, H. D., Whitwood, A. C. & Duhme-Klair, A.-K. (2007). Inorg. Chem. 46, 6516-6528.]) have been reported previously as luminescent chemosensors. The structure of N-(1,10-phenanthrolin-5-yl)-4-(2-pyrid­yl(benzamide) monohydrate (ROFTOW; Kobayashi et al., 2008[Kobayashi, M., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1979.]) has also been reported.

5. Synthesis and crystallization

A mixture of 6-amino­quinoline (1.0 g, 6.9 mmol) and benzoyl chloride (0.49 g, 3.45 mmol) in 30 mL of dry toluene-acetone (1:1 v/v) was stirred under reflux for 2.5 h. The white precipitate was collected by filtration and washed with acetone and 5% NaHCO3 to give N-(3-quinolin­yl)benzamide in 90% yield, which was reacted with 1.5 equiv. of p-nitro benzyl chloride in 30 mL of dry DMF for 5 h. The resulting yellow powder was filtered and washed with cold MeOH to give the chloride salt in 85% yield. The chloride salt was dissolved in 100 mL of hot H2O-MeOH (1:1 v/v) then one equiv. of silver triflate was added, the mixture was stirred at room temperature for 4 h. The precipitate of silver chloride was filtered off and yellow crystals were obtained by evaporation of the solvent at room temperature.

1H NMR (300MHz, DMSO-d6) δ 11.42 (s, 1H), 10.08 (s, 1H), 9.51 (s, 1H), 8.55 (d, 1H), 8.42 (d, 1H), 8.29 (d, 2H), 8.10 (d, 2H), 7.97 (t, 1H), 7.73 (m, 6H), 6.63 (s, 2H). IR (ATR) cm−1 3271.41 (d), 3073.52 (d), 2993.15 (d), 1685.80 (d), 1603.94 (d), 1551.56 (m), 1518.86 (f), 1490.75 (d), 1372.93 (m), 1344.45 (f), 1272.46 (f), 1251.94 (f), 1163.90 (f), 1107.99 (d), 1028.82 (f), 900.95 (d), 847.43 (d), 800.46 (d), 760.49 (d), 741.83 (m), 710.10 (m), 693.06 (m), 665.58 (d), 633.92 (f), 573.28 (d), 515.54 (m), 434.41 (m).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) for aromatic groups and Uiso(H) = 1.5 Ueq(C) for aliphatic groups (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). N—H hydrogen atoms were localized in difference Fourier maps and refined with the bond lengths fixed at 0.90 A and the isotropic temperature factors fixed at 1.2 times those of the corres­ponding nitro­gen atom.

Table 2
Experimental details

Crystal data
Chemical formula C23H18N3O3+·CF3O3S
Mr 533.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 15.2183 (6), 20.0810 (8), 15.3652 (6)
β (°) 90.544 (1)
V3) 4695.4 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.30 × 0.17 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 38624, 8609, 3809
Rint 0.095
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.110, 0.85
No. of reflections 8609
No. of parameters 729
No. of restraints 180
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Chemical context top

Quinoline-based quaternary salts have attracted the attention of researchers in different areas of organic chemistry for their relevant applications such as DNA-inter­calators (Mazzoli et al., 2011), fluorescent pH-sensors (Badugu et al., 2005a), fluorescent labels for anti­biotics (Zeng et al., 2010), proteins (Hong et al., 2004), heparin (Sauceda et al., 2007), sacharides (Badugu et al., 2005b), fluorescent probes for fluoride and cyanide ions (Badugu et al., 2004) and nucleotides (Dorazco-González et al., 2014). These cationic organic compounds are probably the most used fluorescent sensors for chloride in aqueous media (Bazany-Rodríguez et al., 2015) and intra­cell samples (Baù et al., 2012). On the other hand, benzamide compounds are used as inter­mediaries for the synthesis of species with biological activity such as 1,4-benzodiazepinones, thia­zoles and oxazoles (Majumdar & Ganai, 2011; Majumdar & Ghosh, 2013; Majumdar et al., 2012) and bicyclic N-heterocycles and nitro­gen-rich medium-size heterocycles (Mondal et al., 2012; Zeni & Larock, 2006; Ohta et al., 2008; Majumdar et al., 2008; Raju et al., 2009; Evdokimov et al., 2011).

Structural commentary top

The asymmetric unit of title compound comprises two independent organic [N-[3-N'-(p-nitro­benzyl)­quinolinium]benzamide] cations, each of which is linked to one triflate anion through hydrogen-bonding inter­actions (N—H···O) between the amide groups and anions (Figs 1 and 2; Table 1). Each cation shows a distortion between the mean planes of the amide groups and the quinolinium rings, with dihedral angles of 14.90 (2) and 31.66 (2)°. The phenyl and quinolinium rings are practically coplanar with dihedral angles of 6.99 (4) and 8.54 (4)°.

Supra­molecular features top

The supra­molecular structure involves triflate ion pairing with the bulky cation [N-[3-N'-(p-nitro­benzyl)­quinolinium]benzamide] via N—H···O hydrogen bonds between amide groups and anions. The crystal structure also features face-to-face π-stacking inter­actions between benzamide and quinolinium rings [inter-centroid distance, 3.71 (3) Å] forming chains along the b-axis direction as shown in Figs. 3 and 4. The triflate anions are located on the periphery of the quinolinium groups, establishing C—H···O inter­actions.

Database survey top

A search of the Cambridge Structural Database (CSD, Version 35.6, last update 2015; Groom et al., 2016) using N-(naphthalen-3-yl)benzamide as the main structure, reveals 26 hits; however using a closer structure, N-(quinolin-3-yl)benzamide, shows only one hit, which corresponds to the triflate salt of N-(3-N'-methyl­quinolinium)benzamide (RISQEP) (Dorazco-González et al., 2014). Additionally, N-methyl­ated and benzyl­ated isomers were found; N-(5-N'-methyl­quinolinium)benzamide triflate and N-(6-N'-methyl­quinolinium)benzamide triflate (RISQOB and RISQIV, respectively; Dorazco-González et al., 2014) and N-(6-N'-benzyl­quinolinium)benzamide bromide (AJEREO;Bazany-Rodríguez et al., 2015). On the other hand, the related (1,10-phenanthrolin-5-yl)benzamide IrIII complex (FAPLEP; Castillo et al., 2012) and RuII and ReI complexes containing the chemical fragment N-(quinolin-3-yl)benzamide (NILFAQ and NILFEU; Batey et al., 2007) haven been reported previously as luminescent chemosensors. Additionally, the crystal of N-(1,10-phenanthrolin-5-yl)-4-(2-pyridyl­(benzamide) monohydrated (ROFTOW; Kobayashi et al., 2008) has been reported.

Synthesis and crystallization top

A mixture of 6-amino­quinoline (1.0 g, 6.9 mmol) and benzoyl chloride (0.49 g, 3.45 mmol) in 30 mL of dry toluene-acetone (1:1 v/v) was stirred under reflux for 2.5 h. The white precipitate was collected by filtration and washed with acetone and 5% NaHCO3 to give N-(3-quinolinyl)benzamide in 90% yield, which was reacted with 1.5 equiv. of p-nitro benzyl chloride in 30 mL of dry DMF for 5 h. The resulting yellow powder was filtered and washed with cold MeOH to give the chloride salt in 85% yield. The chloride salt was dissolved in 100 mL of hot H2O-MeOH (1:1 v/v) then one equiv. of silver triflate was added, the mixture was stirred at room temperature for 4 h. The precipitate of silver chloride was filtered off and yellow crystals were obtained by evaporation of the solvent at room temperature.

1H NMR (300MHz, DMSO-d6) δ 11.42 (s, 1H), 10.08 (s, 1H), 9.51 (s, 1H), 8.55 (d, 1H), 8.42 (d, 1H), 8.29 (d, 2H), 8.10 (d, 2H), 7.97 (t, 1H), 7.73 (m, 6H), 6.63 (s, 2H). IR (ATR) cm-1 3271.41 (d), 3073.52 (d), 2993.15 (d), 1685.80 (d), 1603.94 (d), 1551.56 (m), 1518.86 (f), 1490.75 (d), 1372.93 (m), 1344.45 (f), 1272.46 (f), 1251.94 (f), 1163.90 (f), 1107.99 (d), 1028.82 (f), 900.95 (d), 847.43 (d), 800.46 (d), 760.49 (d), 741.83 (m), 710.10 (m), 693.06 (m), 665.58 (d), 633.92 (f), 573.28 (d), 515.54 (m), 434.41 (m).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) for aromatic groups and Uiso(H) = 1.5 Ueq(C) for aliphatic groups (Sheldrick, 2008). N—H hydrogen atoms were localized in difference Fourier maps and refined with the bond lengths fixed at 0.90 A and the isotropic temperature factors fixed at 1.2 times those of the corresponding nitro­gen atom.

Structure description top

Quinoline-based quaternary salts have attracted the attention of researchers in different areas of organic chemistry for their relevant applications such as DNA-inter­calators (Mazzoli et al., 2011), fluorescent pH-sensors (Badugu et al., 2005a), fluorescent labels for anti­biotics (Zeng et al., 2010), proteins (Hong et al., 2004), heparin (Sauceda et al., 2007), sacharides (Badugu et al., 2005b), fluorescent probes for fluoride and cyanide ions (Badugu et al., 2004) and nucleotides (Dorazco-González et al., 2014). These cationic organic compounds are probably the most used fluorescent sensors for chloride in aqueous media (Bazany-Rodríguez et al., 2015) and intra­cell samples (Baù et al., 2012). On the other hand, benzamide compounds are used as inter­mediaries for the synthesis of species with biological activity such as 1,4-benzodiazepinones, thia­zoles and oxazoles (Majumdar & Ganai, 2011; Majumdar & Ghosh, 2013; Majumdar et al., 2012) and bicyclic N-heterocycles and nitro­gen-rich medium-size heterocycles (Mondal et al., 2012; Zeni & Larock, 2006; Ohta et al., 2008; Majumdar et al., 2008; Raju et al., 2009; Evdokimov et al., 2011).

The asymmetric unit of title compound comprises two independent organic [N-[3-N'-(p-nitro­benzyl)­quinolinium]benzamide] cations, each of which is linked to one triflate anion through hydrogen-bonding inter­actions (N—H···O) between the amide groups and anions (Figs 1 and 2; Table 1). Each cation shows a distortion between the mean planes of the amide groups and the quinolinium rings, with dihedral angles of 14.90 (2) and 31.66 (2)°. The phenyl and quinolinium rings are practically coplanar with dihedral angles of 6.99 (4) and 8.54 (4)°.

The supra­molecular structure involves triflate ion pairing with the bulky cation [N-[3-N'-(p-nitro­benzyl)­quinolinium]benzamide] via N—H···O hydrogen bonds between amide groups and anions. The crystal structure also features face-to-face π-stacking inter­actions between benzamide and quinolinium rings [inter-centroid distance, 3.71 (3) Å] forming chains along the b-axis direction as shown in Figs. 3 and 4. The triflate anions are located on the periphery of the quinolinium groups, establishing C—H···O inter­actions.

A search of the Cambridge Structural Database (CSD, Version 35.6, last update 2015; Groom et al., 2016) using N-(naphthalen-3-yl)benzamide as the main structure, reveals 26 hits; however using a closer structure, N-(quinolin-3-yl)benzamide, shows only one hit, which corresponds to the triflate salt of N-(3-N'-methyl­quinolinium)benzamide (RISQEP) (Dorazco-González et al., 2014). Additionally, N-methyl­ated and benzyl­ated isomers were found; N-(5-N'-methyl­quinolinium)benzamide triflate and N-(6-N'-methyl­quinolinium)benzamide triflate (RISQOB and RISQIV, respectively; Dorazco-González et al., 2014) and N-(6-N'-benzyl­quinolinium)benzamide bromide (AJEREO;Bazany-Rodríguez et al., 2015). On the other hand, the related (1,10-phenanthrolin-5-yl)benzamide IrIII complex (FAPLEP; Castillo et al., 2012) and RuII and ReI complexes containing the chemical fragment N-(quinolin-3-yl)benzamide (NILFAQ and NILFEU; Batey et al., 2007) haven been reported previously as luminescent chemosensors. Additionally, the crystal of N-(1,10-phenanthrolin-5-yl)-4-(2-pyridyl­(benzamide) monohydrated (ROFTOW; Kobayashi et al., 2008) has been reported.

Synthesis and crystallization top

A mixture of 6-amino­quinoline (1.0 g, 6.9 mmol) and benzoyl chloride (0.49 g, 3.45 mmol) in 30 mL of dry toluene-acetone (1:1 v/v) was stirred under reflux for 2.5 h. The white precipitate was collected by filtration and washed with acetone and 5% NaHCO3 to give N-(3-quinolinyl)benzamide in 90% yield, which was reacted with 1.5 equiv. of p-nitro benzyl chloride in 30 mL of dry DMF for 5 h. The resulting yellow powder was filtered and washed with cold MeOH to give the chloride salt in 85% yield. The chloride salt was dissolved in 100 mL of hot H2O-MeOH (1:1 v/v) then one equiv. of silver triflate was added, the mixture was stirred at room temperature for 4 h. The precipitate of silver chloride was filtered off and yellow crystals were obtained by evaporation of the solvent at room temperature.

1H NMR (300MHz, DMSO-d6) δ 11.42 (s, 1H), 10.08 (s, 1H), 9.51 (s, 1H), 8.55 (d, 1H), 8.42 (d, 1H), 8.29 (d, 2H), 8.10 (d, 2H), 7.97 (t, 1H), 7.73 (m, 6H), 6.63 (s, 2H). IR (ATR) cm-1 3271.41 (d), 3073.52 (d), 2993.15 (d), 1685.80 (d), 1603.94 (d), 1551.56 (m), 1518.86 (f), 1490.75 (d), 1372.93 (m), 1344.45 (f), 1272.46 (f), 1251.94 (f), 1163.90 (f), 1107.99 (d), 1028.82 (f), 900.95 (d), 847.43 (d), 800.46 (d), 760.49 (d), 741.83 (m), 710.10 (m), 693.06 (m), 665.58 (d), 633.92 (f), 573.28 (d), 515.54 (m), 434.41 (m).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) for aromatic groups and Uiso(H) = 1.5 Ueq(C) for aliphatic groups (Sheldrick, 2008). N—H hydrogen atoms were localized in difference Fourier maps and refined with the bond lengths fixed at 0.90 A and the isotropic temperature factors fixed at 1.2 times those of the corresponding nitro­gen atom.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (A) x, -y + 1/2, z + 1/2; (B) x - 1, y, z + 1.]
[Figure 2] Fig. 2. Perspective view of a fragment of the crystal structure of the title compound with hydrogen bonds N—H···O shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view approximately along the a axis, showing the offset face-to-face π-interactions between the benzamide and the quinolinium group. H atoms and trifluoromethanesulfonate anions have been omitted for clarity.
[Figure 4] Fig. 4. View of the π-aggregated structure. Hydrogen atoms and trifluoromethanesulfonate anions have been omitted for clarity.
3-Benzamido-1-(4-nitrobenzyl)quinolinium trifluoromethanesulfonate top
Crystal data top
C23H18N3O3+·CF3O3SF(000) = 2192
Mr = 533.47Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.2183 (6) ÅCell parameters from 9165 reflections
b = 20.0810 (8) Åθ = 2.4–23.7°
c = 15.3652 (6) ŵ = 0.21 mm1
β = 90.544 (1)°T = 298 K
V = 4695.4 (3) Å3Prism, yellow
Z = 80.30 × 0.17 × 0.14 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
Rint = 0.095
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 1.3°
ω scansh = 1818
38624 measured reflectionsk = 2424
8609 independent reflectionsl = 1718
3809 reflections with I > 2σ(I)
Refinement top
Refinement on F2180 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0366P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max < 0.001
8609 reflectionsΔρmax = 0.30 e Å3
729 parametersΔρmin = 0.31 e Å3
Crystal data top
C23H18N3O3+·CF3O3SV = 4695.4 (3) Å3
Mr = 533.47Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.2183 (6) ŵ = 0.21 mm1
b = 20.0810 (8) ÅT = 298 K
c = 15.3652 (6) Å0.30 × 0.17 × 0.14 mm
β = 90.544 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3809 reflections with I > 2σ(I)
38624 measured reflectionsRint = 0.095
8609 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046180 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.30 e Å3
8609 reflectionsΔρmin = 0.31 e Å3
729 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.41029 (15)0.60296 (11)0.34381 (13)0.0614 (6)
N20.1246 (2)0.91541 (18)0.5407 (2)0.0720 (9)
O20.05962 (19)0.88908 (14)0.50918 (19)0.0895 (9)
O30.1269 (2)0.97245 (14)0.5673 (2)0.1157 (11)
N10.42674 (16)0.69242 (12)0.57973 (16)0.0455 (7)
C20.42848 (19)0.64777 (15)0.51480 (19)0.0465 (8)
H20.44650.66110.45980.056*
C30.40385 (19)0.58199 (15)0.52846 (19)0.0422 (8)
C40.37908 (19)0.56351 (15)0.61040 (19)0.0463 (8)
H40.36240.51970.62070.056*
C50.3516 (2)0.59151 (16)0.7633 (2)0.0599 (10)
H50.33540.54780.77510.072*
C60.3493 (2)0.63777 (18)0.8274 (2)0.0686 (11)
H60.33110.62570.88280.082*
C70.3740 (2)0.70292 (18)0.8109 (2)0.0668 (11)
H70.37270.73380.85600.080*
C80.4001 (2)0.72291 (16)0.7310 (2)0.0581 (9)
H80.41630.76690.72110.070*
C90.4023 (2)0.67572 (16)0.66336 (19)0.0466 (8)
C100.3784 (2)0.60934 (15)0.67883 (19)0.0453 (8)
C110.4434 (2)0.76315 (14)0.55781 (19)0.0535 (9)
H11A0.47130.76580.50140.064*
H11B0.48310.78240.60070.064*
C120.3584 (2)0.80241 (15)0.55578 (18)0.0450 (8)
C130.2813 (2)0.77440 (15)0.52486 (19)0.0522 (9)
H130.28090.73010.50730.063*
C140.2046 (2)0.81107 (16)0.51962 (19)0.0550 (9)
H140.15300.79210.49840.066*
C150.2066 (2)0.87608 (16)0.5464 (2)0.0511 (9)
C160.2812 (3)0.90518 (17)0.5779 (2)0.0627 (10)
H160.28060.94920.59660.075*
C170.3573 (2)0.86843 (15)0.5817 (2)0.0599 (10)
H170.40890.88820.60210.072*
N180.40495 (17)0.53477 (12)0.46162 (16)0.0457 (7)
H180.3957 (19)0.4931 (13)0.4779 (18)0.055*
C190.4050 (2)0.54681 (17)0.3739 (2)0.0492 (8)
C200.4012 (2)0.48600 (18)0.3174 (2)0.0520 (9)
C210.3658 (2)0.42642 (19)0.3436 (2)0.0667 (10)
H210.34280.42230.39920.080*
C220.3643 (3)0.37257 (19)0.2874 (3)0.0831 (12)
H220.34030.33240.30550.100*
C230.3983 (3)0.3781 (2)0.2048 (3)0.0891 (14)
H230.39750.34180.16720.107*
C240.4330 (3)0.4374 (2)0.1790 (2)0.0874 (14)
H240.45590.44150.12340.105*
C250.4344 (2)0.49175 (19)0.2346 (2)0.0700 (11)
H250.45770.53210.21610.084*
O210.20655 (15)0.02685 (11)1.00566 (14)0.0677 (7)
N220.3601 (2)0.43286 (16)0.93943 (18)0.0623 (8)
O220.43183 (18)0.40720 (13)0.95183 (18)0.0851 (8)
O230.34872 (18)0.49256 (13)0.92938 (17)0.0901 (9)
N260.08024 (15)0.19179 (11)0.90797 (14)0.0393 (6)
C270.07780 (18)0.14885 (14)0.97427 (18)0.0399 (7)
H270.06080.16431.02860.048*
C280.09965 (18)0.08225 (14)0.96521 (19)0.0387 (7)
C290.12306 (19)0.05999 (14)0.88465 (19)0.0469 (8)
H290.13700.01530.87680.056*
C300.1490 (2)0.08164 (17)0.7297 (2)0.0621 (10)
H300.16140.03690.72020.074*
C310.1528 (2)0.12537 (18)0.6631 (2)0.0701 (11)
H310.16770.11040.60790.084*
C320.1348 (2)0.19245 (18)0.6759 (2)0.0688 (11)
H320.13900.22180.62930.083*
C330.1111 (2)0.21621 (16)0.75568 (19)0.0555 (9)
H330.09860.26110.76350.067*
C340.10618 (19)0.17144 (15)0.82524 (18)0.0420 (8)
C350.12631 (19)0.10371 (15)0.81382 (19)0.0439 (8)
C360.05804 (19)0.26267 (13)0.92396 (18)0.0452 (8)
H36A0.02770.26630.97900.054*
H36B0.01840.27800.87840.054*
C370.1383 (2)0.30700 (15)0.92630 (17)0.0406 (8)
C380.2186 (2)0.28329 (15)0.95501 (19)0.0498 (9)
H380.22390.23890.97130.060*
C390.2909 (2)0.32433 (16)0.95987 (19)0.0533 (9)
H390.34490.30800.97910.064*
C400.2817 (2)0.38968 (16)0.93586 (19)0.0469 (8)
C410.2032 (2)0.41526 (15)0.90788 (19)0.0538 (9)
H410.19840.46000.89270.065*
C420.1312 (2)0.37365 (15)0.90253 (19)0.0500 (9)
H420.07760.39030.88290.060*
C430.1481 (2)0.01105 (16)1.0550 (2)0.0490 (8)
N440.09404 (17)0.04176 (12)1.03937 (16)0.0437 (7)
H440.0575 (18)0.0565 (13)1.0780 (17)0.052*
C450.1292 (2)0.04973 (15)1.1360 (2)0.0475 (8)
C460.1440 (2)0.11755 (17)1.1338 (2)0.0683 (10)
H460.16550.13711.08350.082*
C470.1271 (3)0.15649 (19)1.2059 (3)0.0836 (13)
H470.13610.20231.20350.100*
C480.0972 (3)0.1277 (2)1.2808 (3)0.0844 (13)
H480.08650.15401.32940.101*
C490.0831 (2)0.0606 (2)1.2844 (2)0.0726 (11)
H490.06320.04121.33560.087*
C500.0984 (2)0.02119 (16)1.2121 (2)0.0587 (9)
H500.08810.02441.21460.070*
S10.35061 (6)0.14986 (4)0.08683 (6)0.0579 (3)
O40.39929 (14)0.09068 (10)0.06530 (13)0.0613 (6)
O50.39719 (15)0.21137 (10)0.07281 (15)0.0781 (8)
O60.25996 (16)0.14934 (12)0.06060 (18)0.0973 (9)
C510.3430 (3)0.14538 (19)0.2041 (3)0.0859 (12)
F10.4184 (6)0.1409 (9)0.2480 (7)0.116 (3)0.56 (3)
F20.2924 (10)0.0910 (5)0.2186 (10)0.129 (3)0.56 (3)
F30.2872 (10)0.1946 (7)0.2229 (12)0.133 (4)0.56 (3)
F1A0.4226 (7)0.1671 (10)0.2312 (13)0.127 (4)0.44 (3)
F2A0.3289 (15)0.0856 (4)0.2381 (9)0.108 (4)0.44 (3)
F3A0.3015 (13)0.1924 (7)0.2490 (10)0.099 (3)0.44 (3)
S20.92877 (6)0.15447 (4)0.17934 (6)0.0565 (3)
O240.95479 (15)0.09446 (11)0.13662 (16)0.0838 (8)
O250.94245 (17)0.21354 (10)0.12816 (15)0.0827 (8)
O260.95282 (18)0.15957 (13)0.26900 (16)0.1016 (9)
C520.8106 (2)0.14561 (15)0.1834 (2)0.0563 (9)
F210.7755 (4)0.1902 (3)0.2367 (6)0.0916 (17)0.83 (2)
F220.7851 (5)0.0871 (3)0.2147 (5)0.0707 (15)0.83 (2)
F230.7716 (4)0.1511 (4)0.1065 (3)0.0856 (16)0.83 (2)
F21A0.7749 (17)0.2051 (8)0.196 (2)0.080 (5)0.17 (2)
F22A0.807 (3)0.0919 (13)0.234 (2)0.081 (6)0.17 (2)
F23A0.800 (3)0.1368 (16)0.0978 (7)0.090 (5)0.17 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0661 (16)0.0638 (16)0.0543 (15)0.0036 (14)0.0066 (12)0.0038 (13)
N20.080 (3)0.064 (2)0.072 (2)0.015 (2)0.013 (2)0.0031 (19)
O20.072 (2)0.093 (2)0.104 (2)0.0111 (18)0.0038 (18)0.0070 (17)
O30.121 (3)0.073 (2)0.153 (3)0.037 (2)0.005 (2)0.026 (2)
N10.0465 (17)0.0428 (16)0.0471 (16)0.0001 (13)0.0048 (14)0.0032 (14)
C20.046 (2)0.048 (2)0.046 (2)0.0048 (17)0.0087 (16)0.0044 (17)
C30.0352 (18)0.050 (2)0.0412 (19)0.0054 (16)0.0001 (16)0.0056 (17)
C40.047 (2)0.045 (2)0.047 (2)0.0002 (16)0.0000 (17)0.0012 (17)
C50.077 (3)0.056 (2)0.046 (2)0.009 (2)0.0049 (19)0.0014 (19)
C60.095 (3)0.070 (3)0.041 (2)0.014 (2)0.009 (2)0.002 (2)
C70.096 (3)0.060 (3)0.045 (2)0.015 (2)0.003 (2)0.0100 (19)
C80.069 (3)0.055 (2)0.051 (2)0.0067 (19)0.003 (2)0.0096 (19)
C90.046 (2)0.054 (2)0.041 (2)0.0075 (17)0.0020 (16)0.0048 (17)
C100.047 (2)0.048 (2)0.0413 (19)0.0050 (17)0.0009 (16)0.0039 (17)
C110.056 (2)0.048 (2)0.057 (2)0.0104 (18)0.0088 (18)0.0081 (17)
C120.054 (2)0.041 (2)0.0406 (19)0.0049 (18)0.0108 (17)0.0020 (15)
C130.065 (2)0.039 (2)0.053 (2)0.0030 (19)0.0014 (19)0.0063 (16)
C140.056 (2)0.051 (2)0.058 (2)0.006 (2)0.0022 (19)0.0012 (18)
C150.061 (2)0.046 (2)0.046 (2)0.004 (2)0.0093 (19)0.0023 (17)
C160.076 (3)0.045 (2)0.067 (2)0.000 (2)0.013 (2)0.0120 (19)
C170.064 (3)0.048 (2)0.069 (2)0.010 (2)0.009 (2)0.0169 (18)
N180.0521 (17)0.0449 (16)0.0403 (17)0.0001 (15)0.0034 (14)0.0053 (15)
C190.0376 (19)0.061 (2)0.049 (2)0.0065 (19)0.0018 (17)0.004 (2)
C200.046 (2)0.070 (3)0.040 (2)0.014 (2)0.0078 (17)0.0092 (19)
C210.066 (3)0.078 (3)0.055 (2)0.006 (2)0.000 (2)0.019 (2)
C220.086 (3)0.081 (3)0.083 (3)0.005 (2)0.014 (3)0.029 (2)
C230.087 (3)0.107 (4)0.072 (3)0.026 (3)0.023 (3)0.045 (3)
C240.092 (3)0.122 (4)0.049 (3)0.027 (3)0.009 (2)0.021 (3)
C250.076 (3)0.088 (3)0.045 (2)0.017 (2)0.004 (2)0.003 (2)
O210.0592 (16)0.0751 (17)0.0689 (16)0.0210 (14)0.0073 (13)0.0066 (13)
N220.075 (2)0.055 (2)0.0571 (19)0.009 (2)0.0089 (19)0.0023 (16)
O220.0620 (18)0.082 (2)0.112 (2)0.0055 (16)0.0009 (17)0.0033 (16)
O230.103 (2)0.0574 (17)0.110 (2)0.0216 (17)0.0022 (17)0.0036 (16)
N260.0430 (16)0.0368 (15)0.0381 (15)0.0024 (12)0.0004 (13)0.0012 (12)
C270.0421 (19)0.044 (2)0.0331 (17)0.0033 (16)0.0004 (15)0.0026 (16)
C280.0378 (18)0.0353 (19)0.0429 (19)0.0011 (15)0.0015 (15)0.0035 (16)
C290.054 (2)0.0348 (19)0.052 (2)0.0007 (16)0.0025 (18)0.0033 (17)
C300.083 (3)0.053 (2)0.050 (2)0.009 (2)0.001 (2)0.0102 (19)
C310.094 (3)0.074 (3)0.043 (2)0.015 (2)0.007 (2)0.007 (2)
C320.094 (3)0.073 (3)0.039 (2)0.011 (2)0.008 (2)0.0087 (19)
C330.073 (3)0.053 (2)0.041 (2)0.0073 (19)0.0007 (19)0.0064 (17)
C340.0430 (19)0.047 (2)0.0364 (18)0.0009 (16)0.0011 (15)0.0009 (16)
C350.045 (2)0.047 (2)0.0404 (19)0.0004 (17)0.0012 (16)0.0042 (17)
C360.051 (2)0.0386 (19)0.0461 (19)0.0099 (16)0.0063 (17)0.0004 (15)
C370.050 (2)0.041 (2)0.0308 (17)0.0041 (17)0.0047 (16)0.0014 (15)
C380.059 (2)0.0348 (19)0.055 (2)0.0038 (18)0.0005 (19)0.0087 (16)
C390.054 (2)0.053 (2)0.052 (2)0.0070 (19)0.0035 (18)0.0078 (18)
C400.054 (2)0.046 (2)0.0403 (19)0.0052 (19)0.0021 (17)0.0006 (16)
C410.065 (2)0.038 (2)0.058 (2)0.002 (2)0.008 (2)0.0099 (17)
C420.055 (2)0.044 (2)0.052 (2)0.0122 (18)0.0015 (18)0.0088 (16)
C430.042 (2)0.050 (2)0.055 (2)0.0022 (18)0.0071 (18)0.0008 (18)
N440.0464 (17)0.0386 (16)0.0460 (17)0.0048 (14)0.0057 (13)0.0049 (14)
C450.042 (2)0.041 (2)0.059 (2)0.0010 (16)0.0108 (17)0.0125 (18)
C460.071 (3)0.047 (2)0.086 (3)0.004 (2)0.007 (2)0.009 (2)
C470.085 (3)0.049 (2)0.116 (4)0.010 (2)0.028 (3)0.031 (3)
C480.082 (3)0.088 (4)0.083 (3)0.024 (3)0.024 (3)0.035 (3)
C490.078 (3)0.079 (3)0.060 (3)0.010 (2)0.012 (2)0.015 (2)
C500.069 (3)0.051 (2)0.056 (2)0.0022 (19)0.012 (2)0.0121 (19)
S10.0589 (6)0.0519 (6)0.0629 (6)0.0021 (5)0.0004 (5)0.0137 (5)
O40.0767 (17)0.0447 (14)0.0624 (14)0.0070 (13)0.0043 (13)0.0032 (11)
O50.0778 (18)0.0469 (15)0.110 (2)0.0095 (13)0.0207 (15)0.0183 (13)
O60.0554 (17)0.094 (2)0.142 (2)0.0019 (16)0.0331 (17)0.0289 (18)
C510.097 (3)0.084 (3)0.078 (3)0.030 (2)0.031 (2)0.015 (2)
F10.149 (4)0.152 (8)0.047 (3)0.048 (4)0.006 (3)0.021 (4)
F20.148 (7)0.122 (4)0.120 (7)0.011 (4)0.062 (5)0.064 (4)
F30.159 (6)0.144 (4)0.097 (8)0.079 (4)0.046 (6)0.011 (5)
F1A0.132 (4)0.150 (9)0.098 (8)0.025 (4)0.027 (5)0.011 (6)
F2A0.183 (9)0.088 (4)0.053 (5)0.042 (4)0.021 (6)0.033 (3)
F3A0.150 (6)0.100 (4)0.047 (5)0.040 (5)0.026 (5)0.006 (4)
S20.0512 (6)0.0511 (6)0.0671 (6)0.0032 (5)0.0020 (5)0.0055 (5)
O240.0663 (17)0.0554 (15)0.130 (2)0.0093 (13)0.0378 (16)0.0202 (15)
O250.097 (2)0.0514 (15)0.1002 (19)0.0166 (14)0.0260 (16)0.0076 (14)
O260.098 (2)0.131 (2)0.0753 (19)0.0293 (19)0.0394 (16)0.0004 (17)
C520.058 (2)0.050 (2)0.060 (2)0.0106 (19)0.0017 (19)0.0027 (18)
F210.088 (2)0.075 (2)0.112 (4)0.0202 (19)0.040 (3)0.014 (3)
F220.054 (3)0.0696 (18)0.089 (3)0.0102 (18)0.002 (2)0.015 (2)
F230.056 (3)0.113 (4)0.0874 (19)0.013 (2)0.0224 (19)0.0210 (19)
F21A0.059 (8)0.079 (6)0.102 (10)0.035 (7)0.002 (9)0.008 (6)
F22A0.073 (13)0.068 (7)0.103 (10)0.022 (8)0.014 (10)0.017 (7)
F23A0.086 (13)0.105 (10)0.079 (5)0.037 (10)0.053 (8)0.019 (6)
Geometric parameters (Å, º) top
O1—C191.222 (3)C28—N441.403 (3)
N2—O31.217 (3)C29—C351.400 (4)
N2—O21.218 (4)C29—H290.9300
N2—C151.478 (4)C30—C311.351 (4)
N1—C21.342 (3)C30—C351.412 (4)
N1—C91.383 (3)C30—H300.9300
N1—C111.482 (3)C31—C321.389 (4)
C2—C31.390 (4)C31—H310.9300
C2—H20.9300C32—C331.366 (4)
C3—C41.369 (4)C32—H320.9300
C3—N181.398 (3)C33—C341.399 (4)
C4—C101.397 (4)C33—H330.9300
C4—H40.9300C34—C351.405 (4)
C5—C61.355 (4)C36—C371.511 (4)
C5—C101.411 (4)C36—H36A0.9700
C5—H50.9300C36—H36B0.9700
C6—C71.385 (4)C37—C381.380 (4)
C6—H60.9300C37—C421.391 (4)
C7—C81.355 (4)C38—C391.376 (4)
C7—H70.9300C38—H380.9300
C8—C91.408 (4)C39—C401.370 (4)
C8—H80.9300C39—H390.9300
C9—C101.402 (4)C40—C411.366 (4)
C11—C121.516 (4)C41—C421.380 (4)
C11—H11A0.9700C41—H410.9300
C11—H11B0.9700C42—H420.9300
C12—C131.381 (4)C43—N441.362 (4)
C12—C171.385 (4)C43—C451.497 (4)
C13—C141.381 (4)N44—H440.87 (2)
C13—H130.9300C45—C461.381 (4)
C14—C151.369 (4)C45—C501.387 (4)
C14—H140.9300C46—C471.381 (5)
C15—C161.362 (4)C46—H460.9300
C16—C171.374 (4)C47—C481.370 (5)
C16—H160.9300C47—H470.9300
C17—H170.9300C48—C491.366 (5)
N18—C191.369 (4)C48—H480.9300
N18—H180.88 (3)C49—C501.385 (4)
C19—C201.499 (4)C49—H490.9300
C20—C211.374 (4)C50—H500.9300
C20—C251.378 (4)S1—O61.434 (2)
C21—C221.383 (4)S1—O41.441 (2)
C21—H210.9300S1—O51.441 (2)
C22—C231.380 (5)S1—C511.809 (4)
C22—H220.9300C51—F2A1.326 (7)
C23—C241.364 (5)C51—F11.328 (6)
C23—H230.9300C51—F3A1.332 (7)
C24—C251.386 (5)C51—F31.337 (6)
C24—H240.9300C51—F1A1.350 (7)
C25—H250.9300C51—F21.355 (6)
O21—C431.217 (3)S2—O261.426 (2)
N22—O221.221 (3)S2—O241.430 (2)
N22—O231.221 (3)S2—O251.439 (2)
N22—C401.475 (4)S2—C521.809 (4)
N26—C271.335 (3)C52—F231.321 (4)
N26—C341.396 (3)C52—F21A1.329 (8)
N26—C361.484 (3)C52—F22A1.329 (8)
C27—C281.386 (4)C52—F221.330 (4)
C27—H270.9300C52—F211.330 (4)
C28—C291.366 (4)C52—F23A1.335 (8)
O3—N2—O2124.2 (4)C30—C31—C32120.8 (3)
O3—N2—C15117.5 (4)C30—C31—H31119.6
O2—N2—C15118.3 (3)C32—C31—H31119.6
C2—N1—C9122.4 (3)C33—C32—C31121.4 (3)
C2—N1—C11117.8 (2)C33—C32—H32119.3
C9—N1—C11119.5 (2)C31—C32—H32119.3
N1—C2—C3121.0 (3)C32—C33—C34118.5 (3)
N1—C2—H2119.5C32—C33—H33120.7
C3—C2—H2119.5C34—C33—H33120.7
C4—C3—C2118.3 (3)N26—C34—C33121.7 (3)
C4—C3—N18119.8 (3)N26—C34—C35117.5 (3)
C2—C3—N18121.9 (3)C33—C34—C35120.9 (3)
C3—C4—C10121.2 (3)C29—C35—C34120.0 (3)
C3—C4—H4119.4C29—C35—C30121.7 (3)
C10—C4—H4119.4C34—C35—C30118.3 (3)
C6—C5—C10120.3 (3)N26—C36—C37112.6 (2)
C6—C5—H5119.8N26—C36—H36A109.1
C10—C5—H5119.8C37—C36—H36A109.1
C5—C6—C7120.4 (3)N26—C36—H36B109.1
C5—C6—H6119.8C37—C36—H36B109.1
C7—C6—H6119.8H36A—C36—H36B107.8
C8—C7—C6121.9 (3)C38—C37—C42118.8 (3)
C8—C7—H7119.0C38—C37—C36121.1 (3)
C6—C7—H7119.0C42—C37—C36120.0 (3)
C7—C8—C9118.6 (3)C39—C38—C37121.1 (3)
C7—C8—H8120.7C39—C38—H38119.5
C9—C8—H8120.7C37—C38—H38119.5
N1—C9—C10117.4 (3)C40—C39—C38118.7 (3)
N1—C9—C8122.1 (3)C40—C39—H39120.7
C10—C9—C8120.5 (3)C38—C39—H39120.7
C4—C10—C9119.7 (3)C41—C40—C39122.1 (3)
C4—C10—C5122.0 (3)C41—C40—N22119.7 (3)
C9—C10—C5118.3 (3)C39—C40—N22118.2 (3)
N1—C11—C12110.8 (2)C40—C41—C42118.8 (3)
N1—C11—H11A109.5C40—C41—H41120.6
C12—C11—H11A109.5C42—C41—H41120.6
N1—C11—H11B109.5C41—C42—C37120.5 (3)
C12—C11—H11B109.5C41—C42—H42119.7
H11A—C11—H11B108.1C37—C42—H42119.7
C13—C12—C17118.5 (3)O21—C43—N44122.5 (3)
C13—C12—C11121.2 (3)O21—C43—C45122.0 (3)
C17—C12—C11120.3 (3)N44—C43—C45115.5 (3)
C14—C13—C12121.1 (3)C43—N44—C28123.6 (3)
C14—C13—H13119.4C43—N44—H44122.2 (19)
C12—C13—H13119.4C28—N44—H44113.7 (19)
C15—C14—C13118.4 (3)C46—C45—C50119.0 (3)
C15—C14—H14120.8C46—C45—C43117.3 (3)
C13—C14—H14120.8C50—C45—C43123.7 (3)
C16—C15—C14122.1 (3)C47—C46—C45120.5 (4)
C16—C15—N2119.5 (3)C47—C46—H46119.8
C14—C15—N2118.4 (4)C45—C46—H46119.8
C15—C16—C17119.0 (3)C48—C47—C46120.0 (4)
C15—C16—H16120.5C48—C47—H47120.0
C17—C16—H16120.5C46—C47—H47120.0
C16—C17—C12120.9 (3)C49—C48—C47120.2 (4)
C16—C17—H17119.5C49—C48—H48119.9
C12—C17—H17119.5C47—C48—H48119.9
C19—N18—C3127.1 (3)C48—C49—C50120.2 (4)
C19—N18—H18116.6 (19)C48—C49—H49119.9
C3—N18—H18115.5 (18)C50—C49—H49119.9
O1—C19—N18122.4 (3)C49—C50—C45120.1 (3)
O1—C19—C20122.3 (3)C49—C50—H50120.0
N18—C19—C20115.2 (3)C45—C50—H50120.0
C21—C20—C25119.4 (3)O6—S1—O4115.16 (15)
C21—C20—C19123.6 (3)O6—S1—O5115.95 (15)
C25—C20—C19117.0 (3)O4—S1—O5114.69 (13)
C20—C21—C22120.2 (3)O6—S1—C51102.08 (18)
C20—C21—H21119.9O4—S1—C51103.03 (15)
C22—C21—H21119.9O5—S1—C51103.16 (17)
C23—C22—C21120.4 (4)F2A—C51—F3A111.0 (11)
C23—C22—H22119.8F1—C51—F3119.1 (14)
C21—C22—H22119.8F2A—C51—F1A108.6 (8)
C24—C23—C22119.1 (4)F3A—C51—F1A92.3 (13)
C24—C23—H23120.4F1—C51—F2110.5 (6)
C22—C23—H23120.4F3—C51—F2101.4 (10)
C23—C24—C25120.8 (4)F2A—C51—S1116.7 (7)
C23—C24—H24119.6F1—C51—S1116.5 (6)
C25—C24—H24119.6F3A—C51—S1121.0 (8)
C20—C25—C24120.0 (4)F3—C51—S1103.0 (8)
C20—C25—H25120.0F1A—C51—S1103.0 (9)
C24—C25—H25120.0F2—C51—S1104.3 (7)
O22—N22—O23124.0 (3)O26—S2—O24115.75 (17)
O22—N22—C40118.6 (3)O26—S2—O25115.56 (16)
O23—N22—C40117.3 (3)O24—S2—O25113.67 (14)
C27—N26—C34121.0 (2)O26—S2—C52102.72 (16)
C27—N26—C36119.0 (2)O24—S2—C52102.28 (14)
C34—N26—C36119.9 (2)O25—S2—C52104.40 (16)
N26—C27—C28122.6 (3)F21A—C52—F22A128 (3)
N26—C27—H27118.7F23—C52—F22105.5 (5)
C28—C27—H27118.7F23—C52—F21108.4 (4)
C29—C28—C27118.1 (3)F22—C52—F21104.6 (5)
C29—C28—N44124.4 (3)F21A—C52—F23A102.8 (15)
C27—C28—N44117.5 (3)F22A—C52—F23A117 (2)
C28—C29—C35120.7 (3)F23—C52—S2113.6 (4)
C28—C29—H29119.6F21A—C52—S2108.9 (13)
C35—C29—H29119.6F22A—C52—S298.7 (18)
C31—C30—C35120.2 (3)F22—C52—S2113.1 (4)
C31—C30—H30119.9F21—C52—S2111.1 (3)
C35—C30—H30119.9F23A—C52—S295.3 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N18—H18···O4i0.88 (3)2.15 (3)2.982 (3)156 (3)
N44—H44···O24ii0.87 (2)1.97 (3)2.811 (3)164 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N18—H18···O4i0.88 (3)2.15 (3)2.982 (3)156 (3)
N44—H44···O24ii0.87 (2)1.97 (3)2.811 (3)164 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H18N3O3+·CF3O3S
Mr533.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.2183 (6), 20.0810 (8), 15.3652 (6)
β (°) 90.544 (1)
V3)4695.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.17 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
38624, 8609, 3809
Rint0.095
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.110, 0.85
No. of reflections8609
No. of parameters729
No. of restraints180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.31

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015).

 

Acknowledgements

We thank Lizbeth Triana Cruz MSc and María de las Nieves Zavala Segovia MSc for their technical support. The financial support of this research by CONACyT (CB239648) is gratefully acknowledged. MNG and IJBR are also grateful to CONACyT for scholarships.

References

First citationBadugu, R., Lakowicz, J. R. & Geddes, C. D. (2004). Anal. Biochem. 327, 82–90.  CrossRef PubMed CAS Google Scholar
First citationBadugu, R., Lakowicz, J. R. & Geddes, C. D. (2005a). Bioorg. Med. Chem. 13, 113–119.  CrossRef PubMed CAS Google Scholar
First citationBadugu, R., Lakowicz, J. R. & Geddes, C. D. (2005b). Talanta, 66, 569–574.  CrossRef PubMed CAS Google Scholar
First citationBatey, H. D., Whitwood, A. C. & Duhme-Klair, A.-K. (2007). Inorg. Chem. 46, 6516–6528.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBaù, L., Selvestrel, F., Arduini, M., Zamparo, I., Lodovichi, C. & Mancin, F. (2012). Org. Lett. 14, 2984–2987.  PubMed Google Scholar
First citationBazany-Rodríguez, I. J., Martínez-Otero, D., Barroso-Flores, J., Yatsimirsky, A. K. & Dorazco-González, A. (2015). Sens. Actuators B Chem. 221, 1348–1355.  Google Scholar
First citationBruker (2012). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCastillo, C. E., Davies, D. L., Klair, A. D., Singh, K. & Singh, S. (2012). Dalton Trans. 41, 628–635.  CrossRef CAS PubMed Google Scholar
First citationDorazco-González, A., Alamo, M. F., Godoy-Alcántar, C., Höpfl, H. & Yatsimirsky, A. K. (2014). RSC Adv. 4, 455–466.  Google Scholar
First citationEvdokimov, N. M., Van slambrouck, S., Heffeter, P., Tu, L., Le Calvé, B., Lamoral-Theys, D., Hooten, C. J., Uglinskii, P. Y., Rogelj, S., Kiss, R., Steelant, W. F. A., Berger, W., Yang, J. J., Bologa, C. G., Kornienko, A. & Magedov, I. V. (2011). J. Med. Chem. 54, 2012–2021.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  CSD CrossRef IUCr Journals Google Scholar
First citationHong, S., Yoon, S. S., Kang, C. & Suh, B. M. (2004). Korean Chem. Soc. 25, 345–346.  CAS Google Scholar
First citationKobayashi, M., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1979.  CrossRef IUCr Journals Google Scholar
First citationMajumdar, K. C. & Ganai, S. (2011). Synlett, pp. 1881–1887.  CrossRef Google Scholar
First citationMajumdar, K. C., Ganai, S., Nandi, R. K. & Ray, K. (2012). Tetrahedron Lett. 53, 1553–1557.  CrossRef CAS Google Scholar
First citationMajumdar, K. C. & Ghosh, D. (2013). Tetrahedron Lett. 54, 4422–4424.  CrossRef CAS Google Scholar
First citationMajumdar, K. C., Mondal, S. & De, N. (2008). Synlett, pp. 2851–2855.  CrossRef Google Scholar
First citationMazzoli, A., Carlotti, B., Fortuna, C. G. & Spalletti, A. (2011). Photochem. Photobiol. Sci. 10, 973–979.  CrossRef CAS PubMed Google Scholar
First citationMondal, S., Nechab, M., Vanthuyne, N. & Bertrand, M. P. (2012). Chem. Commun. 48, 2549–2551.  CrossRef CAS Google Scholar
First citationOhta, Y., Chiba, H., Oishi, S., Fujii, N. & Ohno, H. (2008). Org. Lett. 10, 3535–3538.  CrossRef PubMed CAS Google Scholar
First citationRaju, R., Piggott, A. M., Conte, M., Aalbersberg, W. G. L., Feussner, K. & Capon, R. J. (2009). Org. Lett. 11, 3862–3865.  CrossRef PubMed CAS Google Scholar
First citationSauceda, J. C., Duke, R. M. & Nitz, M. (2007). ChemBioChem, 8, 391–394.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZeng, L., Liu, W., Zhuang, X., Wu, J., Wang, P. & Zhang, W. (2010). Chem. Commun. 46, 2435–2437.  CrossRef CAS Google Scholar
First citationZeni, G. & Larock, R. C. (2006). Chem. Rev. 106, 4644–4680.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 747-750
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds