research communications
of 3-benzamido-1-(4-nitrobenzyl)quinolinium trifluoromethanesulfonate
aCentro Conjunto de Investigacion en Quimica Sustentable UAEM–UNAM, Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Carretera Toluca-Atlacomulco, Km 14.5 CP 50200 Toluca, Estado de Mexico, Mexico, and bLaboratorio de Rayos-X, Instituto de Quimica, UNAM, Circuito Exterior, Ciudad Universitaria Deleg. Coyoacán México 04510, México DF, México, Mexico
*Correspondence e-mail: adg@unam.mx
In the title compound, C23H18N3O3+·CF3SO3−, the contains two crystallographically independent organic cations with similar conformations. Each cation shows a moderate distortion between the planes of the amide groups and the quinolinium rings with dihedral angles of 14.90 (2) and 31.66 (2)°. The quinolinium and phenyl rings are slightly twisted with respect to each other at dihedral angles of 6.99 (4) and 8.54 (4)°. The trifluoromethanesulfonate anions are linked to the organic cations via N—H⋯O hydrogen-bonding interactions involving the NH amide groups. In the crystal, the organic cations are linked by weak C—H⋯O(nitro group) interactions into supramolecular chains propagating along the b-axis direction.
Keywords: crystal structure; benzamide; trifluoromethanesulfonate salt; p-nitrobenzylquinolinium.
CCDC reference: 1474439
1. Chemical context
Quinoline-based quaternary salts have attracted the attention of researchers in different areas of organic chemistry for their relevant applications such as DNA-intercalators (Mazzoli et al., 2011), fluorescent pH-sensors (Badugu et al., 2005a), fluorescent labels for antibiotics (Zeng et al., 2010), proteins (Hong et al., 2004), heparin (Sauceda et al., 2007), sacharides (Badugu et al., 2005b), fluorescent probes for fluoride and cyanide ions (Badugu et al., 2004) and (Dorazco-González et al., 2014). These cationic organic compounds are probably the most used fluorescent sensors for chloride ions in aqueous media (Bazany-Rodríguez et al., 2015) and intracell samples (Baù et al., 2012). On the other hand, benzamide compounds are used as intermediaries for the synthesis of species with biological activity such as 1,4-benzodiazepinones, thiazoles and oxazoles (Majumdar & Ganai, 2011; Majumdar & Ghosh, 2013; Majumdar et al., 2012) and bicyclic N-heterocycles and nitrogen-rich medium-size heterocycles (Mondal et al., 2012; Zeni & Larock, 2006; Ohta et al., 2008; Majumdar et al., 2008; Raju et al., 2009; Evdokimov et al., 2011).
2. Structural commentary
The N-[3-N′-(p-nitrobenzyl)quinolinium]benzamide] cations, each of which is linked to one triflate anion through hydrogen-bonding interactions (N—H⋯O) between the amide groups and anions (Figs. 1 and 2; Table 1). Each cation shows a distortion between the mean planes of the amide groups and the quinolinium rings, with dihedral angles of 14.90 (2) and 31.66 (2)°. The phenyl and quinolinium rings are practically coplanar with dihedral angles of 6.99 (4) and 8.54 (4)°.
of the title compound comprises two independent organic [3. Supramolecular features
The supramolecular structure involves triflate ion pairing with the bulky cation via N—H⋯O hydrogen bonds (Table 1) between amide groups and anions. The also features face-to-face π-stacking interactions between benzamide and quinolinium rings [inter-centroid distance, 3.71 (3) Å] forming chains along the b-axis direction, as shown in Figs. 3 and 4. The triflate anions are located on the periphery of the quinolinium groups, establishing C—H⋯O interactions (Table 1).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 35.6, last update 2015; Groom et al., 2016) using N-(naphthalen-3-yl)benzamide as the main structure, reveals 26 hits; however using a closer structure, N-(quinolin-3-yl)benzamide, shows only one hit, which corresponds to the triflate salt of N-(3-N′-methylquinolinium)benzamide (RISQEP) (Dorazco-González et al., 2014). Additionally, N-methylated and benzylated isomers were found; N-(5-N′-methylquinolinium)benzamide triflate and N-(6-N′-methylquinolinium)benzamide triflate (RISQOB and RISQIV, respectively; Dorazco-González et al., 2014) and N-(6-N′-benzylquinolinium)benzamide bromide (AJEREO;Bazany-Rodríguez et al., 2015). On the other hand, the related (1,10-phenanthrolin-5-yl)benzamide IrIII complex (FAPLEP; Castillo et al., 2012) and RuII and ReI complexes containing the chemical fragment N-(quinolin-3-yl)benzamide (NILFAQ and NILFEU; Batey et al., 2007) have been reported previously as luminescent chemosensors. The structure of N-(1,10-phenanthrolin-5-yl)-4-(2-pyridyl(benzamide) monohydrate (ROFTOW; Kobayashi et al., 2008) has also been reported.
5. Synthesis and crystallization
A mixture of 6-aminoquinoline (1.0 g, 6.9 mmol) and benzoyl chloride (0.49 g, 3.45 mmol) in 30 mL of dry toluene-acetone (1:1 v/v) was stirred under reflux for 2.5 h. The white precipitate was collected by filtration and washed with acetone and 5% NaHCO3 to give N-(3-quinolinyl)benzamide in 90% yield, which was reacted with 1.5 equiv. of p-nitro benzyl chloride in 30 mL of dry DMF for 5 h. The resulting yellow powder was filtered and washed with cold MeOH to give the chloride salt in 85% yield. The chloride salt was dissolved in 100 mL of hot H2O-MeOH (1:1 v/v) then one equiv. of silver triflate was added, the mixture was stirred at room temperature for 4 h. The precipitate of silver chloride was filtered off and yellow crystals were obtained by evaporation of the solvent at room temperature.
1H NMR (300MHz, DMSO-d6) δ 11.42 (s, 1H), 10.08 (s, 1H), 9.51 (s, 1H), 8.55 (d, 1H), 8.42 (d, 1H), 8.29 (d, 2H), 8.10 (d, 2H), 7.97 (t, 1H), 7.73 (m, 6H), 6.63 (s, 2H). IR (ATR) cm−1 3271.41 (d), 3073.52 (d), 2993.15 (d), 1685.80 (d), 1603.94 (d), 1551.56 (m), 1518.86 (f), 1490.75 (d), 1372.93 (m), 1344.45 (f), 1272.46 (f), 1251.94 (f), 1163.90 (f), 1107.99 (d), 1028.82 (f), 900.95 (d), 847.43 (d), 800.46 (d), 760.49 (d), 741.83 (m), 710.10 (m), 693.06 (m), 665.58 (d), 633.92 (f), 573.28 (d), 515.54 (m), 434.41 (m).
6. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined anisotropically. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) for aromatic groups and Uiso(H) = 1.5 Ueq(C) for aliphatic groups (Sheldrick, 2008). N—H hydrogen atoms were localized in difference Fourier maps and refined with the bond lengths fixed at 0.90 A and the isotropic temperature factors fixed at 1.2 times those of the corresponding nitrogen atom.
details are summarized in Table 2Supporting information
CCDC reference: 1474439
10.1107/S2056989016006423/hg5469sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989016006423/hg5469Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016006423/hg5469Isup3.cml
Quinoline-based quaternary salts have attracted the attention of researchers in different areas of organic chemistry for their relevant applications such as DNA-intercalators (Mazzoli et al., 2011), fluorescent pH-sensors (Badugu et al., 2005a), fluorescent labels for antibiotics (Zeng et al., 2010), proteins (Hong et al., 2004), heparin (Sauceda et al., 2007), sacharides (Badugu et al., 2005b), fluorescent probes for fluoride and cyanide ions (Badugu et al., 2004) and
(Dorazco-González et al., 2014). These cationic organic compounds are probably the most used fluorescent sensors for chloride in aqueous media (Bazany-Rodríguez et al., 2015) and intracell samples (Baù et al., 2012). On the other hand, benzamide compounds are used as intermediaries for the synthesis of species with biological activity such as 1,4-benzodiazepinones, thiazoles and oxazoles (Majumdar & Ganai, 2011; Majumdar & Ghosh, 2013; Majumdar et al., 2012) and bicyclic N-heterocycles and nitrogen-rich medium-size heterocycles (Mondal et al., 2012; Zeni & Larock, 2006; Ohta et al., 2008; Majumdar et al., 2008; Raju et al., 2009; Evdokimov et al., 2011).The
of title compound comprises two independent organic [N-[3-N'-(p-nitrobenzyl)quinolinium]benzamide] cations, each of which is linked to one triflate anion through hydrogen-bonding interactions (N—H···O) between the amide groups and anions (Figs 1 and 2; Table 1). Each cation shows a distortion between the mean planes of the amide groups and the quinolinium rings, with dihedral angles of 14.90 (2) and 31.66 (2)°. The phenyl and quinolinium rings are practically coplanar with dihedral angles of 6.99 (4) and 8.54 (4)°.The supramolecular structure involves triflate ion pairing with the bulky cation [N-[3-N'-(p-nitrobenzyl)quinolinium]benzamide] via N—H···O hydrogen bonds between amide groups and anions. The π-stacking interactions between benzamide and quinolinium rings [inter-centroid distance, 3.71 (3) Å] forming chains along the b-axis direction as shown in Figs. 3 and 4. The triflate anions are located on the periphery of the quinolinium groups, establishing C—H···O interactions.
also features face-to-faceA search of the Cambridge Structural Database (CSD, Version 35.6, last update 2015; Groom et al., 2016) using N-(naphthalen-3-yl)benzamide as the main structure, reveals 26 hits; however using a closer structure, N-(quinolin-3-yl)benzamide, shows only one hit, which corresponds to the triflate salt of N-(3-N'-methylquinolinium)benzamide (RISQEP) (Dorazco-González et al., 2014). Additionally, N-methylated and benzylated isomers were found; N-(5-N'-methylquinolinium)benzamide triflate and N-(6-N'-methylquinolinium)benzamide triflate (RISQOB and RISQIV, respectively; Dorazco-González et al., 2014) and N-(6-N'-benzylquinolinium)benzamide bromide (AJEREO;Bazany-Rodríguez et al., 2015). On the other hand, the related (1,10-phenanthrolin-5-yl)benzamide IrIII complex (FAPLEP; Castillo et al., 2012) and RuII and ReI complexes containing the chemical fragment N-(quinolin-3-yl)benzamide (NILFAQ and NILFEU; Batey et al., 2007) haven been reported previously as luminescent chemosensors. Additionally, the crystal of N-(1,10-phenanthrolin-5-yl)-4-(2-pyridyl(benzamide) monohydrated (ROFTOW; Kobayashi et al., 2008) has been reported.
A mixture of 6-aminoquinoline (1.0 g, 6.9 mmol) and benzoyl chloride (0.49 g, 3.45 mmol) in 30 mL of dry toluene-acetone (1:1 v/v) was stirred under reflux for 2.5 h. The white precipitate was collected by filtration and washed with acetone and 5% NaHCO3 to give N-(3-quinolinyl)benzamide in 90% yield, which was reacted with 1.5 equiv. of p-nitro benzyl chloride in 30 mL of dry DMF for 5 h. The resulting yellow powder was filtered and washed with cold MeOH to give the chloride salt in 85% yield. The chloride salt was dissolved in 100 mL of hot H2O-MeOH (1:1 v/v) then one equiv. of silver triflate was added, the mixture was stirred at room temperature for 4 h. The precipitate of silver chloride was filtered off and yellow crystals were obtained by evaporation of the solvent at room temperature.
1H NMR (300MHz, DMSO-d6) δ 11.42 (s, 1H), 10.08 (s, 1H), 9.51 (s, 1H), 8.55 (d, 1H), 8.42 (d, 1H), 8.29 (d, 2H), 8.10 (d, 2H), 7.97 (t, 1H), 7.73 (m, 6H), 6.63 (s, 2H). IR (ATR) cm-1 3271.41 (d), 3073.52 (d), 2993.15 (d), 1685.80 (d), 1603.94 (d), 1551.56 (m), 1518.86 (f), 1490.75 (d), 1372.93 (m), 1344.45 (f), 1272.46 (f), 1251.94 (f), 1163.90 (f), 1107.99 (d), 1028.82 (f), 900.95 (d), 847.43 (d), 800.46 (d), 760.49 (d), 741.83 (m), 710.10 (m), 693.06 (m), 665.58 (d), 633.92 (f), 573.28 (d), 515.54 (m), 434.41 (m).
Crystal data, data collection and structure
details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) for aromatic groups and Uiso(H) = 1.5 Ueq(C) for aliphatic groups (Sheldrick, 2008). N—H hydrogen atoms were localized in difference Fourier maps and refined with the bond lengths fixed at 0.90 A and the isotropic temperature factors fixed at 1.2 times those of the corresponding nitrogen atom.Quinoline-based quaternary salts have attracted the attention of researchers in different areas of organic chemistry for their relevant applications such as DNA-intercalators (Mazzoli et al., 2011), fluorescent pH-sensors (Badugu et al., 2005a), fluorescent labels for antibiotics (Zeng et al., 2010), proteins (Hong et al., 2004), heparin (Sauceda et al., 2007), sacharides (Badugu et al., 2005b), fluorescent probes for fluoride and cyanide ions (Badugu et al., 2004) and
(Dorazco-González et al., 2014). These cationic organic compounds are probably the most used fluorescent sensors for chloride in aqueous media (Bazany-Rodríguez et al., 2015) and intracell samples (Baù et al., 2012). On the other hand, benzamide compounds are used as intermediaries for the synthesis of species with biological activity such as 1,4-benzodiazepinones, thiazoles and oxazoles (Majumdar & Ganai, 2011; Majumdar & Ghosh, 2013; Majumdar et al., 2012) and bicyclic N-heterocycles and nitrogen-rich medium-size heterocycles (Mondal et al., 2012; Zeni & Larock, 2006; Ohta et al., 2008; Majumdar et al., 2008; Raju et al., 2009; Evdokimov et al., 2011).The
of title compound comprises two independent organic [N-[3-N'-(p-nitrobenzyl)quinolinium]benzamide] cations, each of which is linked to one triflate anion through hydrogen-bonding interactions (N—H···O) between the amide groups and anions (Figs 1 and 2; Table 1). Each cation shows a distortion between the mean planes of the amide groups and the quinolinium rings, with dihedral angles of 14.90 (2) and 31.66 (2)°. The phenyl and quinolinium rings are practically coplanar with dihedral angles of 6.99 (4) and 8.54 (4)°.The supramolecular structure involves triflate ion pairing with the bulky cation [N-[3-N'-(p-nitrobenzyl)quinolinium]benzamide] via N—H···O hydrogen bonds between amide groups and anions. The π-stacking interactions between benzamide and quinolinium rings [inter-centroid distance, 3.71 (3) Å] forming chains along the b-axis direction as shown in Figs. 3 and 4. The triflate anions are located on the periphery of the quinolinium groups, establishing C—H···O interactions.
also features face-to-faceA search of the Cambridge Structural Database (CSD, Version 35.6, last update 2015; Groom et al., 2016) using N-(naphthalen-3-yl)benzamide as the main structure, reveals 26 hits; however using a closer structure, N-(quinolin-3-yl)benzamide, shows only one hit, which corresponds to the triflate salt of N-(3-N'-methylquinolinium)benzamide (RISQEP) (Dorazco-González et al., 2014). Additionally, N-methylated and benzylated isomers were found; N-(5-N'-methylquinolinium)benzamide triflate and N-(6-N'-methylquinolinium)benzamide triflate (RISQOB and RISQIV, respectively; Dorazco-González et al., 2014) and N-(6-N'-benzylquinolinium)benzamide bromide (AJEREO;Bazany-Rodríguez et al., 2015). On the other hand, the related (1,10-phenanthrolin-5-yl)benzamide IrIII complex (FAPLEP; Castillo et al., 2012) and RuII and ReI complexes containing the chemical fragment N-(quinolin-3-yl)benzamide (NILFAQ and NILFEU; Batey et al., 2007) haven been reported previously as luminescent chemosensors. Additionally, the crystal of N-(1,10-phenanthrolin-5-yl)-4-(2-pyridyl(benzamide) monohydrated (ROFTOW; Kobayashi et al., 2008) has been reported.
A mixture of 6-aminoquinoline (1.0 g, 6.9 mmol) and benzoyl chloride (0.49 g, 3.45 mmol) in 30 mL of dry toluene-acetone (1:1 v/v) was stirred under reflux for 2.5 h. The white precipitate was collected by filtration and washed with acetone and 5% NaHCO3 to give N-(3-quinolinyl)benzamide in 90% yield, which was reacted with 1.5 equiv. of p-nitro benzyl chloride in 30 mL of dry DMF for 5 h. The resulting yellow powder was filtered and washed with cold MeOH to give the chloride salt in 85% yield. The chloride salt was dissolved in 100 mL of hot H2O-MeOH (1:1 v/v) then one equiv. of silver triflate was added, the mixture was stirred at room temperature for 4 h. The precipitate of silver chloride was filtered off and yellow crystals were obtained by evaporation of the solvent at room temperature.
1H NMR (300MHz, DMSO-d6) δ 11.42 (s, 1H), 10.08 (s, 1H), 9.51 (s, 1H), 8.55 (d, 1H), 8.42 (d, 1H), 8.29 (d, 2H), 8.10 (d, 2H), 7.97 (t, 1H), 7.73 (m, 6H), 6.63 (s, 2H). IR (ATR) cm-1 3271.41 (d), 3073.52 (d), 2993.15 (d), 1685.80 (d), 1603.94 (d), 1551.56 (m), 1518.86 (f), 1490.75 (d), 1372.93 (m), 1344.45 (f), 1272.46 (f), 1251.94 (f), 1163.90 (f), 1107.99 (d), 1028.82 (f), 900.95 (d), 847.43 (d), 800.46 (d), 760.49 (d), 741.83 (m), 710.10 (m), 693.06 (m), 665.58 (d), 633.92 (f), 573.28 (d), 515.54 (m), 434.41 (m).
detailsCrystal data, data collection and structure
details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) for aromatic groups and Uiso(H) = 1.5 Ueq(C) for aliphatic groups (Sheldrick, 2008). N—H hydrogen atoms were localized in difference Fourier maps and refined with the bond lengths fixed at 0.90 A and the isotropic temperature factors fixed at 1.2 times those of the corresponding nitrogen atom.Data collection: APEX2 (Bruker, 2012); cell
APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (A) x, -y + 1/2, z + 1/2; (B) x - 1, y, z + 1.] | |
Fig. 2. Perspective view of a fragment of the crystal structure of the title compound with hydrogen bonds N—H···O shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. | |
Fig. 3. A view approximately along the a axis, showing the offset face-to-face π-interactions between the benzamide and the quinolinium group. H atoms and trifluoromethanesulfonate anions have been omitted for clarity. | |
Fig. 4. View of the π-aggregated structure. Hydrogen atoms and trifluoromethanesulfonate anions have been omitted for clarity. |
C23H18N3O3+·CF3O3S− | F(000) = 2192 |
Mr = 533.47 | Dx = 1.509 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.2183 (6) Å | Cell parameters from 9165 reflections |
b = 20.0810 (8) Å | θ = 2.4–23.7° |
c = 15.3652 (6) Å | µ = 0.21 mm−1 |
β = 90.544 (1)° | T = 298 K |
V = 4695.4 (3) Å3 | Prism, yellow |
Z = 8 | 0.30 × 0.17 × 0.14 mm |
Bruker APEXII CCD area-detector diffractometer | Rint = 0.095 |
Detector resolution: 0.83 pixels mm-1 | θmax = 25.4°, θmin = 1.3° |
ω scans | h = −18→18 |
38624 measured reflections | k = −24→24 |
8609 independent reflections | l = −17→18 |
3809 reflections with I > 2σ(I) |
Refinement on F2 | 180 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0366P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.85 | (Δ/σ)max < 0.001 |
8609 reflections | Δρmax = 0.30 e Å−3 |
729 parameters | Δρmin = −0.31 e Å−3 |
C23H18N3O3+·CF3O3S− | V = 4695.4 (3) Å3 |
Mr = 533.47 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.2183 (6) Å | µ = 0.21 mm−1 |
b = 20.0810 (8) Å | T = 298 K |
c = 15.3652 (6) Å | 0.30 × 0.17 × 0.14 mm |
β = 90.544 (1)° |
Bruker APEXII CCD area-detector diffractometer | 3809 reflections with I > 2σ(I) |
38624 measured reflections | Rint = 0.095 |
8609 independent reflections |
R[F2 > 2σ(F2)] = 0.046 | 180 restraints |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.85 | Δρmax = 0.30 e Å−3 |
8609 reflections | Δρmin = −0.31 e Å−3 |
729 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.41029 (15) | 0.60296 (11) | 0.34381 (13) | 0.0614 (6) | |
N2 | 0.1246 (2) | 0.91541 (18) | 0.5407 (2) | 0.0720 (9) | |
O2 | 0.05962 (19) | 0.88908 (14) | 0.50918 (19) | 0.0895 (9) | |
O3 | 0.1269 (2) | 0.97245 (14) | 0.5673 (2) | 0.1157 (11) | |
N1 | 0.42674 (16) | 0.69242 (12) | 0.57973 (16) | 0.0455 (7) | |
C2 | 0.42848 (19) | 0.64777 (15) | 0.51480 (19) | 0.0465 (8) | |
H2 | 0.4465 | 0.6611 | 0.4598 | 0.056* | |
C3 | 0.40385 (19) | 0.58199 (15) | 0.52846 (19) | 0.0422 (8) | |
C4 | 0.37908 (19) | 0.56351 (15) | 0.61040 (19) | 0.0463 (8) | |
H4 | 0.3624 | 0.5197 | 0.6207 | 0.056* | |
C5 | 0.3516 (2) | 0.59151 (16) | 0.7633 (2) | 0.0599 (10) | |
H5 | 0.3354 | 0.5478 | 0.7751 | 0.072* | |
C6 | 0.3493 (2) | 0.63777 (18) | 0.8274 (2) | 0.0686 (11) | |
H6 | 0.3311 | 0.6257 | 0.8828 | 0.082* | |
C7 | 0.3740 (2) | 0.70292 (18) | 0.8109 (2) | 0.0668 (11) | |
H7 | 0.3727 | 0.7338 | 0.8560 | 0.080* | |
C8 | 0.4001 (2) | 0.72291 (16) | 0.7310 (2) | 0.0581 (9) | |
H8 | 0.4163 | 0.7669 | 0.7211 | 0.070* | |
C9 | 0.4023 (2) | 0.67572 (16) | 0.66336 (19) | 0.0466 (8) | |
C10 | 0.3784 (2) | 0.60934 (15) | 0.67883 (19) | 0.0453 (8) | |
C11 | 0.4434 (2) | 0.76315 (14) | 0.55781 (19) | 0.0535 (9) | |
H11A | 0.4713 | 0.7658 | 0.5014 | 0.064* | |
H11B | 0.4831 | 0.7824 | 0.6007 | 0.064* | |
C12 | 0.3584 (2) | 0.80241 (15) | 0.55578 (18) | 0.0450 (8) | |
C13 | 0.2813 (2) | 0.77440 (15) | 0.52486 (19) | 0.0522 (9) | |
H13 | 0.2809 | 0.7301 | 0.5073 | 0.063* | |
C14 | 0.2046 (2) | 0.81107 (16) | 0.51962 (19) | 0.0550 (9) | |
H14 | 0.1530 | 0.7921 | 0.4984 | 0.066* | |
C15 | 0.2066 (2) | 0.87608 (16) | 0.5464 (2) | 0.0511 (9) | |
C16 | 0.2812 (3) | 0.90518 (17) | 0.5779 (2) | 0.0627 (10) | |
H16 | 0.2806 | 0.9492 | 0.5966 | 0.075* | |
C17 | 0.3573 (2) | 0.86843 (15) | 0.5817 (2) | 0.0599 (10) | |
H17 | 0.4089 | 0.8882 | 0.6021 | 0.072* | |
N18 | 0.40495 (17) | 0.53477 (12) | 0.46162 (16) | 0.0457 (7) | |
H18 | 0.3957 (19) | 0.4931 (13) | 0.4779 (18) | 0.055* | |
C19 | 0.4050 (2) | 0.54681 (17) | 0.3739 (2) | 0.0492 (8) | |
C20 | 0.4012 (2) | 0.48600 (18) | 0.3174 (2) | 0.0520 (9) | |
C21 | 0.3658 (2) | 0.42642 (19) | 0.3436 (2) | 0.0667 (10) | |
H21 | 0.3428 | 0.4223 | 0.3992 | 0.080* | |
C22 | 0.3643 (3) | 0.37257 (19) | 0.2874 (3) | 0.0831 (12) | |
H22 | 0.3403 | 0.3324 | 0.3055 | 0.100* | |
C23 | 0.3983 (3) | 0.3781 (2) | 0.2048 (3) | 0.0891 (14) | |
H23 | 0.3975 | 0.3418 | 0.1672 | 0.107* | |
C24 | 0.4330 (3) | 0.4374 (2) | 0.1790 (2) | 0.0874 (14) | |
H24 | 0.4559 | 0.4415 | 0.1234 | 0.105* | |
C25 | 0.4344 (2) | 0.49175 (19) | 0.2346 (2) | 0.0700 (11) | |
H25 | 0.4577 | 0.5321 | 0.2161 | 0.084* | |
O21 | 0.20655 (15) | −0.02685 (11) | 1.00566 (14) | 0.0677 (7) | |
N22 | 0.3601 (2) | 0.43286 (16) | 0.93943 (18) | 0.0623 (8) | |
O22 | 0.43183 (18) | 0.40720 (13) | 0.95183 (18) | 0.0851 (8) | |
O23 | 0.34872 (18) | 0.49256 (13) | 0.92938 (17) | 0.0901 (9) | |
N26 | 0.08024 (15) | 0.19179 (11) | 0.90797 (14) | 0.0393 (6) | |
C27 | 0.07780 (18) | 0.14885 (14) | 0.97427 (18) | 0.0399 (7) | |
H27 | 0.0608 | 0.1643 | 1.0286 | 0.048* | |
C28 | 0.09965 (18) | 0.08225 (14) | 0.96521 (19) | 0.0387 (7) | |
C29 | 0.12306 (19) | 0.05999 (14) | 0.88465 (19) | 0.0469 (8) | |
H29 | 0.1370 | 0.0153 | 0.8768 | 0.056* | |
C30 | 0.1490 (2) | 0.08164 (17) | 0.7297 (2) | 0.0621 (10) | |
H30 | 0.1614 | 0.0369 | 0.7202 | 0.074* | |
C31 | 0.1528 (2) | 0.12537 (18) | 0.6631 (2) | 0.0701 (11) | |
H31 | 0.1677 | 0.1104 | 0.6079 | 0.084* | |
C32 | 0.1348 (2) | 0.19245 (18) | 0.6759 (2) | 0.0688 (11) | |
H32 | 0.1390 | 0.2218 | 0.6293 | 0.083* | |
C33 | 0.1111 (2) | 0.21621 (16) | 0.75568 (19) | 0.0555 (9) | |
H33 | 0.0986 | 0.2611 | 0.7635 | 0.067* | |
C34 | 0.10618 (19) | 0.17144 (15) | 0.82524 (18) | 0.0420 (8) | |
C35 | 0.12631 (19) | 0.10371 (15) | 0.81382 (19) | 0.0439 (8) | |
C36 | 0.05804 (19) | 0.26267 (13) | 0.92396 (18) | 0.0452 (8) | |
H36A | 0.0277 | 0.2663 | 0.9790 | 0.054* | |
H36B | 0.0184 | 0.2780 | 0.8784 | 0.054* | |
C37 | 0.1383 (2) | 0.30700 (15) | 0.92630 (17) | 0.0406 (8) | |
C38 | 0.2186 (2) | 0.28329 (15) | 0.95501 (19) | 0.0498 (9) | |
H38 | 0.2239 | 0.2389 | 0.9713 | 0.060* | |
C39 | 0.2909 (2) | 0.32433 (16) | 0.95987 (19) | 0.0533 (9) | |
H39 | 0.3449 | 0.3080 | 0.9791 | 0.064* | |
C40 | 0.2817 (2) | 0.38968 (16) | 0.93586 (19) | 0.0469 (8) | |
C41 | 0.2032 (2) | 0.41526 (15) | 0.90788 (19) | 0.0538 (9) | |
H41 | 0.1984 | 0.4600 | 0.8927 | 0.065* | |
C42 | 0.1312 (2) | 0.37365 (15) | 0.90253 (19) | 0.0500 (9) | |
H42 | 0.0776 | 0.3903 | 0.8829 | 0.060* | |
C43 | 0.1481 (2) | −0.01105 (16) | 1.0550 (2) | 0.0490 (8) | |
N44 | 0.09404 (17) | 0.04176 (12) | 1.03937 (16) | 0.0437 (7) | |
H44 | 0.0575 (18) | 0.0565 (13) | 1.0780 (17) | 0.052* | |
C45 | 0.1292 (2) | −0.04973 (15) | 1.1360 (2) | 0.0475 (8) | |
C46 | 0.1440 (2) | −0.11755 (17) | 1.1338 (2) | 0.0683 (10) | |
H46 | 0.1655 | −0.1371 | 1.0835 | 0.082* | |
C47 | 0.1271 (3) | −0.15649 (19) | 1.2059 (3) | 0.0836 (13) | |
H47 | 0.1361 | −0.2023 | 1.2035 | 0.100* | |
C48 | 0.0972 (3) | −0.1277 (2) | 1.2808 (3) | 0.0844 (13) | |
H48 | 0.0865 | −0.1540 | 1.3294 | 0.101* | |
C49 | 0.0831 (2) | −0.0606 (2) | 1.2844 (2) | 0.0726 (11) | |
H49 | 0.0632 | −0.0412 | 1.3356 | 0.087* | |
C50 | 0.0984 (2) | −0.02119 (16) | 1.2121 (2) | 0.0587 (9) | |
H50 | 0.0881 | 0.0244 | 1.2146 | 0.070* | |
S1 | 0.35061 (6) | 0.14986 (4) | 0.08683 (6) | 0.0579 (3) | |
O4 | 0.39929 (14) | 0.09068 (10) | 0.06530 (13) | 0.0613 (6) | |
O5 | 0.39719 (15) | 0.21137 (10) | 0.07281 (15) | 0.0781 (8) | |
O6 | 0.25996 (16) | 0.14934 (12) | 0.06060 (18) | 0.0973 (9) | |
C51 | 0.3430 (3) | 0.14538 (19) | 0.2041 (3) | 0.0859 (12) | |
F1 | 0.4184 (6) | 0.1409 (9) | 0.2480 (7) | 0.116 (3) | 0.56 (3) |
F2 | 0.2924 (10) | 0.0910 (5) | 0.2186 (10) | 0.129 (3) | 0.56 (3) |
F3 | 0.2872 (10) | 0.1946 (7) | 0.2229 (12) | 0.133 (4) | 0.56 (3) |
F1A | 0.4226 (7) | 0.1671 (10) | 0.2312 (13) | 0.127 (4) | 0.44 (3) |
F2A | 0.3289 (15) | 0.0856 (4) | 0.2381 (9) | 0.108 (4) | 0.44 (3) |
F3A | 0.3015 (13) | 0.1924 (7) | 0.2490 (10) | 0.099 (3) | 0.44 (3) |
S2 | 0.92877 (6) | 0.15447 (4) | 0.17934 (6) | 0.0565 (3) | |
O24 | 0.95479 (15) | 0.09446 (11) | 0.13662 (16) | 0.0838 (8) | |
O25 | 0.94245 (17) | 0.21354 (10) | 0.12816 (15) | 0.0827 (8) | |
O26 | 0.95282 (18) | 0.15957 (13) | 0.26900 (16) | 0.1016 (9) | |
C52 | 0.8106 (2) | 0.14561 (15) | 0.1834 (2) | 0.0563 (9) | |
F21 | 0.7755 (4) | 0.1902 (3) | 0.2367 (6) | 0.0916 (17) | 0.83 (2) |
F22 | 0.7851 (5) | 0.0871 (3) | 0.2147 (5) | 0.0707 (15) | 0.83 (2) |
F23 | 0.7716 (4) | 0.1511 (4) | 0.1065 (3) | 0.0856 (16) | 0.83 (2) |
F21A | 0.7749 (17) | 0.2051 (8) | 0.196 (2) | 0.080 (5) | 0.17 (2) |
F22A | 0.807 (3) | 0.0919 (13) | 0.234 (2) | 0.081 (6) | 0.17 (2) |
F23A | 0.800 (3) | 0.1368 (16) | 0.0978 (7) | 0.090 (5) | 0.17 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0661 (16) | 0.0638 (16) | 0.0543 (15) | 0.0036 (14) | −0.0066 (12) | 0.0038 (13) |
N2 | 0.080 (3) | 0.064 (2) | 0.072 (2) | 0.015 (2) | 0.013 (2) | 0.0031 (19) |
O2 | 0.072 (2) | 0.093 (2) | 0.104 (2) | 0.0111 (18) | 0.0038 (18) | 0.0070 (17) |
O3 | 0.121 (3) | 0.073 (2) | 0.153 (3) | 0.037 (2) | −0.005 (2) | −0.026 (2) |
N1 | 0.0465 (17) | 0.0428 (16) | 0.0471 (16) | 0.0001 (13) | 0.0048 (14) | −0.0032 (14) |
C2 | 0.046 (2) | 0.048 (2) | 0.046 (2) | 0.0048 (17) | 0.0087 (16) | −0.0044 (17) |
C3 | 0.0352 (18) | 0.050 (2) | 0.0412 (19) | 0.0054 (16) | 0.0001 (16) | −0.0056 (17) |
C4 | 0.047 (2) | 0.045 (2) | 0.047 (2) | 0.0002 (16) | 0.0000 (17) | −0.0012 (17) |
C5 | 0.077 (3) | 0.056 (2) | 0.046 (2) | 0.009 (2) | 0.0049 (19) | 0.0014 (19) |
C6 | 0.095 (3) | 0.070 (3) | 0.041 (2) | 0.014 (2) | 0.009 (2) | −0.002 (2) |
C7 | 0.096 (3) | 0.060 (3) | 0.045 (2) | 0.015 (2) | −0.003 (2) | −0.0100 (19) |
C8 | 0.069 (3) | 0.055 (2) | 0.051 (2) | 0.0067 (19) | −0.003 (2) | −0.0096 (19) |
C9 | 0.046 (2) | 0.054 (2) | 0.041 (2) | 0.0075 (17) | −0.0020 (16) | −0.0048 (17) |
C10 | 0.047 (2) | 0.048 (2) | 0.0413 (19) | 0.0050 (17) | 0.0009 (16) | −0.0039 (17) |
C11 | 0.056 (2) | 0.048 (2) | 0.057 (2) | −0.0104 (18) | 0.0088 (18) | −0.0081 (17) |
C12 | 0.054 (2) | 0.041 (2) | 0.0406 (19) | −0.0049 (18) | 0.0108 (17) | −0.0020 (15) |
C13 | 0.065 (2) | 0.039 (2) | 0.053 (2) | −0.0030 (19) | −0.0014 (19) | −0.0063 (16) |
C14 | 0.056 (2) | 0.051 (2) | 0.058 (2) | −0.006 (2) | −0.0022 (19) | −0.0012 (18) |
C15 | 0.061 (2) | 0.046 (2) | 0.046 (2) | 0.004 (2) | 0.0093 (19) | 0.0023 (17) |
C16 | 0.076 (3) | 0.045 (2) | 0.067 (2) | 0.000 (2) | 0.013 (2) | −0.0120 (19) |
C17 | 0.064 (3) | 0.048 (2) | 0.069 (2) | −0.010 (2) | 0.009 (2) | −0.0169 (18) |
N18 | 0.0521 (17) | 0.0449 (16) | 0.0403 (17) | −0.0001 (15) | 0.0034 (14) | −0.0053 (15) |
C19 | 0.0376 (19) | 0.061 (2) | 0.049 (2) | 0.0065 (19) | −0.0018 (17) | −0.004 (2) |
C20 | 0.046 (2) | 0.070 (3) | 0.040 (2) | 0.014 (2) | −0.0078 (17) | −0.0092 (19) |
C21 | 0.066 (3) | 0.078 (3) | 0.055 (2) | −0.006 (2) | 0.000 (2) | −0.019 (2) |
C22 | 0.086 (3) | 0.081 (3) | 0.083 (3) | −0.005 (2) | −0.014 (3) | −0.029 (2) |
C23 | 0.087 (3) | 0.107 (4) | 0.072 (3) | 0.026 (3) | −0.023 (3) | −0.045 (3) |
C24 | 0.092 (3) | 0.122 (4) | 0.049 (3) | 0.027 (3) | −0.009 (2) | −0.021 (3) |
C25 | 0.076 (3) | 0.088 (3) | 0.045 (2) | 0.017 (2) | −0.004 (2) | −0.003 (2) |
O21 | 0.0592 (16) | 0.0751 (17) | 0.0689 (16) | 0.0210 (14) | 0.0073 (13) | 0.0066 (13) |
N22 | 0.075 (2) | 0.055 (2) | 0.0571 (19) | −0.009 (2) | 0.0089 (19) | −0.0023 (16) |
O22 | 0.0620 (18) | 0.082 (2) | 0.112 (2) | −0.0055 (16) | −0.0009 (17) | −0.0033 (16) |
O23 | 0.103 (2) | 0.0574 (17) | 0.110 (2) | −0.0216 (17) | 0.0022 (17) | 0.0036 (16) |
N26 | 0.0430 (16) | 0.0368 (15) | 0.0381 (15) | 0.0024 (12) | 0.0004 (13) | −0.0012 (12) |
C27 | 0.0421 (19) | 0.044 (2) | 0.0331 (17) | −0.0033 (16) | 0.0004 (15) | 0.0026 (16) |
C28 | 0.0378 (18) | 0.0353 (19) | 0.0429 (19) | −0.0011 (15) | −0.0015 (15) | 0.0035 (16) |
C29 | 0.054 (2) | 0.0348 (19) | 0.052 (2) | −0.0007 (16) | −0.0025 (18) | −0.0033 (17) |
C30 | 0.083 (3) | 0.053 (2) | 0.050 (2) | 0.009 (2) | 0.001 (2) | −0.0102 (19) |
C31 | 0.094 (3) | 0.074 (3) | 0.043 (2) | 0.015 (2) | 0.007 (2) | −0.007 (2) |
C32 | 0.094 (3) | 0.073 (3) | 0.039 (2) | 0.011 (2) | 0.008 (2) | 0.0087 (19) |
C33 | 0.073 (3) | 0.053 (2) | 0.041 (2) | 0.0073 (19) | −0.0007 (19) | 0.0064 (17) |
C34 | 0.0430 (19) | 0.047 (2) | 0.0364 (18) | 0.0009 (16) | −0.0011 (15) | −0.0009 (16) |
C35 | 0.045 (2) | 0.047 (2) | 0.0404 (19) | 0.0004 (17) | −0.0012 (16) | −0.0042 (17) |
C36 | 0.051 (2) | 0.0386 (19) | 0.0461 (19) | 0.0099 (16) | 0.0063 (17) | 0.0004 (15) |
C37 | 0.050 (2) | 0.041 (2) | 0.0308 (17) | 0.0041 (17) | 0.0047 (16) | 0.0014 (15) |
C38 | 0.059 (2) | 0.0348 (19) | 0.055 (2) | 0.0038 (18) | −0.0005 (19) | 0.0087 (16) |
C39 | 0.054 (2) | 0.053 (2) | 0.052 (2) | 0.0070 (19) | −0.0035 (18) | 0.0078 (18) |
C40 | 0.054 (2) | 0.046 (2) | 0.0403 (19) | −0.0052 (19) | 0.0021 (17) | 0.0006 (16) |
C41 | 0.065 (2) | 0.038 (2) | 0.058 (2) | 0.002 (2) | 0.008 (2) | 0.0099 (17) |
C42 | 0.055 (2) | 0.044 (2) | 0.052 (2) | 0.0122 (18) | −0.0015 (18) | 0.0088 (16) |
C43 | 0.042 (2) | 0.050 (2) | 0.055 (2) | −0.0022 (18) | −0.0071 (18) | 0.0008 (18) |
N44 | 0.0464 (17) | 0.0386 (16) | 0.0460 (17) | 0.0048 (14) | 0.0057 (13) | 0.0049 (14) |
C45 | 0.042 (2) | 0.041 (2) | 0.059 (2) | −0.0010 (16) | −0.0108 (17) | 0.0125 (18) |
C46 | 0.071 (3) | 0.047 (2) | 0.086 (3) | 0.004 (2) | −0.007 (2) | 0.009 (2) |
C47 | 0.085 (3) | 0.049 (2) | 0.116 (4) | −0.010 (2) | −0.028 (3) | 0.031 (3) |
C48 | 0.082 (3) | 0.088 (4) | 0.083 (3) | −0.024 (3) | −0.024 (3) | 0.035 (3) |
C49 | 0.078 (3) | 0.079 (3) | 0.060 (3) | −0.010 (2) | −0.012 (2) | 0.015 (2) |
C50 | 0.069 (3) | 0.051 (2) | 0.056 (2) | −0.0022 (19) | −0.012 (2) | 0.0121 (19) |
S1 | 0.0589 (6) | 0.0519 (6) | 0.0629 (6) | 0.0021 (5) | 0.0004 (5) | 0.0137 (5) |
O4 | 0.0767 (17) | 0.0447 (14) | 0.0624 (14) | 0.0070 (13) | 0.0043 (13) | −0.0032 (11) |
O5 | 0.0778 (18) | 0.0469 (15) | 0.110 (2) | −0.0095 (13) | 0.0207 (15) | 0.0183 (13) |
O6 | 0.0554 (17) | 0.094 (2) | 0.142 (2) | −0.0019 (16) | −0.0331 (17) | 0.0289 (18) |
C51 | 0.097 (3) | 0.084 (3) | 0.078 (3) | 0.030 (2) | 0.031 (2) | 0.015 (2) |
F1 | 0.149 (4) | 0.152 (8) | 0.047 (3) | 0.048 (4) | −0.006 (3) | 0.021 (4) |
F2 | 0.148 (7) | 0.122 (4) | 0.120 (7) | 0.011 (4) | 0.062 (5) | 0.064 (4) |
F3 | 0.159 (6) | 0.144 (4) | 0.097 (8) | 0.079 (4) | 0.046 (6) | −0.011 (5) |
F1A | 0.132 (4) | 0.150 (9) | 0.098 (8) | 0.025 (4) | −0.027 (5) | −0.011 (6) |
F2A | 0.183 (9) | 0.088 (4) | 0.053 (5) | 0.042 (4) | 0.021 (6) | 0.033 (3) |
F3A | 0.150 (6) | 0.100 (4) | 0.047 (5) | 0.040 (5) | 0.026 (5) | 0.006 (4) |
S2 | 0.0512 (6) | 0.0511 (6) | 0.0671 (6) | −0.0032 (5) | 0.0020 (5) | −0.0055 (5) |
O24 | 0.0663 (17) | 0.0554 (15) | 0.130 (2) | 0.0093 (13) | 0.0378 (16) | −0.0202 (15) |
O25 | 0.097 (2) | 0.0514 (15) | 0.1002 (19) | −0.0166 (14) | 0.0260 (16) | 0.0076 (14) |
O26 | 0.098 (2) | 0.131 (2) | 0.0753 (19) | −0.0293 (19) | −0.0394 (16) | 0.0004 (17) |
C52 | 0.058 (2) | 0.050 (2) | 0.060 (2) | 0.0106 (19) | 0.0017 (19) | −0.0027 (18) |
F21 | 0.088 (2) | 0.075 (2) | 0.112 (4) | 0.0202 (19) | 0.040 (3) | −0.014 (3) |
F22 | 0.054 (3) | 0.0696 (18) | 0.089 (3) | −0.0102 (18) | 0.002 (2) | 0.015 (2) |
F23 | 0.056 (3) | 0.113 (4) | 0.0874 (19) | 0.013 (2) | −0.0224 (19) | 0.0210 (19) |
F21A | 0.059 (8) | 0.079 (6) | 0.102 (10) | 0.035 (7) | 0.002 (9) | −0.008 (6) |
F22A | 0.073 (13) | 0.068 (7) | 0.103 (10) | −0.022 (8) | 0.014 (10) | 0.017 (7) |
F23A | 0.086 (13) | 0.105 (10) | 0.079 (5) | 0.037 (10) | −0.053 (8) | −0.019 (6) |
O1—C19 | 1.222 (3) | C28—N44 | 1.403 (3) |
N2—O3 | 1.217 (3) | C29—C35 | 1.400 (4) |
N2—O2 | 1.218 (4) | C29—H29 | 0.9300 |
N2—C15 | 1.478 (4) | C30—C31 | 1.351 (4) |
N1—C2 | 1.342 (3) | C30—C35 | 1.412 (4) |
N1—C9 | 1.383 (3) | C30—H30 | 0.9300 |
N1—C11 | 1.482 (3) | C31—C32 | 1.389 (4) |
C2—C3 | 1.390 (4) | C31—H31 | 0.9300 |
C2—H2 | 0.9300 | C32—C33 | 1.366 (4) |
C3—C4 | 1.369 (4) | C32—H32 | 0.9300 |
C3—N18 | 1.398 (3) | C33—C34 | 1.399 (4) |
C4—C10 | 1.397 (4) | C33—H33 | 0.9300 |
C4—H4 | 0.9300 | C34—C35 | 1.405 (4) |
C5—C6 | 1.355 (4) | C36—C37 | 1.511 (4) |
C5—C10 | 1.411 (4) | C36—H36A | 0.9700 |
C5—H5 | 0.9300 | C36—H36B | 0.9700 |
C6—C7 | 1.385 (4) | C37—C38 | 1.380 (4) |
C6—H6 | 0.9300 | C37—C42 | 1.391 (4) |
C7—C8 | 1.355 (4) | C38—C39 | 1.376 (4) |
C7—H7 | 0.9300 | C38—H38 | 0.9300 |
C8—C9 | 1.408 (4) | C39—C40 | 1.370 (4) |
C8—H8 | 0.9300 | C39—H39 | 0.9300 |
C9—C10 | 1.402 (4) | C40—C41 | 1.366 (4) |
C11—C12 | 1.516 (4) | C41—C42 | 1.380 (4) |
C11—H11A | 0.9700 | C41—H41 | 0.9300 |
C11—H11B | 0.9700 | C42—H42 | 0.9300 |
C12—C13 | 1.381 (4) | C43—N44 | 1.362 (4) |
C12—C17 | 1.385 (4) | C43—C45 | 1.497 (4) |
C13—C14 | 1.381 (4) | N44—H44 | 0.87 (2) |
C13—H13 | 0.9300 | C45—C46 | 1.381 (4) |
C14—C15 | 1.369 (4) | C45—C50 | 1.387 (4) |
C14—H14 | 0.9300 | C46—C47 | 1.381 (5) |
C15—C16 | 1.362 (4) | C46—H46 | 0.9300 |
C16—C17 | 1.374 (4) | C47—C48 | 1.370 (5) |
C16—H16 | 0.9300 | C47—H47 | 0.9300 |
C17—H17 | 0.9300 | C48—C49 | 1.366 (5) |
N18—C19 | 1.369 (4) | C48—H48 | 0.9300 |
N18—H18 | 0.88 (3) | C49—C50 | 1.385 (4) |
C19—C20 | 1.499 (4) | C49—H49 | 0.9300 |
C20—C21 | 1.374 (4) | C50—H50 | 0.9300 |
C20—C25 | 1.378 (4) | S1—O6 | 1.434 (2) |
C21—C22 | 1.383 (4) | S1—O4 | 1.441 (2) |
C21—H21 | 0.9300 | S1—O5 | 1.441 (2) |
C22—C23 | 1.380 (5) | S1—C51 | 1.809 (4) |
C22—H22 | 0.9300 | C51—F2A | 1.326 (7) |
C23—C24 | 1.364 (5) | C51—F1 | 1.328 (6) |
C23—H23 | 0.9300 | C51—F3A | 1.332 (7) |
C24—C25 | 1.386 (5) | C51—F3 | 1.337 (6) |
C24—H24 | 0.9300 | C51—F1A | 1.350 (7) |
C25—H25 | 0.9300 | C51—F2 | 1.355 (6) |
O21—C43 | 1.217 (3) | S2—O26 | 1.426 (2) |
N22—O22 | 1.221 (3) | S2—O24 | 1.430 (2) |
N22—O23 | 1.221 (3) | S2—O25 | 1.439 (2) |
N22—C40 | 1.475 (4) | S2—C52 | 1.809 (4) |
N26—C27 | 1.335 (3) | C52—F23 | 1.321 (4) |
N26—C34 | 1.396 (3) | C52—F21A | 1.329 (8) |
N26—C36 | 1.484 (3) | C52—F22A | 1.329 (8) |
C27—C28 | 1.386 (4) | C52—F22 | 1.330 (4) |
C27—H27 | 0.9300 | C52—F21 | 1.330 (4) |
C28—C29 | 1.366 (4) | C52—F23A | 1.335 (8) |
O3—N2—O2 | 124.2 (4) | C30—C31—C32 | 120.8 (3) |
O3—N2—C15 | 117.5 (4) | C30—C31—H31 | 119.6 |
O2—N2—C15 | 118.3 (3) | C32—C31—H31 | 119.6 |
C2—N1—C9 | 122.4 (3) | C33—C32—C31 | 121.4 (3) |
C2—N1—C11 | 117.8 (2) | C33—C32—H32 | 119.3 |
C9—N1—C11 | 119.5 (2) | C31—C32—H32 | 119.3 |
N1—C2—C3 | 121.0 (3) | C32—C33—C34 | 118.5 (3) |
N1—C2—H2 | 119.5 | C32—C33—H33 | 120.7 |
C3—C2—H2 | 119.5 | C34—C33—H33 | 120.7 |
C4—C3—C2 | 118.3 (3) | N26—C34—C33 | 121.7 (3) |
C4—C3—N18 | 119.8 (3) | N26—C34—C35 | 117.5 (3) |
C2—C3—N18 | 121.9 (3) | C33—C34—C35 | 120.9 (3) |
C3—C4—C10 | 121.2 (3) | C29—C35—C34 | 120.0 (3) |
C3—C4—H4 | 119.4 | C29—C35—C30 | 121.7 (3) |
C10—C4—H4 | 119.4 | C34—C35—C30 | 118.3 (3) |
C6—C5—C10 | 120.3 (3) | N26—C36—C37 | 112.6 (2) |
C6—C5—H5 | 119.8 | N26—C36—H36A | 109.1 |
C10—C5—H5 | 119.8 | C37—C36—H36A | 109.1 |
C5—C6—C7 | 120.4 (3) | N26—C36—H36B | 109.1 |
C5—C6—H6 | 119.8 | C37—C36—H36B | 109.1 |
C7—C6—H6 | 119.8 | H36A—C36—H36B | 107.8 |
C8—C7—C6 | 121.9 (3) | C38—C37—C42 | 118.8 (3) |
C8—C7—H7 | 119.0 | C38—C37—C36 | 121.1 (3) |
C6—C7—H7 | 119.0 | C42—C37—C36 | 120.0 (3) |
C7—C8—C9 | 118.6 (3) | C39—C38—C37 | 121.1 (3) |
C7—C8—H8 | 120.7 | C39—C38—H38 | 119.5 |
C9—C8—H8 | 120.7 | C37—C38—H38 | 119.5 |
N1—C9—C10 | 117.4 (3) | C40—C39—C38 | 118.7 (3) |
N1—C9—C8 | 122.1 (3) | C40—C39—H39 | 120.7 |
C10—C9—C8 | 120.5 (3) | C38—C39—H39 | 120.7 |
C4—C10—C9 | 119.7 (3) | C41—C40—C39 | 122.1 (3) |
C4—C10—C5 | 122.0 (3) | C41—C40—N22 | 119.7 (3) |
C9—C10—C5 | 118.3 (3) | C39—C40—N22 | 118.2 (3) |
N1—C11—C12 | 110.8 (2) | C40—C41—C42 | 118.8 (3) |
N1—C11—H11A | 109.5 | C40—C41—H41 | 120.6 |
C12—C11—H11A | 109.5 | C42—C41—H41 | 120.6 |
N1—C11—H11B | 109.5 | C41—C42—C37 | 120.5 (3) |
C12—C11—H11B | 109.5 | C41—C42—H42 | 119.7 |
H11A—C11—H11B | 108.1 | C37—C42—H42 | 119.7 |
C13—C12—C17 | 118.5 (3) | O21—C43—N44 | 122.5 (3) |
C13—C12—C11 | 121.2 (3) | O21—C43—C45 | 122.0 (3) |
C17—C12—C11 | 120.3 (3) | N44—C43—C45 | 115.5 (3) |
C14—C13—C12 | 121.1 (3) | C43—N44—C28 | 123.6 (3) |
C14—C13—H13 | 119.4 | C43—N44—H44 | 122.2 (19) |
C12—C13—H13 | 119.4 | C28—N44—H44 | 113.7 (19) |
C15—C14—C13 | 118.4 (3) | C46—C45—C50 | 119.0 (3) |
C15—C14—H14 | 120.8 | C46—C45—C43 | 117.3 (3) |
C13—C14—H14 | 120.8 | C50—C45—C43 | 123.7 (3) |
C16—C15—C14 | 122.1 (3) | C47—C46—C45 | 120.5 (4) |
C16—C15—N2 | 119.5 (3) | C47—C46—H46 | 119.8 |
C14—C15—N2 | 118.4 (4) | C45—C46—H46 | 119.8 |
C15—C16—C17 | 119.0 (3) | C48—C47—C46 | 120.0 (4) |
C15—C16—H16 | 120.5 | C48—C47—H47 | 120.0 |
C17—C16—H16 | 120.5 | C46—C47—H47 | 120.0 |
C16—C17—C12 | 120.9 (3) | C49—C48—C47 | 120.2 (4) |
C16—C17—H17 | 119.5 | C49—C48—H48 | 119.9 |
C12—C17—H17 | 119.5 | C47—C48—H48 | 119.9 |
C19—N18—C3 | 127.1 (3) | C48—C49—C50 | 120.2 (4) |
C19—N18—H18 | 116.6 (19) | C48—C49—H49 | 119.9 |
C3—N18—H18 | 115.5 (18) | C50—C49—H49 | 119.9 |
O1—C19—N18 | 122.4 (3) | C49—C50—C45 | 120.1 (3) |
O1—C19—C20 | 122.3 (3) | C49—C50—H50 | 120.0 |
N18—C19—C20 | 115.2 (3) | C45—C50—H50 | 120.0 |
C21—C20—C25 | 119.4 (3) | O6—S1—O4 | 115.16 (15) |
C21—C20—C19 | 123.6 (3) | O6—S1—O5 | 115.95 (15) |
C25—C20—C19 | 117.0 (3) | O4—S1—O5 | 114.69 (13) |
C20—C21—C22 | 120.2 (3) | O6—S1—C51 | 102.08 (18) |
C20—C21—H21 | 119.9 | O4—S1—C51 | 103.03 (15) |
C22—C21—H21 | 119.9 | O5—S1—C51 | 103.16 (17) |
C23—C22—C21 | 120.4 (4) | F2A—C51—F3A | 111.0 (11) |
C23—C22—H22 | 119.8 | F1—C51—F3 | 119.1 (14) |
C21—C22—H22 | 119.8 | F2A—C51—F1A | 108.6 (8) |
C24—C23—C22 | 119.1 (4) | F3A—C51—F1A | 92.3 (13) |
C24—C23—H23 | 120.4 | F1—C51—F2 | 110.5 (6) |
C22—C23—H23 | 120.4 | F3—C51—F2 | 101.4 (10) |
C23—C24—C25 | 120.8 (4) | F2A—C51—S1 | 116.7 (7) |
C23—C24—H24 | 119.6 | F1—C51—S1 | 116.5 (6) |
C25—C24—H24 | 119.6 | F3A—C51—S1 | 121.0 (8) |
C20—C25—C24 | 120.0 (4) | F3—C51—S1 | 103.0 (8) |
C20—C25—H25 | 120.0 | F1A—C51—S1 | 103.0 (9) |
C24—C25—H25 | 120.0 | F2—C51—S1 | 104.3 (7) |
O22—N22—O23 | 124.0 (3) | O26—S2—O24 | 115.75 (17) |
O22—N22—C40 | 118.6 (3) | O26—S2—O25 | 115.56 (16) |
O23—N22—C40 | 117.3 (3) | O24—S2—O25 | 113.67 (14) |
C27—N26—C34 | 121.0 (2) | O26—S2—C52 | 102.72 (16) |
C27—N26—C36 | 119.0 (2) | O24—S2—C52 | 102.28 (14) |
C34—N26—C36 | 119.9 (2) | O25—S2—C52 | 104.40 (16) |
N26—C27—C28 | 122.6 (3) | F21A—C52—F22A | 128 (3) |
N26—C27—H27 | 118.7 | F23—C52—F22 | 105.5 (5) |
C28—C27—H27 | 118.7 | F23—C52—F21 | 108.4 (4) |
C29—C28—C27 | 118.1 (3) | F22—C52—F21 | 104.6 (5) |
C29—C28—N44 | 124.4 (3) | F21A—C52—F23A | 102.8 (15) |
C27—C28—N44 | 117.5 (3) | F22A—C52—F23A | 117 (2) |
C28—C29—C35 | 120.7 (3) | F23—C52—S2 | 113.6 (4) |
C28—C29—H29 | 119.6 | F21A—C52—S2 | 108.9 (13) |
C35—C29—H29 | 119.6 | F22A—C52—S2 | 98.7 (18) |
C31—C30—C35 | 120.2 (3) | F22—C52—S2 | 113.1 (4) |
C31—C30—H30 | 119.9 | F21—C52—S2 | 111.1 (3) |
C35—C30—H30 | 119.9 | F23A—C52—S2 | 95.3 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N18—H18···O4i | 0.88 (3) | 2.15 (3) | 2.982 (3) | 156 (3) |
N44—H44···O24ii | 0.87 (2) | 1.97 (3) | 2.811 (3) | 164 (3) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N18—H18···O4i | 0.88 (3) | 2.15 (3) | 2.982 (3) | 156 (3) |
N44—H44···O24ii | 0.87 (2) | 1.97 (3) | 2.811 (3) | 164 (3) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C23H18N3O3+·CF3O3S− |
Mr | 533.47 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 15.2183 (6), 20.0810 (8), 15.3652 (6) |
β (°) | 90.544 (1) |
V (Å3) | 4695.4 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.30 × 0.17 × 0.14 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 38624, 8609, 3809 |
Rint | 0.095 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.110, 0.85 |
No. of reflections | 8609 |
No. of parameters | 729 |
No. of restraints | 180 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.31 |
Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015).
Acknowledgements
We thank Lizbeth Triana Cruz MSc and María de las Nieves Zavala Segovia MSc for their technical support. The financial support of this research by CONACyT (CB239648) is gratefully acknowledged. MNG and IJBR are also grateful to CONACyT for scholarships.
References
Badugu, R., Lakowicz, J. R. & Geddes, C. D. (2004). Anal. Biochem. 327, 82–90. CrossRef PubMed CAS Google Scholar
Badugu, R., Lakowicz, J. R. & Geddes, C. D. (2005a). Bioorg. Med. Chem. 13, 113–119. CrossRef PubMed CAS Google Scholar
Badugu, R., Lakowicz, J. R. & Geddes, C. D. (2005b). Talanta, 66, 569–574. CrossRef PubMed CAS Google Scholar
Batey, H. D., Whitwood, A. C. & Duhme-Klair, A.-K. (2007). Inorg. Chem. 46, 6516–6528. Web of Science CSD CrossRef PubMed CAS Google Scholar
Baù, L., Selvestrel, F., Arduini, M., Zamparo, I., Lodovichi, C. & Mancin, F. (2012). Org. Lett. 14, 2984–2987. PubMed Google Scholar
Bazany-Rodríguez, I. J., Martínez-Otero, D., Barroso-Flores, J., Yatsimirsky, A. K. & Dorazco-González, A. (2015). Sens. Actuators B Chem. 221, 1348–1355. Google Scholar
Bruker (2012). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Castillo, C. E., Davies, D. L., Klair, A. D., Singh, K. & Singh, S. (2012). Dalton Trans. 41, 628–635. CrossRef CAS PubMed Google Scholar
Dorazco-González, A., Alamo, M. F., Godoy-Alcántar, C., Höpfl, H. & Yatsimirsky, A. K. (2014). RSC Adv. 4, 455–466. Google Scholar
Evdokimov, N. M., Van slambrouck, S., Heffeter, P., Tu, L., Le Calvé, B., Lamoral-Theys, D., Hooten, C. J., Uglinskii, P. Y., Rogelj, S., Kiss, R., Steelant, W. F. A., Berger, W., Yang, J. J., Bologa, C. G., Kornienko, A. & Magedov, I. V. (2011). J. Med. Chem. 54, 2012–2021. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. CSD CrossRef IUCr Journals Google Scholar
Hong, S., Yoon, S. S., Kang, C. & Suh, B. M. (2004). Korean Chem. Soc. 25, 345–346. CAS Google Scholar
Kobayashi, M., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1979. CrossRef IUCr Journals Google Scholar
Majumdar, K. C. & Ganai, S. (2011). Synlett, pp. 1881–1887. CrossRef Google Scholar
Majumdar, K. C., Ganai, S., Nandi, R. K. & Ray, K. (2012). Tetrahedron Lett. 53, 1553–1557. CrossRef CAS Google Scholar
Majumdar, K. C. & Ghosh, D. (2013). Tetrahedron Lett. 54, 4422–4424. CrossRef CAS Google Scholar
Majumdar, K. C., Mondal, S. & De, N. (2008). Synlett, pp. 2851–2855. CrossRef Google Scholar
Mazzoli, A., Carlotti, B., Fortuna, C. G. & Spalletti, A. (2011). Photochem. Photobiol. Sci. 10, 973–979. CrossRef CAS PubMed Google Scholar
Mondal, S., Nechab, M., Vanthuyne, N. & Bertrand, M. P. (2012). Chem. Commun. 48, 2549–2551. CrossRef CAS Google Scholar
Ohta, Y., Chiba, H., Oishi, S., Fujii, N. & Ohno, H. (2008). Org. Lett. 10, 3535–3538. CrossRef PubMed CAS Google Scholar
Raju, R., Piggott, A. M., Conte, M., Aalbersberg, W. G. L., Feussner, K. & Capon, R. J. (2009). Org. Lett. 11, 3862–3865. CrossRef PubMed CAS Google Scholar
Sauceda, J. C., Duke, R. M. & Nitz, M. (2007). ChemBioChem, 8, 391–394. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zeng, L., Liu, W., Zhuang, X., Wu, J., Wang, P. & Zhang, W. (2010). Chem. Commun. 46, 2435–2437. CrossRef CAS Google Scholar
Zeni, G. & Larock, R. C. (2006). Chem. Rev. 106, 4644–4680. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.