research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 659-662

Supra­molecular inter­actions in a 1:1 co-crystal of acridine and 3-chloro­thio­phene-2-carb­­oxy­lic acid

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by P. C. Healy, Griffith University, Australia (Received 31 March 2016; accepted 6 April 2016; online 8 April 2016)

In the title co-crystal, C5H3ClO2S·C13H9N, the components inter­act with each other via an O—H⋯N hydrogen bond. Acridine–acridine stacking, thio­phene–thio­phene stacking and acridine–thio­phene C—H⋯π inter­actions also occur in the crystal.

1. Chemical context

Co-crystals are solids in which two or more mol­ecules crystallize together and interact through non-covalent inter­actions (Odiase et al., 2015[Odiase, I., Nicholson, C. E., Ahmad, R., Cooper, J., Yufit, D. S. & Cooper, S. J. (2015). Acta Cryst. C71, 276-283.]). The study of non-covalent inter­actions in co-crystals not only adds to our knowledge but also has an undeniable relevance in the context of their pharmaceutical and biological inter­est (Chakraborty et al., 2014[Chakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571-2577.]; Desiraju, 1989[Desiraju, G. R. (1989). In Crystal engineering: the design of organic solids. Amsterdam: Elsevier.]). The main inter­actions concerned are various hydrogen bonding, ππ and C—H⋯π inter­actions (Aakeröy et al., 2010[Aakeröy, C. B., Champness, S. R. & Janiak, C. (2010). CrystEngComm, 12, 22-43.]). The acridine mol­ecule is a component present in anti­helminthic agents which are used in animals (Durchheimer et al., 1980[Durchheimer, W., Raether, W., Seliger, H. & Seidenath, H. (1980). Arzneim.-Forsch. Drug. Res. 30, 1041-1046.]). Acridine derivatives also show in vitro activity against protozoa (Ngadi et al., 1993[Ngadi, L., Bsiri, N., Mahamoud, A., Galy, A. M., Galy, J. P., Soyfer, J. C., Barbe, J., Placidi, M., Rodriguez-Santiago, J. J., Mesa-Valle, C., Lombardo, R., Mascaro, C. & Osuna, A. (1993). Arzneim.-Forsch. Drug. Res. 43, 480-483.]). The acridine group is a well known inter­calator inter­acting with nucleobase pairs (Raju et al., 2016[Raju, G., Vishwanath, S., Prasad, A., Patel, B. K. & Prabusankar, G. (2016). J. Mol. Struct. 1107, 291-299.]; Nafisi et al., 2007[Nafisi, S., Saboury, A. A., Keramat, N., Neault, J. F. & Tajmir-Riahi, H. A. (2007). J. Mol. Struct. 827, 35-43.]; Sazhnikov et al., 2013[Sazhnikov, V. A., Khlebunov, A. A., Sazonov, S. K., Vedernikov, A. I., Safonov, A. A., Bagatur'yants, A. A., Kuz'mina, L. G., Howard, J. A. K., Gromov, S. P. & Alfimov, M. V. (2013). J. Mol. Struct. 1053, 79-88.]). Acridine dyes are also widely used (Solovyeva et al., 2014[Solovyeva, E. V., Myund, L. A., Starova, G. L., Dem'yanchuk, E. M., Makarov, A. A. & Denisova, A. S. (2014). J. Mol. Struct. 1063, 235-241.], Yasarawan et al., 2011[Yasarawan, N., Thipyapong, K. & Ruangpornvisuti, V. (2011). J. Mol. Struct. 1006, 635-641.]). Halogenated thio­phene carb­oxy­lic acid derivatives are the building blocks of many commercially available insecticides (Hull et al., 2007[Hull, J. W., Romer, D. R., Podhorez, D. E., Ash, M. L. & Brady, C. H. (2007). Beilstein J. Org. Chem. 3, 23.]). We extended our study on supra­molecular architectures in acridine mol­ecules with the investigation of the title co-crystal with 3-chloro­thio­phene-2-carb­oxy­lic acid (3TPC).

[Scheme 1]

2. Structural commentary

The compound (1) is a 1:1 co-crystal of 3TPC and acridine. The inter­nal angle at N1 [C6—N1—C18 = 119.30 (15)°] and bond lengths [C18—N1 = 1.346 (2) and C6—N1 = 1.354 (2) Å] agree with those reported for neutral acridine structures (Aghabozorg et al., 2011[Aghabozorg, H., Goodarzi, S., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o126.]; Binder et al., 1982[Binder, W., Karl, N. & Stezowski, J. J. (1982). Acta Cryst. B38, 2915-2916.]; Goeta et al., 2002[Goeta, A. E., Lawrence, S. E., Meehan, M. M., O'Dowd, A. & Spalding, T. R. (2002). Polyhedron, 21, 1689-1694.]). The two external bond angles at the carbon atom of the carboxyl group are 124.13 (17) and 110.75 (15)°. The high discrepancy between these two angles is typical of an unionized carboxyl group. The C=O distance of 1.316 (2) Å and C—OH distance of 1.199 (2) Å are also typical of the carboxyl group. These values also agree with the carb­oxy­lic acids reported in the literature (Kowalska et al., 2015[Kowalska, K., Trzybiński, D. & Sikorski, A. (2015). CrystEngComm, 17, 7199-7212.]; Sienkiewicz-Gromiuk et al., 2016[Sienkiewicz-Gromiuk, J., Tarasiuk, B. & Mazur, L. (2016). J. Mol. Struct. 1110, 65-71.]). The dihedral angle between the carboxylic acid group and the thiophene ring is 9.01 (13)°. The bond distances and angles involving the thio­phene ring agree with those in structures reported earlier (Zhang et al., 2014[Zhang, Q., Luo, J., Ye, L., Wang, H., Huang, B., Zhang, J., Wu, J., Zhang, S. & Tian, Y. (2014). J. Mol. Struct. 1074, 33-42.]).

3. Supra­molecular features

The 3TPC and acridine moieties are linked by an O—H⋯N hydrogen-bonding inter­action between (O1—H1) of the carboxyl group and the acridine nitro­gen atom (N1) (Table 1[link] and Fig. 1[link]). This O—H⋯N hydrogen bond is reminiscent of the frequently used supra­molecular synthon in crystal engineering involving a carb­oxy­lic acid and a pyridine mol­ecule (Seaton, 2014[Seaton, C. C. (2014). CrystEngComm, 16, 5878-5886.]; Lemmerer & Bernstein, 2010[Lemmerer, A. & Bernstein, J. (2010). CrystEngComm, 12, 2029-2033.]; Thomas et al., 2010[Thomas, L. H., Blagden, N., Gutmann, M. J., Kallay, A. A., Parkin, A., Seaton, C. C. & Wilson, C. C. (2010). Cryst. Growth Des. 10, 2770-2774.]). A similar type of supra­molecular synthon is observed in a series of nine co-crystals involving acridine and benzoic acids (Kowalska et al., 2015[Kowalska, K., Trzybiński, D. & Sikorski, A. (2015). CrystEngComm, 17, 7199-7212.]). This supra­molecular synthon is also present in the co-crystal of 5-chlorothiophene-2-carboxylic acid and acridine reported from our laboratory (Jennifer & Mu­thiah, 2014[Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.]). This co-crystal and the title co-crystal differ only in the position of chlorine in the thio­phene ring. The hydrogen-bonded units are linked via ππ stacking inter­actions between the aromatic systems of acridine mol­ecules [Cg1⋯Cg1i = 3.6419 (9), Cg1⋯Cg1ii = 3.7526 (9), Cg1⋯Cg2ii = 3.7293 (12), Cg2⋯Cg3i = 3.6748 (12) and Cg2⋯Cg3ii = 3.7298 (12) Å where Cg1 is the centroid of the N1/C6/C11/C12/C13/C18 ring, Cg2 is the centroid of the C6–C11 ring and Cg3 is the centroid of the C13–C18 ring; symmetry codes: (i) −x, 2 − y,1 − z; (ii) 1 − x, 2 − y,1 − z] and between the thio­phene rings [Cg7⋯Cg7iii = 3.7611 (12) Å where Cg7 is the centroid of the thio­phene ring; symmetry code: (iii) 1 − x, 1 − y, −z]. The crystal structure also features C—H⋯π inter­actions, forming a three-dimensional supra­molecular architecture (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 is the centroid of the thio­phene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.615 (2) 159
C9—H9⋯Cg7i 0.93 2.94 3.773 (2) 150
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line represents the O—H⋯N hydrogen bond.
[Figure 2]
Figure 2
A view of the O—H⋯N hydrogen bonds (purple dashed lines), ππ stacking (acridine–acridine and thio­phene–thio­phene; red dashed lines) and C—H⋯π inter­actions between the acridine C—H group and the π-system of thio­phene (green dashed lines).

4. Database survey

The crystal structures of a number of acridine co-crystals, acridinium salts and their metal complexes have been investigated in a variety of crystalline environments such as diphenic acid–acridine (1:1) (Shaameri et al., 2001a[Shaameri, Z., Shan, N. & Jones, W. (2001a). Acta Cryst. E57, o1075-o1077.]), 4,4′-bis­(hy­droxy­azo­benzene)–acridine (Chakraborty et al., 2014[Chakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571-2577.]), orcinol–acridine (1:2) and orcinol–acridine (1:1) co-crystal hydrate (Mukherjee et al., 2011[Mukherjee, A., Grobelny, P., Thakur, T. S. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 2637-2653.]), acridinium isophthalate (Shaameri et al., 2001b[Shaameri, Z., Shan, N. & Jones, W. (2001b). Acta Cryst. E57, o945-o946.]) and acridinium 6-carb­oxy­pyridine-2- carboxyl­ate monohydrate (Derikvand et al., 2011[Derikvand, Z., Olmstead, M. M. & Attar Gharamaleki, J. (2011). Acta Cryst. E67, o416.]). A variety of metal complexes of acridine have also been reported (Ha, 2010[Ha, K. (2010). Acta Cryst. E66, m1083.], 2012[Ha, K. (2012). Acta Cryst. E68, o196.]; Sloufova & Slouf, 2000[Sloufova, I. & Slouf, M. (2000). Acta Cryst. C56, 1312-1313.], 2001[Sloufova, I. & Slouf, M. (2001). Acta Cryst. C57, 248-249.]).

5. Synthesis and crystallization

To 10 ml of a hot methanol solution of 3TPC (40.6 mg, 25 mmol) were added 10 ml of a hot methano­lic solution of acridine (44.8 mg, 25 mmol). The resulting solution was warmed over a water bath for half an hour and then kept at room temperature for crystallization. After a week yellow plate-like crystals of (1) were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were readily located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 and O—H = 0.82 Å, and with Uiso(H) = kUeq(C, O), where k = 1.5 for hy­droxy and 1.2 for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C5H3ClO2S·C13H9N
Mr 341.80
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.3371 (4), 8.3286 (5), 13.3819 (8)
α, β, γ (°) 107.577 (5), 97.706 (5), 93.953 (5)
V3) 767.32 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.60 × 0.30 × 0.10
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.813, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7182, 3516, 2722
Rint 0.022
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.02
No. of reflections 3516
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.23
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Co-crystals are solids in which two or more molecules crystallize in one crystal lattice through non-covalent inter­actions (Odiase et al., 2015). The study of non-covalent inter­actions in co-crystals not only adds to our knowledge but also has an undeniable relevance in the context of their pharmaceutical and biological inter­est (Chakraborty et al., 2014; Desiraju, 1989). The main inter­actions concerned are various hydrogen bonding, ππ and C—H···π inter­actions (Aakeröy et al., 2010). The acridine molecule is a component present in anti­helminthic agents which are used in animals (Durchheimer et al., 1980). Acridine derivatives also show in vitro activity against protozoa (Ngadi et al., 1993). The acridine group is a well known inter­calator inter­acting with nucleobase pairs (Raju et al., 2016; Nafisi et al., 2007; Sazhnikov et al., 2013). Acridine dyes are also widely used (Solovyeva et al., 2014, Yasarawan et al., 2011). Halogenated thio­phene carb­oxy­lic acid derivatives are the building blocks of many commercially available insecticides (Hull et al., 2007). We extended our study on supra­molecular architectures in acridine molecules with the investigation of the title co-crystal with 3-chloro­thio­phene-2-carb­oxy­lic acid.

Structural commentary top

The compound (1) is a 1:1 co-crystal of 3TPC and acridine. The inter­nal angle at N1 [C6—N1—C18 = 119.30 (15)°] and bond lengths [C18—N1 = 1.346 (2) and C6—N1 = 1.354 (2) Å] agree with those reported for neutral acridine structures (Aghabozorg et al., 2011; Binder et al., 1982; Goeta et al., 2002). The two external bond angles at the carbon atom of the carboxyl group are 124.13 (17) and 110.75 (15)°. The high discrepancy between these two angles is typical of an unionized carboxyl group. The CO distance of 1.316 (2) Å and C—OH distance of 1.199 (2) Å are also typical of the carboxyl group. These values also agree with the carb­oxy­lic acids reported in the literature (Kowalska et al., 2015; Sienkiewicz-Gromiuk et al., 2016). The bond distances and angles involving the thio­phene ring agree with those in structures reported earlier (Zhang et al., 2014).

Supra­molecular features top

3TPC and acridine are inter­connected via O—H···N hydrogen-bonding inter­actions between (O1—H1) of the carboxyl group and the acridine nitro­gen atom (N1) (Table 1 and Fig. 1). This O—H···N hydrogen bond is reminiscent of the frequently used supra­molecular synthon in crystal engineering involving a carb­oxy­lic acid and a pyridine (Seaton, 2014; Lemmerer & Bernstein, 2010; Thomas et al., 2010). A similar type of supra­molecular synthon is observed in a series of nine co-crystals involving acridine and benzoic acids (Kowalska et al., 2015). This supra­molecular synthon is also present in the co-crystal 5TPCACR (1:1) reported from our laboratory (Jennifer & Mu­thiah, 2014). This co-crystal and the title co-crystal differ only in the position of chlorine in the thio­phene ring. The hydrogen-bonded units are stabilized via ππ stacking inter­actions between the aromatic systems of acridine molecules [Cg1···Cg1i = 3.6419 (9), Cg1···Cg1ii = 3.7526 (9), Cg1···Cg2ii = 3.7293 (12), Cg2···Cg3i = 3.6748 (12) and Cg2···Cg3ii = 3.7298 (12) Å where Cg1 is the centroid of the N1/C6/C11/C12/C13/C18 ring, Cg2 is the centroid of the C6–C11 ring and Cg3 is the centroid of the C13–C18 ring; symmetry codes: (i) -x ,2 - y,1 - z; (ii) 1 - x, 2 - y,1 - z] and between the thio­phene rings [Cg7···Cg7iii = 3.7611 (12) Å where Cg7 is the centroid of the thio­phene ring; symmetry code: (iii) 1 - x, 1 - y, -z]. The crystal structure is further stabilized by C—H···π inter­actions, forming a supra­molecular architecture (Fig. 2).

Database survey top

The crystal structures of a number of acridine co-crystals, acridinium salts and their metal complexes have been investigated in a variety of crystalline environments: Diphenic acid–acridine (1:1) (Shaameri et al., 2001a), 4,4′-bis­(hy­droxy­azo­benzene)–acridine (Chakraborty et al., 2014), orcinol–acridine (1:2) and orcinol–acridine (1:1) co-crystal hydrate (Mukherjee et al., 2011), acridinium isophthalate (Shaameri et al., 2001b) and acridinium 6-carb­oxy­pyridine-2- carboxyl­ate monohydrate (Derikvand et al., 2011). A variety of metal complexes of acridine have also been reported (Ha, 2010, 2012; Sloufova & Slouf, 2000, 2001).

Synthesis and crystallization top

To 10 ml of a hot methanol solution of 3TPC (40.6 mg, 25 mmol) were added 10 ml of a hot methano­lic solution of acridine (44.8 mg, 25 mmol). The resulting solution was warmed over a water bath for half an hour and then kept at room temperature for crystallization. After a week yellow plate-like crystals of (1) were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were readily located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 and O—H = 0.82 Å , and with Uiso(H) = kUeq(C, O), where k = 1.5 for hy­droxy and 1.2 for all other H atoms.

Structure description top

Co-crystals are solids in which two or more molecules crystallize in one crystal lattice through non-covalent inter­actions (Odiase et al., 2015). The study of non-covalent inter­actions in co-crystals not only adds to our knowledge but also has an undeniable relevance in the context of their pharmaceutical and biological inter­est (Chakraborty et al., 2014; Desiraju, 1989). The main inter­actions concerned are various hydrogen bonding, ππ and C—H···π inter­actions (Aakeröy et al., 2010). The acridine molecule is a component present in anti­helminthic agents which are used in animals (Durchheimer et al., 1980). Acridine derivatives also show in vitro activity against protozoa (Ngadi et al., 1993). The acridine group is a well known inter­calator inter­acting with nucleobase pairs (Raju et al., 2016; Nafisi et al., 2007; Sazhnikov et al., 2013). Acridine dyes are also widely used (Solovyeva et al., 2014, Yasarawan et al., 2011). Halogenated thio­phene carb­oxy­lic acid derivatives are the building blocks of many commercially available insecticides (Hull et al., 2007). We extended our study on supra­molecular architectures in acridine molecules with the investigation of the title co-crystal with 3-chloro­thio­phene-2-carb­oxy­lic acid.

The compound (1) is a 1:1 co-crystal of 3TPC and acridine. The inter­nal angle at N1 [C6—N1—C18 = 119.30 (15)°] and bond lengths [C18—N1 = 1.346 (2) and C6—N1 = 1.354 (2) Å] agree with those reported for neutral acridine structures (Aghabozorg et al., 2011; Binder et al., 1982; Goeta et al., 2002). The two external bond angles at the carbon atom of the carboxyl group are 124.13 (17) and 110.75 (15)°. The high discrepancy between these two angles is typical of an unionized carboxyl group. The CO distance of 1.316 (2) Å and C—OH distance of 1.199 (2) Å are also typical of the carboxyl group. These values also agree with the carb­oxy­lic acids reported in the literature (Kowalska et al., 2015; Sienkiewicz-Gromiuk et al., 2016). The bond distances and angles involving the thio­phene ring agree with those in structures reported earlier (Zhang et al., 2014).

3TPC and acridine are inter­connected via O—H···N hydrogen-bonding inter­actions between (O1—H1) of the carboxyl group and the acridine nitro­gen atom (N1) (Table 1 and Fig. 1). This O—H···N hydrogen bond is reminiscent of the frequently used supra­molecular synthon in crystal engineering involving a carb­oxy­lic acid and a pyridine (Seaton, 2014; Lemmerer & Bernstein, 2010; Thomas et al., 2010). A similar type of supra­molecular synthon is observed in a series of nine co-crystals involving acridine and benzoic acids (Kowalska et al., 2015). This supra­molecular synthon is also present in the co-crystal 5TPCACR (1:1) reported from our laboratory (Jennifer & Mu­thiah, 2014). This co-crystal and the title co-crystal differ only in the position of chlorine in the thio­phene ring. The hydrogen-bonded units are stabilized via ππ stacking inter­actions between the aromatic systems of acridine molecules [Cg1···Cg1i = 3.6419 (9), Cg1···Cg1ii = 3.7526 (9), Cg1···Cg2ii = 3.7293 (12), Cg2···Cg3i = 3.6748 (12) and Cg2···Cg3ii = 3.7298 (12) Å where Cg1 is the centroid of the N1/C6/C11/C12/C13/C18 ring, Cg2 is the centroid of the C6–C11 ring and Cg3 is the centroid of the C13–C18 ring; symmetry codes: (i) -x ,2 - y,1 - z; (ii) 1 - x, 2 - y,1 - z] and between the thio­phene rings [Cg7···Cg7iii = 3.7611 (12) Å where Cg7 is the centroid of the thio­phene ring; symmetry code: (iii) 1 - x, 1 - y, -z]. The crystal structure is further stabilized by C—H···π inter­actions, forming a supra­molecular architecture (Fig. 2).

The crystal structures of a number of acridine co-crystals, acridinium salts and their metal complexes have been investigated in a variety of crystalline environments: Diphenic acid–acridine (1:1) (Shaameri et al., 2001a), 4,4′-bis­(hy­droxy­azo­benzene)–acridine (Chakraborty et al., 2014), orcinol–acridine (1:2) and orcinol–acridine (1:1) co-crystal hydrate (Mukherjee et al., 2011), acridinium isophthalate (Shaameri et al., 2001b) and acridinium 6-carb­oxy­pyridine-2- carboxyl­ate monohydrate (Derikvand et al., 2011). A variety of metal complexes of acridine have also been reported (Ha, 2010, 2012; Sloufova & Slouf, 2000, 2001).

Synthesis and crystallization top

To 10 ml of a hot methanol solution of 3TPC (40.6 mg, 25 mmol) were added 10 ml of a hot methano­lic solution of acridine (44.8 mg, 25 mmol). The resulting solution was warmed over a water bath for half an hour and then kept at room temperature for crystallization. After a week yellow plate-like crystals of (1) were obtained.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were readily located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 and O—H = 0.82 Å , and with Uiso(H) = kUeq(C, O), where k = 1.5 for hy­droxy and 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line represents the O—H···N hydrogen bond.
[Figure 2] Fig. 2. A view of the O—H···N hydrogen bonds (purple dashed lines), ππ stacking (acridine–acridine and thiophene–thiophene; red dashed lines) and C—H···π interactions between the acridine C—H group and the π-system of thiophene (green dashed lines).
Acridine–3-chlorothiophene-2-carboxylic acid (1/1) top
Crystal data top
C5H3ClO2S·C13H9NZ = 2
Mr = 341.80F(000) = 352
Triclinic, P1Dx = 1.479 Mg m3
a = 7.3371 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3286 (5) ÅCell parameters from 2635 reflections
c = 13.3819 (8) Åθ = 3.9–29.2°
α = 107.577 (5)°µ = 0.39 mm1
β = 97.706 (5)°T = 293 K
γ = 93.953 (5)°Plate, yellow
V = 767.32 (8) Å30.60 × 0.30 × 0.10 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3516 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2722 reflections with I > 2σ(I)
Detector resolution: 10.4933 pixels mm-1Rint = 0.022
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
h = 98
Tmin = 0.813, Tmax = 1.000k = 1010
7182 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.133P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3516 reflectionsΔρmax = 0.21 e Å3
209 parametersΔρmin = 0.23 e Å3
Crystal data top
C5H3ClO2S·C13H9Nγ = 93.953 (5)°
Mr = 341.80V = 767.32 (8) Å3
Triclinic, P1Z = 2
a = 7.3371 (4) ÅMo Kα radiation
b = 8.3286 (5) ŵ = 0.39 mm1
c = 13.3819 (8) ÅT = 293 K
α = 107.577 (5)°0.60 × 0.30 × 0.10 mm
β = 97.706 (5)°
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3516 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2722 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.022
7182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3516 reflectionsΔρmin = 0.23 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21228 (7)0.16757 (7)0.02749 (4)0.05748 (17)
S10.69521 (6)0.48402 (6)0.14957 (4)0.04516 (15)
O10.42177 (19)0.63242 (19)0.26579 (11)0.0581 (4)
H10.34860.69110.29680.087*
O20.16569 (18)0.49072 (19)0.15614 (11)0.0569 (4)
N10.26273 (19)0.85354 (18)0.39993 (11)0.0390 (3)
C10.3309 (2)0.5158 (2)0.18026 (14)0.0392 (4)
C20.4606 (2)0.4179 (2)0.11735 (13)0.0366 (4)
C30.4277 (2)0.2754 (2)0.03048 (14)0.0403 (4)
C40.5886 (3)0.2201 (3)0.00919 (16)0.0499 (5)
H40.58900.12480.06750.060*
C50.7426 (3)0.3226 (3)0.04802 (16)0.0512 (5)
H50.86140.30610.03310.061*
C60.2995 (2)0.8560 (2)0.50232 (14)0.0367 (4)
C70.3599 (2)0.7110 (2)0.52526 (16)0.0451 (4)
H70.37560.61620.47010.054*
C80.3948 (3)0.7096 (3)0.62689 (17)0.0508 (5)
H80.43310.61310.64070.061*
C90.3742 (3)0.8518 (3)0.71176 (16)0.0505 (5)
H90.39940.84850.78110.061*
C100.3179 (3)0.9933 (3)0.69378 (15)0.0470 (5)
H100.30501.08640.75080.056*
C110.2784 (2)1.0008 (2)0.58805 (14)0.0374 (4)
C120.2206 (2)1.1415 (2)0.56483 (14)0.0406 (4)
H120.20701.23750.61970.049*
C130.1826 (2)1.1413 (2)0.45997 (15)0.0397 (4)
C140.1250 (3)1.2834 (3)0.43165 (18)0.0521 (5)
H140.10881.38140.48430.063*
C150.0936 (3)1.2765 (3)0.3283 (2)0.0606 (6)
H150.05771.37060.31040.073*
C160.1148 (3)1.1285 (3)0.24777 (19)0.0631 (6)
H160.09211.12630.17730.076*
C170.1677 (3)0.9888 (3)0.27050 (16)0.0528 (5)
H170.17880.89150.21590.063*
C180.2061 (2)0.9916 (2)0.37835 (14)0.0398 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0514 (3)0.0565 (3)0.0477 (3)0.0036 (2)0.0025 (2)0.0040 (2)
S10.0407 (3)0.0458 (3)0.0437 (3)0.00472 (19)0.00429 (19)0.0075 (2)
O10.0474 (8)0.0552 (9)0.0509 (8)0.0084 (7)0.0069 (6)0.0141 (7)
O20.0397 (8)0.0638 (10)0.0539 (9)0.0063 (6)0.0081 (6)0.0012 (7)
N10.0361 (8)0.0383 (8)0.0363 (8)0.0043 (6)0.0094 (6)0.0008 (7)
C10.0435 (10)0.0365 (10)0.0355 (9)0.0045 (7)0.0057 (7)0.0085 (8)
C20.0401 (9)0.0374 (10)0.0318 (9)0.0077 (7)0.0050 (7)0.0096 (8)
C30.0442 (10)0.0398 (10)0.0339 (9)0.0052 (7)0.0035 (7)0.0082 (8)
C40.0549 (12)0.0478 (12)0.0415 (10)0.0136 (9)0.0119 (9)0.0027 (9)
C50.0465 (11)0.0576 (13)0.0505 (12)0.0165 (9)0.0154 (9)0.0132 (10)
C60.0282 (8)0.0371 (10)0.0405 (10)0.0006 (6)0.0098 (7)0.0049 (8)
C70.0423 (10)0.0379 (10)0.0516 (11)0.0065 (8)0.0148 (8)0.0057 (9)
C80.0464 (11)0.0514 (12)0.0594 (13)0.0073 (9)0.0118 (9)0.0227 (11)
C90.0502 (11)0.0574 (13)0.0436 (11)0.0018 (9)0.0069 (8)0.0175 (10)
C100.0491 (11)0.0457 (11)0.0376 (10)0.0037 (8)0.0092 (8)0.0015 (9)
C110.0303 (8)0.0360 (9)0.0386 (9)0.0029 (7)0.0078 (7)0.0016 (8)
C120.0339 (9)0.0341 (10)0.0432 (10)0.0011 (7)0.0092 (7)0.0038 (8)
C130.0273 (8)0.0377 (10)0.0497 (11)0.0001 (7)0.0074 (7)0.0074 (8)
C140.0380 (10)0.0440 (12)0.0718 (14)0.0030 (8)0.0063 (9)0.0158 (11)
C150.0440 (11)0.0639 (15)0.0809 (17)0.0051 (10)0.0024 (11)0.0366 (14)
C160.0498 (12)0.0863 (18)0.0580 (14)0.0021 (11)0.0013 (10)0.0343 (14)
C170.0444 (11)0.0654 (14)0.0438 (11)0.0043 (9)0.0050 (8)0.0116 (10)
C180.0278 (8)0.0465 (11)0.0405 (10)0.0012 (7)0.0059 (7)0.0075 (8)
Geometric parameters (Å, º) top
Cl1—C31.7207 (18)C8—H80.9300
S1—C51.692 (2)C9—C101.352 (3)
S1—C21.7261 (17)C9—H90.9300
O1—C11.316 (2)C10—C111.427 (3)
O1—H10.8200C10—H100.9300
O2—C11.199 (2)C11—C121.379 (2)
N1—C181.346 (2)C12—C131.393 (2)
N1—C61.354 (2)C12—H120.9300
C1—C21.478 (3)C13—C141.421 (3)
C2—C31.368 (3)C13—C181.426 (3)
C3—C41.408 (3)C14—C151.355 (3)
C4—C51.353 (3)C14—H140.9300
C4—H40.9300C15—C161.404 (3)
C5—H50.9300C15—H150.9300
C6—C71.418 (2)C16—C171.357 (3)
C6—C111.426 (2)C16—H160.9300
C7—C81.354 (3)C17—C181.426 (3)
C7—H70.9300C17—H170.9300
C8—C91.405 (3)
C5—S1—C292.22 (9)C8—C9—H9119.6
C1—O1—H1109.5C9—C10—C11120.52 (19)
C18—N1—C6119.31 (15)C9—C10—H10119.7
O2—C1—O1125.12 (18)C11—C10—H10119.7
O2—C1—C2124.13 (17)C12—C11—C6118.43 (16)
O1—C1—C2110.75 (15)C12—C11—C10123.13 (17)
C3—C2—C1130.54 (16)C6—C11—C10118.44 (17)
C3—C2—S1109.54 (14)C11—C12—C13120.66 (17)
C1—C2—S1119.91 (13)C11—C12—H12119.7
C2—C3—C4113.99 (17)C13—C12—H12119.7
C2—C3—Cl1124.70 (15)C12—C13—C14122.99 (18)
C4—C3—Cl1121.31 (15)C12—C13—C18117.77 (16)
C5—C4—C3111.64 (19)C14—C13—C18119.23 (17)
C5—C4—H4124.2C15—C14—C13120.2 (2)
C3—C4—H4124.2C15—C14—H14119.9
C4—C5—S1112.61 (15)C13—C14—H14119.9
C4—C5—H5123.7C14—C15—C16120.6 (2)
S1—C5—H5123.7C14—C15—H15119.7
N1—C6—C7119.41 (16)C16—C15—H15119.7
N1—C6—C11121.65 (16)C17—C16—C15121.5 (2)
C7—C6—C11118.94 (16)C17—C16—H16119.2
C8—C7—C6120.47 (19)C15—C16—H16119.2
C8—C7—H7119.8C16—C17—C18119.8 (2)
C6—C7—H7119.8C16—C17—H17120.1
C7—C8—C9120.91 (19)C18—C17—H17120.1
C7—C8—H8119.5N1—C18—C17119.21 (18)
C9—C8—H8119.5N1—C18—C13122.18 (16)
C10—C9—C8120.73 (18)C17—C18—C13118.61 (17)
C10—C9—H9119.6
O2—C1—C2—C37.7 (3)C7—C6—C11—C12179.62 (14)
O1—C1—C2—C3171.99 (17)N1—C6—C11—C10179.36 (15)
O2—C1—C2—S1170.91 (14)C7—C6—C11—C100.4 (2)
O1—C1—C2—S19.4 (2)C9—C10—C11—C12179.99 (16)
C5—S1—C2—C30.03 (13)C9—C10—C11—C60.0 (3)
C5—S1—C2—C1178.87 (14)C6—C11—C12—C130.5 (2)
C1—C2—C3—C4178.94 (16)C10—C11—C12—C13179.48 (15)
S1—C2—C3—C40.2 (2)C11—C12—C13—C14179.16 (15)
C1—C2—C3—Cl11.6 (3)C11—C12—C13—C180.2 (2)
S1—C2—C3—Cl1179.68 (10)C12—C13—C14—C15178.67 (17)
C2—C3—C4—C50.4 (2)C18—C13—C14—C150.2 (3)
Cl1—C3—C4—C5179.89 (13)C13—C14—C15—C160.9 (3)
C3—C4—C5—S10.4 (2)C14—C15—C16—C170.3 (3)
C2—S1—C5—C40.25 (16)C15—C16—C17—C181.1 (3)
C18—N1—C6—C7179.75 (14)C6—N1—C18—C17179.93 (15)
C18—N1—C6—C110.5 (2)C6—N1—C18—C130.2 (2)
N1—C6—C7—C8179.02 (16)C16—C17—C18—N1178.39 (17)
C11—C6—C7—C80.7 (2)C16—C17—C18—C131.8 (3)
C6—C7—C8—C90.7 (3)C12—C13—C18—N10.1 (2)
C7—C8—C9—C100.3 (3)C14—C13—C18—N1179.06 (14)
C8—C9—C10—C110.0 (3)C12—C13—C18—C17179.95 (15)
N1—C6—C11—C120.6 (2)C14—C13—C18—C171.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the thiophene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.615 (2)159
C9—H9···Cg7i0.932.943.773 (2)150
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the thiophene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.615 (2)159.2
C9—H9···Cg7i0.932.943.773 (2)150
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H3ClO2S·C13H9N
Mr341.80
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3371 (4), 8.3286 (5), 13.3819 (8)
α, β, γ (°)107.577 (5), 97.706 (5), 93.953 (5)
V3)767.32 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.60 × 0.30 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual Source
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.813, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7182, 3516, 2722
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.02
No. of reflections3516
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

OKP thanks the UGC–SAP and UGC–BSR India for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. FP thanks the Slovenian Research Agency for financial support (P1–0230-0175), as well as the EN–FIST Centre of Excellence, Slovenia, for use of the SuperNova diffractometer

References

First citationAakeröy, C. B., Champness, S. R. & Janiak, C. (2010). CrystEngComm, 12, 22–43.  Google Scholar
First citationAghabozorg, H., Goodarzi, S., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBinder, W., Karl, N. & Stezowski, J. J. (1982). Acta Cryst. B38, 2915–2916.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571–2577.  Web of Science CSD CrossRef CAS Google Scholar
First citationDerikvand, Z., Olmstead, M. M. & Attar Gharamaleki, J. (2011). Acta Cryst. E67, o416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. (1989). In Crystal engineering: the design of organic solids. Amsterdam: Elsevier.  Google Scholar
First citationDurchheimer, W., Raether, W., Seliger, H. & Seidenath, H. (1980). Arzneim.-Forsch. Drug. Res. 30, 1041–1046.  Google Scholar
First citationGoeta, A. E., Lawrence, S. E., Meehan, M. M., O'Dowd, A. & Spalding, T. R. (2002). Polyhedron, 21, 1689–1694.  Web of Science CSD CrossRef CAS Google Scholar
First citationHa, K. (2010). Acta Cryst. E66, m1083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, o196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHull, J. W., Romer, D. R., Podhorez, D. E., Ash, M. L. & Brady, C. H. (2007). Beilstein J. Org. Chem. 3, 23.  Web of Science CrossRef PubMed Google Scholar
First citationJennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKowalska, K., Trzybiński, D. & Sikorski, A. (2015). CrystEngComm, 17, 7199–7212.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A. & Bernstein, J. (2010). CrystEngComm, 12, 2029–2033.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, A., Grobelny, P., Thakur, T. S. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 2637–2653.  Web of Science CSD CrossRef CAS Google Scholar
First citationNafisi, S., Saboury, A. A., Keramat, N., Neault, J. F. & Tajmir-Riahi, H. A. (2007). J. Mol. Struct. 827, 35–43.  Web of Science CrossRef CAS Google Scholar
First citationNgadi, L., Bsiri, N., Mahamoud, A., Galy, A. M., Galy, J. P., Soyfer, J. C., Barbe, J., Placidi, M., Rodriguez-Santiago, J. J., Mesa-Valle, C., Lombardo, R., Mascaro, C. & Osuna, A. (1993). Arzneim.-Forsch. Drug. Res. 43, 480–483.  CAS Google Scholar
First citationOdiase, I., Nicholson, C. E., Ahmad, R., Cooper, J., Yufit, D. S. & Cooper, S. J. (2015). Acta Cryst. C71, 276–283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaju, G., Vishwanath, S., Prasad, A., Patel, B. K. & Prabusankar, G. (2016). J. Mol. Struct. 1107, 291–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationSazhnikov, V. A., Khlebunov, A. A., Sazonov, S. K., Vedernikov, A. I., Safonov, A. A., Bagatur'yants, A. A., Kuz'mina, L. G., Howard, J. A. K., Gromov, S. P. & Alfimov, M. V. (2013). J. Mol. Struct. 1053, 79–88.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeaton, C. C. (2014). CrystEngComm, 16, 5878–5886.  Web of Science CSD CrossRef CAS Google Scholar
First citationShaameri, Z., Shan, N. & Jones, W. (2001a). Acta Cryst. E57, o1075–o1077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaameri, Z., Shan, N. & Jones, W. (2001b). Acta Cryst. E57, o945–o946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSienkiewicz-Gromiuk, J., Tarasiuk, B. & Mazur, L. (2016). J. Mol. Struct. 1110, 65–71.  CAS Google Scholar
First citationSloufova, I. & Slouf, M. (2000). Acta Cryst. C56, 1312–1313.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSloufova, I. & Slouf, M. (2001). Acta Cryst. C57, 248–249.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSolovyeva, E. V., Myund, L. A., Starova, G. L., Dem'yanchuk, E. M., Makarov, A. A. & Denisova, A. S. (2014). J. Mol. Struct. 1063, 235–241.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, L. H., Blagden, N., Gutmann, M. J., Kallay, A. A., Parkin, A., Seaton, C. C. & Wilson, C. C. (2010). Cryst. Growth Des. 10, 2770–2774.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYasarawan, N., Thipyapong, K. & Ruangpornvisuti, V. (2011). J. Mol. Struct. 1006, 635–641.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Q., Luo, J., Ye, L., Wang, H., Huang, B., Zhang, J., Wu, J., Zhang, S. & Tian, Y. (2014). J. Mol. Struct. 1074, 33–42.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 659-662
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds