research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 656-658

Crystal structure of trans-di­aqua­bis­­(nicotinamide-κN1)bis­­(4-nitro­benzoato-κO)manganese(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and dDepartment of Physics, Aksaray University, 68100, Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by H. Ishida, Okayama University, Japan (Received 19 March 2016; accepted 5 April 2016; online 8 April 2016)

The asymmetric unit of the title compound, [Mn(C7H4NO4)2(C6H6N2O)2(H2O)2], contains one MnII atom, one 4-nitro­benzoate (NB) anion, one nicotinamide (NA) ligand and one water mol­ecule; NA and NB each act as a monodentate ligand. The MnII atom, lying on an inversion centre, is coordinated by four O atoms and two pyridine N atoms in a distorted octa­hedral geometry. The water mol­ecules are hydrogen bonded to the carboxyl­ate O atoms. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 24.4 (3)°, while the benzene and pyridine rings are oriented at a dihedral angle of 86.63 (11)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, forming a layer parallel to the ab plane. The layers are further linked via weak C—H⋯O hydrogen bonds, a ππ stacking inter­action [centroid–centroid distance = 3.868 (2) Å] and a weak C—H⋯π inter­action, resulting in a three-dimensional network.

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. The NA ring is the reactive part of nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation–reduction reactions (You et al., 1978[You, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265-268.]). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). Transition metal complexes with biochemical mol­ecules show inter­esting physical and/or chemical properties with potential applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]).

[Scheme 1]

Crystal structures of metal complexes with benzoic acid derivatives have been reported extensively because of the varieties of their coordination modes. For example, Co and Cd complexes with 4-amino­benzoic acid (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Amiraslanov et al., 1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]; Hauptmann et al., 2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]), Co complexes with benzoic acid (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]), 4-nitro­benzoic acid (Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]) and phthalic acid (Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]), and Cu with 4-hy­droxy­benzoic acid (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]) have been described. Mn complexes closely related to the title compound, di­aqua­bis­(4-nitro­benzoato)bis­(1H-1,2,4-triazol-3-amine)­manganese (Zhang et al., 2013[Zhang, X.-Y., Liu, Z.-Y., Liu, Z.-Y., Yang, E.-C. & Zhao, X.-J. (2013). Z. Anorg. Allg. Chem. 639, 974-981.]) and di­aqua­bis­(1H-imidazole)­bis­(4-nitro­benzoato)manganese (Xu & Xu, 2004[Xu, T.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1462-m1464.]), have also been reported.

2. Structural commentary

The asymmetric unit of the title mononuclear complex contains one MnII atom (site symmetry [\overline1]), one 4-nitro­benzoate (NB) anion, one nicotinamide (NA) ligand and one water mol­ecule, all ligands coordinating in a monodentate manner. In the complex, the two carboxyl­ate O atoms (O2 and O2iii) of the two symmetry-related monodentate NB anions and the two symmetry-related water O atoms (O6 and O6iii) around the MnII atom form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination sphere is completed by the two pyridine N atoms (N2 and N2iii) of the two symmetry-related monodentate NA ligands in the axial positions [symmetry code: (iii) −x, −y, −z; Fig. 1[link]].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Intra­molecular O—H⋯O hydrogen bonds are shown as dashed lines. Unlabelled atoms are symmetry-related to labelled atoms by (−x, −y, −z).

The near equality of C—O bond lengths [C1—O1 = 1.253 (4) and C1—O2 = 1.248 (4) Å] in the carboxyl­ate group indicates delocalized bonds rather than localized single and double bonds. The Mn—O bond lengths [2.156 (2) and 2.115 (2) Å] and the Mn—N bond length [2.134 (3) Å] are close to the standard values. Atom Mn1 lies 0.4172 (1) Å above the O1/O2/C1 plane of the carboxyl­ate group. The O—Mn—O and O—Mn—N bond angles deviate slightly from the ideal value of 90°. The dihedral angle between the carboxyl­ate group (O1/O2/C1) and the adjacent benzene (C2–C7) ring is 24.4 (3)°, while the benzene ring and the pyridine (N2/C8–C12) ring are oriented at a dihedral angle of 86.63 (11)°.

3. Supra­molecular features

In the crystal, inter­molecular N—Hna⋯Ona (na = nicotinamide), N—Hna⋯Oc (c = carboxyl­ate group) and O—Hw⋯Ona (w = water) hydrogen bonds (Table 1[link]) link the mol­ecules, forming a layer parallel to the ab plane (Fig. 2[link]). In the layer, R22(8) and R42(8) ring motifs are observed. The layers are further linked via weak C—H⋯O hydrogen bonds, a weak C—H⋯π inter­action (Table 1[link]) and a ππ inter­action between the benzene rings [Cg1⋯Cg1ix = 3.868 (2) Å; symmetry code: (ix) 1 − x, −y, 1 − z, where Cg1 is the centroid of the C2–C7 ring].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N2/C8–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5i 0.90 (5) 2.07 (6) 2.898 (6) 152 (4)
N3—H3B⋯O1ii 0.90 (4) 2.19 (5) 2.923 (4) 138 (4)
O6—H61⋯O1iii 0.90 (4) 1.78 (5) 2.646 (5) 161 (4)
O6—H62⋯O5iv 0.89 (3) 2.10 (4) 2.897 (3) 148 (4)
C3—H3⋯O4v 0.93 2.59 3.456 (6) 156
C6—H6⋯O1vi 0.93 2.40 3.319 (4) 170
C12—H12⋯O3vii 0.93 2.54 3.416 (7) 157
C4—H4⋯Cg2viii 0.93 2.91 3.827 (4) 172
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) -x, -y, -z; (iv) -x+1, -y, -z; (v) x-1, y, z; (vi) x+1, y, z; (vii) x-1, y, z-1; (viii) x, y, z+1.
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed down the c axis. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds are shown as dashed lines.

4. Synthesis and crystallization

The title compound was prepared by the reaction of MnSO4·H2O (0.85 g, 25 mmol) in H2O (25 ml) and nicotinamide (1.22 g, 10 mmol) in H2O (25 ml) with sodium 4-nitro­benzoate (1.90 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colourless single crystals.

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. Atoms H61 and H62 of the water mol­ecule and atoms H3A and H3B of the NH2 group were located in a difference Fourier map, and their coordinates were refined with distance restraints of O—H = 0.85 (2) Å and N—H = 0.86 (2) Å, and with Uiso(H) = 1.5Ueq(O,N). The C-bound H atoms were positioned geometrically with C—H = 0.93 Å and were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C7H4NO4)2(C6H6N2O)2(H2O)2]
Mr 667.45
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.6051 (3), 10.0027 (4), 10.2152 (4)
α, β, γ (°) 78.067 (3), 88.430 (4), 71.746 (3)
V3) 721.45 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.53
Crystal size (mm) 0.45 × 0.35 × 0.32
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.765, 0.815
No. of measured, independent and observed [I > 2σ(I)] reflections 17255, 3595, 3475
Rint 0.027
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.178, 1.17
No. of reflections 3595
No. of parameters 217
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.00, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. The NA ring is the reactive part of nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation–reduction reactions (You et al., 1978). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). Transition metal complexes with biochemical molecules show inter­esting physical and/or chemical properties with potential applications in biological systems (Antolini et al., 1982).

Crystal structures of metal complexes with benzoic acid derivatives have been reported extensively because of the varieties of their coordination modes. For examples, Co and Cd complexes with 4-amino­benzoic acid (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000), Co complexes with benzoic acid (Catterick et al., 1974), 4-nitro­benzoic acid (Nadzhafov et al., 1981) and phthalic acid (Adiwidjaja et al., 1978), and Cu with 4-hy­droxy­benzoic acid (Shnulin et al., 1981) have been described. Mn complexes closely related to the title compound, di­aqua­bis­(4-nitro­benzoato)bis­(1H-1,2,4-triazol-3-amine)­manganese (Zhang et al., 2013) and di­aqua­bis­(1H-imidazole)­bis­(4-nitro­benzoato)manganese (Xu & Xu, 2004), have also been reported.

Structural commentary top

The asymmetric unit of the title mononuclear complex contains one 4-nitro­benzoate (NB) anion, one nicotinamide (NA) ligand and one water molecule, all ligands coordinating in a monodentate manner. In the complex, the two carboxyl­ate O atoms (O2 and O2iii) of the two symmetry-related monodentate NB anions and the two symmetry-related water O atoms (O6 and O6iii) around the MnII atom form a slightly distorted square-planar arrangement, while the slightly distorted o­cta­hedral coordination sphere is completed by the two pyridine N atoms (N2 and N2iii) of the two symmetry-related monodentate NA ligands in the axial positions [symmetry code: (iii) -x, -y, -z; Fig. 1].

The near equality of C—O bond lengths [C1—O1 = 1.253 (4) and C1—O2 = 1.248 (4) Å] in the carboxyl­ate group indicates delocalized bonds rather than localized single and double bonds. The Mn—O bond lengths [2.156 (2) and 2.115 (2) Å] and the Mn—N bond length [2.134 (3) Å] are close to the standard values. Atom Mn1 lies 0.4172 (1) Å above the O1/O2/C1 plane of the carboxyl­ate group. The O—Mn—O and O—Mn—N bond angles deviate slightly from the ideal value of 90°. The dihedral angle between the carboxyl­ate group (O1/O2/C1) and the adjacent benzene (C2–C7) ring is 24.4 (3)°, while the benzene ring and the pyridine (N2/C8–C12) ring are oriented at a dihedral angle of 86.63 (11)°.

Supra­molecular features top

In the crystal, inter­molecular N—Hna···Ona (na = nicotinamide), N—Hna···Oc (c = carboxyl­ate group) and O—Hw···Ona (w = water) hydrogen bonds (Table 1) link the molecules, forming a layer parallel to the ab plane (Fig. 2). In the layer, R22(8) and R42(8) ring motifs are observed. The layers are further linked via weak C—H···O hydrogen bonds, a weak C—H···π inter­action (Table 1) and a ππ inter­action between the benzene rings [Cg1···Cg1ix = 3.868 (2) Å; symmetry code: (ix) 1 - x, -y, 1 - z], where Cg1 is the centroid of the C2–C7 ring].

Synthesis and crystallization top

The title compound was prepared by the reaction of MnSO4·H2O (0.85 g, 25 mmol) in H2O (25 ml) and nicotinamide (1.22 g, 10 mmol) in H2O (25 ml) with sodium 4-nitro­benzoate (1.90 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colourless single crystals.

Refinement top

The experimental details including the crystal data, data collection and refinement are summarized in Table 2. Atoms H61and H62 of the water molecule and atoms H3A and H3B of the NH2 group were located in a difference Fourier map, and their coordinates were refined with distance restraints of O—H = 0.85 (2) Å and N—H = 0.86 (2) Å, and with Uiso(H) = 1.5Ueq(O, N). The C-bound H atoms were positioned geometrically with C—H = 0.93 Å and were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. The NA ring is the reactive part of nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation–reduction reactions (You et al., 1978). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). Transition metal complexes with biochemical molecules show inter­esting physical and/or chemical properties with potential applications in biological systems (Antolini et al., 1982).

Crystal structures of metal complexes with benzoic acid derivatives have been reported extensively because of the varieties of their coordination modes. For examples, Co and Cd complexes with 4-amino­benzoic acid (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000), Co complexes with benzoic acid (Catterick et al., 1974), 4-nitro­benzoic acid (Nadzhafov et al., 1981) and phthalic acid (Adiwidjaja et al., 1978), and Cu with 4-hy­droxy­benzoic acid (Shnulin et al., 1981) have been described. Mn complexes closely related to the title compound, di­aqua­bis­(4-nitro­benzoato)bis­(1H-1,2,4-triazol-3-amine)­manganese (Zhang et al., 2013) and di­aqua­bis­(1H-imidazole)­bis­(4-nitro­benzoato)manganese (Xu & Xu, 2004), have also been reported.

The asymmetric unit of the title mononuclear complex contains one 4-nitro­benzoate (NB) anion, one nicotinamide (NA) ligand and one water molecule, all ligands coordinating in a monodentate manner. In the complex, the two carboxyl­ate O atoms (O2 and O2iii) of the two symmetry-related monodentate NB anions and the two symmetry-related water O atoms (O6 and O6iii) around the MnII atom form a slightly distorted square-planar arrangement, while the slightly distorted o­cta­hedral coordination sphere is completed by the two pyridine N atoms (N2 and N2iii) of the two symmetry-related monodentate NA ligands in the axial positions [symmetry code: (iii) -x, -y, -z; Fig. 1].

The near equality of C—O bond lengths [C1—O1 = 1.253 (4) and C1—O2 = 1.248 (4) Å] in the carboxyl­ate group indicates delocalized bonds rather than localized single and double bonds. The Mn—O bond lengths [2.156 (2) and 2.115 (2) Å] and the Mn—N bond length [2.134 (3) Å] are close to the standard values. Atom Mn1 lies 0.4172 (1) Å above the O1/O2/C1 plane of the carboxyl­ate group. The O—Mn—O and O—Mn—N bond angles deviate slightly from the ideal value of 90°. The dihedral angle between the carboxyl­ate group (O1/O2/C1) and the adjacent benzene (C2–C7) ring is 24.4 (3)°, while the benzene ring and the pyridine (N2/C8–C12) ring are oriented at a dihedral angle of 86.63 (11)°.

In the crystal, inter­molecular N—Hna···Ona (na = nicotinamide), N—Hna···Oc (c = carboxyl­ate group) and O—Hw···Ona (w = water) hydrogen bonds (Table 1) link the molecules, forming a layer parallel to the ab plane (Fig. 2). In the layer, R22(8) and R42(8) ring motifs are observed. The layers are further linked via weak C—H···O hydrogen bonds, a weak C—H···π inter­action (Table 1) and a ππ inter­action between the benzene rings [Cg1···Cg1ix = 3.868 (2) Å; symmetry code: (ix) 1 - x, -y, 1 - z], where Cg1 is the centroid of the C2–C7 ring].

Synthesis and crystallization top

The title compound was prepared by the reaction of MnSO4·H2O (0.85 g, 25 mmol) in H2O (25 ml) and nicotinamide (1.22 g, 10 mmol) in H2O (25 ml) with sodium 4-nitro­benzoate (1.90 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colourless single crystals.

Refinement details top

The experimental details including the crystal data, data collection and refinement are summarized in Table 2. Atoms H61and H62 of the water molecule and atoms H3A and H3B of the NH2 group were located in a difference Fourier map, and their coordinates were refined with distance restraints of O—H = 0.85 (2) Å and N—H = 0.86 (2) Å, and with Uiso(H) = 1.5Ueq(O, N). The C-bound H atoms were positioned geometrically with C—H = 0.93 Å and were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Intramolecular O—H···O hydrogen bonds are shown as dashed lines. Unlabelled atoms are symmetry-related to labelled atoms by (-x, -y, -z).
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the c axis. Intermolecular O—H···O and N—H···O hydrogen bonds are shown as dashed lines.
trans-Diaquabis(nicotinamide-κN1)bis(4-nitrobenzoato-κO)manganese(II) top
Crystal data top
[Mn(C7H4NO4)2(C6H6N2O)2(H2O)2]Z = 1
Mr = 667.45F(000) = 343
Triclinic, P1Dx = 1.536 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6051 (3) ÅCell parameters from 9891 reflections
b = 10.0027 (4) Åθ = 2.2–28.4°
c = 10.2152 (4) ŵ = 0.53 mm1
α = 78.067 (3)°T = 296 K
β = 88.430 (4)°Prism, colourless
γ = 71.746 (3)°0.45 × 0.35 × 0.32 mm
V = 721.45 (5) Å3
Data collection top
Bruker SMART BREEZE CCD
diffractometer
3595 independent reflections
Radiation source: fine-focus sealed tube3475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 109
Tmin = 0.765, Tmax = 0.815k = 1213
17255 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0908P)2 + 0.7889P]
where P = (Fo2 + 2Fc2)/3
3595 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 1.00 e Å3
4 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Mn(C7H4NO4)2(C6H6N2O)2(H2O)2]γ = 71.746 (3)°
Mr = 667.45V = 721.45 (5) Å3
Triclinic, P1Z = 1
a = 7.6051 (3) ÅMo Kα radiation
b = 10.0027 (4) ŵ = 0.53 mm1
c = 10.2152 (4) ÅT = 296 K
α = 78.067 (3)°0.45 × 0.35 × 0.32 mm
β = 88.430 (4)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
3595 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3475 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.815Rint = 0.027
17255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0584 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 1.00 e Å3
3595 reflectionsΔρmin = 0.50 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.00000.02437 (17)
O10.1121 (4)0.1452 (4)0.2673 (3)0.0638 (7)
O20.1322 (3)0.0165 (3)0.1728 (2)0.0479 (5)
O30.4619 (6)0.2860 (8)0.6872 (5)0.147 (3)
O40.6545 (6)0.2824 (7)0.5355 (5)0.124 (2)
O50.4269 (4)0.3417 (3)0.0003 (3)0.0598 (7)
O60.2722 (3)0.0746 (3)0.0769 (3)0.0506 (6)
H610.227 (7)0.084 (6)0.154 (3)0.076*
H620.377 (4)0.135 (4)0.034 (5)0.076*
N10.5113 (5)0.2645 (5)0.5801 (4)0.0736 (11)
N20.0042 (4)0.2124 (3)0.0942 (3)0.0427 (6)
N30.3202 (5)0.5611 (4)0.1340 (4)0.0645 (9)
H3A0.424 (5)0.579 (6)0.113 (6)0.097*
H3B0.227 (6)0.623 (5)0.189 (5)0.097*
C10.0585 (4)0.0898 (3)0.2563 (3)0.0409 (6)
C20.1853 (4)0.1239 (3)0.3472 (3)0.0406 (6)
C30.1181 (5)0.1682 (5)0.4643 (4)0.0533 (8)
H30.00020.16850.49020.064*
C40.2265 (5)0.2118 (5)0.5428 (4)0.0605 (10)
H40.18350.24020.62200.073*
C50.3994 (5)0.2121 (4)0.5000 (4)0.0516 (8)
C60.4712 (5)0.1680 (4)0.3862 (3)0.0489 (7)
H60.58880.16960.36010.059*
C70.3619 (5)0.1205 (4)0.3104 (3)0.0455 (7)
H70.40880.08630.23440.055*
C80.1370 (4)0.2581 (3)0.0689 (3)0.0417 (6)
H80.23430.19490.01190.050*
C90.1454 (4)0.3939 (3)0.1231 (3)0.0428 (6)
C100.0002 (6)0.4870 (4)0.2088 (4)0.0617 (10)
H100.00030.57960.24750.074*
C110.1449 (6)0.4407 (4)0.2358 (5)0.0666 (11)
H110.24330.50150.29320.080*
C120.1424 (5)0.3030 (4)0.1765 (4)0.0501 (7)
H120.24090.27240.19480.060*
C130.3087 (5)0.4309 (3)0.0821 (4)0.0464 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0212 (3)0.0226 (3)0.0332 (3)0.01052 (18)0.00068 (17)0.00816 (18)
O10.0382 (12)0.091 (2)0.0654 (16)0.0140 (13)0.0016 (11)0.0323 (15)
O20.0433 (12)0.0484 (12)0.0548 (13)0.0132 (9)0.0050 (9)0.0175 (10)
O30.081 (3)0.287 (7)0.131 (4)0.070 (4)0.026 (3)0.155 (5)
O40.087 (3)0.220 (6)0.126 (4)0.093 (3)0.027 (3)0.102 (4)
O50.0565 (15)0.0446 (12)0.0814 (18)0.0224 (11)0.0182 (13)0.0067 (12)
O60.0376 (11)0.0527 (13)0.0614 (14)0.0119 (10)0.0006 (10)0.0152 (11)
N10.0497 (18)0.104 (3)0.079 (2)0.0200 (19)0.0025 (16)0.052 (2)
N20.0390 (12)0.0402 (12)0.0517 (14)0.0156 (10)0.0025 (10)0.0104 (11)
N30.067 (2)0.0450 (16)0.087 (2)0.0305 (15)0.0144 (18)0.0052 (15)
C10.0398 (14)0.0415 (14)0.0414 (14)0.0142 (12)0.0017 (11)0.0062 (11)
C20.0383 (14)0.0410 (14)0.0411 (14)0.0117 (11)0.0015 (11)0.0066 (11)
C30.0396 (15)0.074 (2)0.0493 (17)0.0174 (15)0.0056 (13)0.0201 (16)
C40.0453 (18)0.092 (3)0.0505 (18)0.0181 (18)0.0062 (14)0.0341 (19)
C50.0430 (16)0.061 (2)0.0534 (18)0.0133 (14)0.0036 (13)0.0231 (15)
C60.0385 (15)0.0613 (19)0.0509 (17)0.0173 (14)0.0034 (13)0.0179 (15)
C70.0420 (15)0.0530 (17)0.0441 (15)0.0149 (13)0.0043 (12)0.0162 (13)
C80.0394 (14)0.0385 (14)0.0499 (16)0.0154 (11)0.0037 (12)0.0091 (12)
C90.0440 (15)0.0358 (13)0.0514 (16)0.0144 (12)0.0007 (12)0.0124 (12)
C100.065 (2)0.0387 (16)0.078 (3)0.0181 (16)0.0145 (19)0.0012 (16)
C110.057 (2)0.0495 (19)0.085 (3)0.0138 (16)0.027 (2)0.0046 (18)
C120.0424 (16)0.0481 (17)0.0606 (19)0.0155 (13)0.0095 (14)0.0097 (14)
C130.0467 (16)0.0386 (14)0.0586 (18)0.0171 (12)0.0001 (13)0.0144 (13)
Geometric parameters (Å, º) top
Mn1—O22.115 (2)C2—C71.377 (4)
Mn1—O2i2.115 (2)C3—C41.385 (5)
Mn1—O62.156 (2)C3—H30.9300
Mn1—O6i2.156 (2)C4—H40.9300
Mn1—N22.134 (3)C5—N11.471 (5)
Mn1—N2i2.134 (3)C5—C41.375 (5)
O1—C11.253 (4)C6—C51.368 (5)
O2—C11.248 (4)C6—C71.397 (5)
O3—N11.187 (5)C6—H60.9300
O4—N11.219 (5)C7—H70.9300
O5—C131.238 (4)C8—C91.377 (4)
O6—H610.903 (19)C8—H80.9300
O6—H620.892 (19)C9—C101.389 (5)
N2—C81.342 (4)C9—C131.495 (4)
N2—C121.330 (4)C10—C111.375 (6)
N3—C131.330 (4)C10—H100.9300
N3—H3A0.90 (2)C11—H110.9300
N3—H3B0.90 (2)C12—C111.380 (5)
C2—C11.515 (4)C12—H120.9300
C2—C31.390 (4)
O2i—Mn1—O2180.00 (7)C2—C3—H3119.8
O2—Mn1—O687.19 (10)C4—C3—C2120.3 (3)
O2i—Mn1—O692.81 (10)C4—C3—H3119.8
O2—Mn1—O6i92.81 (10)C3—C4—H4121.0
O2i—Mn1—O6i87.19 (10)C5—C4—C3118.1 (3)
O2—Mn1—N289.98 (10)C5—C4—H4121.0
O2i—Mn1—N290.02 (10)C4—C5—N1118.1 (3)
O2—Mn1—N2i90.02 (10)C6—C5—N1118.5 (3)
O2i—Mn1—N2i89.98 (10)C6—C5—C4123.4 (3)
O6—Mn1—O6i180.00 (13)C5—C6—C7117.7 (3)
N2—Mn1—O687.00 (10)C5—C6—H6121.1
N2i—Mn1—O693.00 (10)C7—C6—H6121.1
N2—Mn1—O6i93.00 (10)C2—C7—C6120.6 (3)
N2i—Mn1—O6i87.00 (10)C2—C7—H7119.7
N2i—Mn1—N2180.00 (7)C6—C7—H7119.7
C1—O2—Mn1126.2 (2)N2—C8—C9123.4 (3)
Mn1—O6—H6193 (3)N2—C8—H8118.3
Mn1—O6—H62129 (3)C9—C8—H8118.3
H61—O6—H62124 (5)C8—C9—C10117.7 (3)
O3—N1—O4121.7 (4)C8—C9—C13117.2 (3)
O3—N1—C5119.3 (4)C10—C9—C13125.1 (3)
O4—N1—C5119.0 (4)C9—C10—H10120.4
C8—N2—Mn1119.1 (2)C11—C10—C9119.3 (3)
C12—N2—Mn1122.8 (2)C11—C10—H10120.4
C12—N2—C8118.1 (3)C10—C11—C12119.1 (3)
C13—N3—H3A117 (4)C10—C11—H11120.4
C13—N3—H3B118 (4)C12—C11—H11120.4
H3A—N3—H3B125 (5)N2—C12—C11122.4 (3)
O1—C1—C2116.4 (3)N2—C12—H12118.8
O2—C1—O1126.0 (3)C11—C12—H12118.8
O2—C1—C2117.5 (3)O5—C13—N3122.0 (3)
C3—C2—C1119.5 (3)O5—C13—C9119.8 (3)
C7—C2—C1120.5 (3)N3—C13—C9118.2 (3)
C7—C2—C3119.9 (3)
O6—Mn1—O2—C1160.3 (3)C7—C2—C3—C41.4 (6)
O6i—Mn1—O2—C119.7 (3)C1—C2—C7—C6172.5 (3)
N2—Mn1—O2—C173.3 (3)C3—C2—C7—C63.2 (5)
N2i—Mn1—O2—C1106.7 (3)C2—C3—C4—C51.0 (6)
O2—Mn1—N2—C834.5 (2)C4—C5—N1—O310.2 (8)
O2i—Mn1—N2—C8145.5 (2)C4—C5—N1—O4171.0 (5)
O2—Mn1—N2—C12144.8 (3)C6—C5—N1—O3170.6 (6)
O2i—Mn1—N2—C1235.2 (3)C6—C5—N1—O48.1 (7)
O6—Mn1—N2—C852.7 (2)N1—C5—C4—C3177.4 (4)
O6i—Mn1—N2—C8127.3 (2)C6—C5—C4—C31.8 (7)
O6—Mn1—N2—C12128.0 (3)C7—C6—C5—N1179.1 (4)
O6i—Mn1—N2—C1252.0 (3)C7—C6—C5—C40.0 (6)
Mn1—O2—C1—O114.1 (5)C5—C6—C7—C22.5 (5)
Mn1—O2—C1—C2161.6 (2)N2—C8—C9—C100.4 (5)
Mn1—N2—C8—C9178.9 (2)N2—C8—C9—C13178.0 (3)
C12—N2—C8—C90.4 (5)C8—C9—C10—C110.1 (6)
Mn1—N2—C12—C11179.2 (3)C13—C9—C10—C11178.3 (4)
C8—N2—C12—C110.1 (6)C8—C9—C13—O51.5 (5)
C3—C2—C1—O122.0 (5)C8—C9—C13—N3179.5 (3)
C3—C2—C1—O2161.8 (3)C10—C9—C13—O5176.8 (4)
C7—C2—C1—O1153.7 (3)C10—C9—C13—N32.2 (6)
C7—C2—C1—O222.4 (4)C9—C10—C11—C120.3 (7)
C1—C2—C3—C4174.4 (4)N2—C12—C11—C100.3 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5ii0.90 (5)2.07 (6)2.898 (6)152 (4)
N3—H3B···O1iii0.90 (4)2.19 (5)2.923 (4)138 (4)
O6—H61···O1i0.90 (4)1.78 (5)2.646 (5)161 (4)
O6—H62···O5iv0.89 (3)2.10 (4)2.897 (3)148 (4)
C3—H3···O4v0.932.593.456 (6)156
C6—H6···O1vi0.932.403.319 (4)170
C12—H12···O3vii0.932.543.416 (7)157
C4—H4···Cg2viii0.932.913.827 (4)172
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x1, y, z1; (viii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C8–C12 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5i0.90 (5)2.07 (6)2.898 (6)152 (4)
N3—H3B···O1ii0.90 (4)2.19 (5)2.923 (4)138 (4)
O6—H61···O1iii0.90 (4)1.78 (5)2.646 (5)161 (4)
O6—H62···O5iv0.89 (3)2.10 (4)2.897 (3)148 (4)
C3—H3···O4v0.932.593.456 (6)156
C6—H6···O1vi0.932.403.319 (4)170
C12—H12···O3vii0.932.543.416 (7)157
C4—H4···Cg2viii0.932.913.827 (4)172
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y, z; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x1, y, z1; (viii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C7H4NO4)2(C6H6N2O)2(H2O)2]
Mr667.45
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6051 (3), 10.0027 (4), 10.2152 (4)
α, β, γ (°)78.067 (3), 88.430 (4), 71.746 (3)
V3)721.45 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.45 × 0.35 × 0.32
Data collection
DiffractometerBruker SMART BREEZE CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.765, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
17255, 3595, 3475
Rint0.027
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.178, 1.17
No. of reflections3595
No. of parameters217
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.00, 0.50

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, T.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1462–m1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265–268.  CrossRef CAS Web of Science Google Scholar
First citationZhang, X.-Y., Liu, Z.-Y., Liu, Z.-Y., Yang, E.-C. & Zhao, X.-J. (2013). Z. Anorg. Allg. Chem. 639, 974–981.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 656-658
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds