research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 760-763

Crystal structure of bis­­(aceto­phenone 4-benzoyl­thio­semicarbazonato-κ2N1,S)nickel(II)

aDepartment of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia, bDepartment of Chemistry, School of Science, Faculty of Science & Education, University of Sulaimani, Kurdistan Region, Iraq, cCentre for Sustainable Nanomaterials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
*Correspondence e-mail: mustaqim@usm.my

Edited by T. J. Prior, University of Hull, England (Received 19 April 2016; accepted 23 April 2016; online 29 April 2016)

In the asymmetric unit of the title complex, [Ni(C16H14N3OS)2], the nickel ion is tetra­coordinated in a distorted square-planar geometry by two independent mol­ecules of the ligand which act as mononegative bidentate N,S-donors and form two five-membered chelate rings. The ligands are in trans (E) conformations with respect to the C=N bonds. The close approach of hydrogen atoms to the Ni2+ atom suggests anagostic inter­actions (Ni⋯H—C) are present. The crystal structure is built up by a network of two C—H⋯O inter­actions. One of the inter­actions forms inversion dimers and the other links the mol­ecules into infinite chains parallel to [100]. In addition, a weak C—H⋯π inter­action is also present.

1. Chemical context

Thio­semicarbazones containing N and S donor atoms have been widely used in metal coordination chemistry due to their structural flexibility and versatility (Pelosi et al., 2010[Pelosi, G., Bisceglie, F., Bignami, F., Ronzi, P., Schiavone, P., Re, M. C., Casoli, C. & Pilotti, E. (2010). J. Med. Chem. 53, 8765-8769.]; Yousef et al., 2013[Yousef, T. A., Abu El-Reash, G. M., Al-Jahdali, M. & El-Rakhawy, E. R. (2013). J. Mol. Struct. 1053, 15-21.]; Jagadeesh et al., 2015[Jagadeesh, M., Lavanya, M., Kalangi, S. K., Sarala, Y., Ramachandraiah, C. & Reddy, A. V. (2015). Spectrochim. Acta Part A, 135, 180-184.]). The chemistry of transition metal complexes of thio­semicarbazones has gained significant attention due to their potential medicinal applications (Pelosi et al., 2010[Pelosi, G., Bisceglie, F., Bignami, F., Ronzi, P., Schiavone, P., Re, M. C., Casoli, C. & Pilotti, E. (2010). J. Med. Chem. 53, 8765-8769.]; Li et al., 2012[Li, M. X., Zhang, L. Z., Yang, M., Niu, J. Y. & Zhou, J. (2012). Bioorg. Med. Chem. Lett. 22, 2418-2423.]; Manikandan et al., 2014[Manikandan, R., Viswanathamurthi, P., Velmurugan, K., Nandhakumar, R., Hashimoto, T. & Endo, A. (2014). J. Photochem. Photobiol. B, 130, 205-216.]). The variable mode of binding of thio­semicarbazone towards nickel has encouraged us to explore its coordination chemistry further since nickel has the ability to take up different coord­ination environments. Nickel complexes are known to catalyse carbon–carbon cross-coupling and other reactions (Suganthy et al., 2013[Suganthy, P. K., Prabhu, R. N. & Sridevi, V. S. (2013). Tetrahedron Lett. 54, 5695-5698.]; Wang et al., 2014[Wang, J., Zong, Y., Wei, S. & Pan, Y. (2014). Appl. Organomet. Chem. 28, 351-353.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex (I)[link] with the numbering scheme is shown in Fig. 1[link]. The nickel ion is tetra-coordinated in a square-planar geometry by two crystallographically independent mol­ecules of the ligand which act as mononegative bidentate N,S-donors and form two five-membered chelate rings. The ligands are in trans (E) conformations with respect to the C7=N1 and C23=N4 bonds, as evidenced by the torsion angles N2—N1—C7—C6 = −171.0 (2) and N5—N4—C23—C22 = −171.8 (2)°, respectively. This is in close agreement with previously reported data (Sampath et al., 2013[Sampath, K., Sathiyaraj, S., Raja, G. & Jayabalakrishnan, C. (2013). J. Mol. Struct. 1046, 82-91.], Suganthy et al., 2013[Suganthy, P. K., Prabhu, R. N. & Sridevi, V. S. (2013). Tetrahedron Lett. 54, 5695-5698.]). A remarkable tetra­hedrally distorted square-planar coordination geometry is shown by the nickel metal ion, with the two ligands displaying a less common cis N,S-chelation mode (de Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, 101-103.]). The Ni—S and Ni—N bond lengths (Table 1[link]) and the N1—Ni1—S2 and N4—Ni1-S1 bond angle of 159.86 (7) and 159.67 (7)°, respectively, confirm the distortion from a typical coordination geometry.

Table 1
Selected geometric parameters (Å, °)

Ni1—N4 1.922 (2) S1—C9 1.728 (3)
Ni1—N1 1.928 (2) S2—C25 1.735 (3)
Ni1—S2 2.1489 (10) N1—C7 1.293 (3)
Ni1—S1 2.1518 (10) N4—C23 1.294 (3)
       
N4—Ni1—N1 101.23 (10) N4—Ni1—S1 159.67 (7)
N4—Ni1—S2 86.18 (7) N1—Ni1—S1 85.99 (7)
N1—Ni1—S2 159.86 (7) S2—Ni1—S1 93.44 (4)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.

Upon chelation to the NiII ion, the ligands underwent deprotonation from the tautomeric thiol­ates and their negative charges are delocalized over atoms N1–N2–C9–S1 and N4–N5–C22–S2. Consequently, the bond lengths S1—C9 in one ligand and S2—C25 in the other ligand are 1.728 (3) and 1.735 (3) Å, respectively, which are consistent with single-bond character (Sankaraperumal et al., 2013[Sankaraperumal, A., Karthikeyan, J., Nityananda Shetty, A. & Lakshmisundaram, R. (2013). Polyhedron, 50, 264-269.]). Furthermore, the Ni—N [1.922 (2) and 1.928 (2) Å] and Ni—S bond lengths [range 2.1489 (10) and 2.1518 (10) Å] are consistent with those in similar reported compounds. The S—C [1.728 and 1.735 (3)Å] and N—C [1.293 (3) and 1.294 (3) Å] bond lengths of the ligand are consistent with literature values (Sankaraperumal et al., 2013[Sankaraperumal, A., Karthikeyan, J., Nityananda Shetty, A. & Lakshmisundaram, R. (2013). Polyhedron, 50, 264-269.], de Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, 101-103.]).

Notably, two anagostic inter­actions in the trans-arrangement are observed in the title complex between the nickel(II) ion and the aromatic C—H groups (Fig. 2[link]). The Ni1⋯H1A and Ni1⋯H17A distances are 2.616 and 2.527 Å, respectively, which are shorter than the van der Waals radii sum for Ni (1.63 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) and H (1.10 Å; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). In addition, the Ni1—H1A—C1 and Ni1—H17A—C17 bond angles are 109.6 and 112.7°, respectively. These observed values of contact distances and bond angles fall in the range for anagostic inter­actions reported by Brookhart et al. (2007[Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908-6914.]). Similar observations have been reported recently by de Oliveira et al. (2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, 101-103.]).

[Figure 2]
Figure 2
Two anagostic inter­actions (dashed lines) between the nickel(II) ion and the aromatic C—H groups.

3. Supra­molecular features

The crystal structure of (I)[link] contains a network of C—H⋯O inter­actions (Table 2[link]). First the inter­action C16—H16A⋯O1 links pairs of mol­ecules to form inversion dimers enclosing centrosymmetric R22(10) ring motifs, as shown in Fig. 3[link]. These dimers are further linked by C21—H21A⋯O2 inter­actions, resulting an infinite chains along [100] (Fig. 4[link]). In addition, a C—H⋯π inter­action is also present (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C27–C32 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O1i 0.95 2.51 3.306 (5) 141
C21—H21A⋯O2ii 0.95 2.60 3.522 (4) 165
C19—H19ACg1iii 0.95 2.86 3.400 (4) 117
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z.
[Figure 3]
Figure 3
Inversion dimers found in complex (I)[link], formed by C—H⋯O hydrogen bonds (dashed lines; see Table 2[link]).
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of complex (I)[link], showing the infinite chain [100] formed by C—H⋯O inter­action (dashed lines; see Table 2[link]). H atoms not involved in the hydrogen bonding have been omitted for clarity.

4. Synthesis and crystallization

The title complex was prepared by adding a solution of aceto­phenone-4-benzoyl-3-thio­semicarbazone (75 mg; 0.25 mmol) in di­chloro­methane (10 mL) dropwise to a stirred solution of nickel(II) nitrate hexa­hydrate (47.5 mg; 0.26 mmol) in 2-propanol (10 mL) in a small beaker. The resulting mixture solution was stirred continuously for 1 h at 318–323 K. The resultant green precipitate was separated by vacuum filtration, washed with 2-propanol and then with ether, and dried in a vacuum desiccator over dry silica gel. Single crystals suitable for X-ray analysis were obtained after slow evaporation of a di­chloro­methane solution saturated with 2-propanol. Yield; 52.5 mg, 65%. Melting point: 521–523 K.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms attached to nitro­gen were located in difference Fourier maps and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). A rotating group model was applied to the methyl groups.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C16H14N3OS)2]
Mr 651.43
Crystal system, space group Monoclinic, P21/n
Temperature (K) 297
a, b, c (Å) 10.220 (3), 15.468 (5), 19.151 (6)
β (°) 92.150 (5)
V3) 3025.1 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.19 × 0.18 × 0.09
 
Data collection
Diffractometer Bruker APEX DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 43914, 5893, 4635
Rint 0.070
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.100, 1.05
No. of reflections 5893
No. of parameters 398
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Thio­semicarbazones containing N and S donor atoms have been widely used in metal coordination chemistry due to their structural flexibility and versatility (Pelosi et al. 2010; Yousef et al. 2013; Jagadeesh et al. 2015). The chemistry of transition metal complexes of thio­semicarbazones has gained significant attention due to their potential medicinal applications (Pelosi et al. 2010; Li et al. 2012; Manikandan et al. 2014). The variable mode of binding of thio­semicarbazone towards nickel has encouraged us to explore its coordination chemistry further since nickel has the ability to take up different coordination environments. Nickel complexes are known to catalyse carbon–carbon cross-coupling and other reactions (Suganthy et al. 2013; Wang et al. 2014).

Structural commentary top

The molecular structure of the title complex (I) with the numbering scheme is shown in Fig. 1. The nickel ion is tetra-coordinated in a square-planar geometry by two crystallographically independent molecules of the ligand which act as mononegative bidentate N,S-donors and form two five-membered chelate rings. The ligands are in trans (E) conformations with respect to the C7N1 and C23N4 bonds, as evidenced by the torsion angles N2—N1—C7—C6 = -171.0 (2) and N5—N4—C23—C22 = -171.8 (2)°, respectively. This is in close agreement with previously reported data (Sampath et al., 2013, Suganthy et al., 2013). A remarkable tetra­hedrally distorted square-planar coordination geometry is shown by the nickel metal ion, with the two ligands displaying a less common cis N,S-chelation mode (de Oliveira et al., 2014). The Ni—S and Ni—N bond lengths (Table 1) and the N1—Ni1—S2 and N4—Ni1—S1 bond angle of 159.86 (7) and 159.67 (7)°, respectively, confirm the distortion from a typical coordination geometry.

Upon chelation to the NiII ion, the ligands underwent deprotonation from the tautomeric thiol­ates and their negative charges were delocalized over atoms N1–N2–C9–S1 and N4–N5–C22–S2. Consequently, the bond lengths S1—C9 in one ligand and S2—C25 in the other ligand are 1.728 (3) and 1.735 (3) Å, respectively, which are consistent with single-bond character (Sankaraperumal et al., 2013). Furthermore, the Ni—N [1.922 (2) and 1.928 (2) Å] and Ni—S bond lengths [range 2.1489 (10) and 2.1518 (10) Å] are consistent with those in similar reported compounds. The S—C [1.728 and 1.735 (3)Å] and N—C [1.293 (3) and 1.294 (3) Å] bond lengths of the ligand are consistent with literature values (Sankaraperumal et al., 2013, de Oliveira et al., 2014).

Notably, two anagostic inter­actions in the trans-arrangement are observed in the title complex between the nickel(II) ion and the aromatic C—H groups (Fig. 2). The Ni1···H1A and Ni1···H17A distances are 2.616 and 2.527 Å, respectively, which are shorter than the van der Waals radii sum for Ni (1.63 Å; Bondi 1964) and H (1.10 Å; Rowland & Taylor, 1996). In addition, the Ni1—H1A—C1 and Ni1—H17A—C17 bond angles are 109.6 and 112.7°, respectively. These observed values of contact distances and bond angles fall in the range for anagostic inter­actions reported by Brookhart et al. (2007). Similar observations have been reported recently by de Oliveira et al. (2014).

Supra­molecular features top

The crystal structure of (I) contains a network of C—H···O inter­actions (Table 2). First the inter­action C16—H16A···O1 links pairs of molecules to form inversion dimers enclosing centrosymmetric R22(10) ring motifs, as shown in Fig. 3. These dimers are further linked by C21—H21A···O2 inter­actions, resulting an infinite chains along [100] (Fig. 4). In addition, a C—H···π inter­action is also present (Table 2).

Synthesis and crystallization top

The title complex was prepared by adding a solution of aceto­phenone-4-benzoyl-3-thio­semicarbazone (75 mg; 0.25 mmol) in di­chloro­methane (10 mL) dropwise to a stirred solution of nickel(II) nitrate hexahydrate (47.5 mg; 0.26 mmol) in 2-propanol (10 mL) in a small beaker. The resulting mixture solution was stirred continuously for 1 h at 318–323 K. The resultant green precipitate was separated by vacuum filtration, washed with 2-propanol and then with ether, and dried in a vacuum desiccator over dry silica gel. Single crystals suitable for X-ray analysis were obtained after slow evaporation of a di­chloro­methane solution saturated with 2-propanol. Yield; 52.5 mg, 65%. Melting point: 521–523 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms attached to nitro­gen were located in difference Fourier maps and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). A rotating group model was applied to the methyl groups.

Structure description top

Thio­semicarbazones containing N and S donor atoms have been widely used in metal coordination chemistry due to their structural flexibility and versatility (Pelosi et al. 2010; Yousef et al. 2013; Jagadeesh et al. 2015). The chemistry of transition metal complexes of thio­semicarbazones has gained significant attention due to their potential medicinal applications (Pelosi et al. 2010; Li et al. 2012; Manikandan et al. 2014). The variable mode of binding of thio­semicarbazone towards nickel has encouraged us to explore its coordination chemistry further since nickel has the ability to take up different coordination environments. Nickel complexes are known to catalyse carbon–carbon cross-coupling and other reactions (Suganthy et al. 2013; Wang et al. 2014).

The molecular structure of the title complex (I) with the numbering scheme is shown in Fig. 1. The nickel ion is tetra-coordinated in a square-planar geometry by two crystallographically independent molecules of the ligand which act as mononegative bidentate N,S-donors and form two five-membered chelate rings. The ligands are in trans (E) conformations with respect to the C7N1 and C23N4 bonds, as evidenced by the torsion angles N2—N1—C7—C6 = -171.0 (2) and N5—N4—C23—C22 = -171.8 (2)°, respectively. This is in close agreement with previously reported data (Sampath et al., 2013, Suganthy et al., 2013). A remarkable tetra­hedrally distorted square-planar coordination geometry is shown by the nickel metal ion, with the two ligands displaying a less common cis N,S-chelation mode (de Oliveira et al., 2014). The Ni—S and Ni—N bond lengths (Table 1) and the N1—Ni1—S2 and N4—Ni1—S1 bond angle of 159.86 (7) and 159.67 (7)°, respectively, confirm the distortion from a typical coordination geometry.

Upon chelation to the NiII ion, the ligands underwent deprotonation from the tautomeric thiol­ates and their negative charges were delocalized over atoms N1–N2–C9–S1 and N4–N5–C22–S2. Consequently, the bond lengths S1—C9 in one ligand and S2—C25 in the other ligand are 1.728 (3) and 1.735 (3) Å, respectively, which are consistent with single-bond character (Sankaraperumal et al., 2013). Furthermore, the Ni—N [1.922 (2) and 1.928 (2) Å] and Ni—S bond lengths [range 2.1489 (10) and 2.1518 (10) Å] are consistent with those in similar reported compounds. The S—C [1.728 and 1.735 (3)Å] and N—C [1.293 (3) and 1.294 (3) Å] bond lengths of the ligand are consistent with literature values (Sankaraperumal et al., 2013, de Oliveira et al., 2014).

Notably, two anagostic inter­actions in the trans-arrangement are observed in the title complex between the nickel(II) ion and the aromatic C—H groups (Fig. 2). The Ni1···H1A and Ni1···H17A distances are 2.616 and 2.527 Å, respectively, which are shorter than the van der Waals radii sum for Ni (1.63 Å; Bondi 1964) and H (1.10 Å; Rowland & Taylor, 1996). In addition, the Ni1—H1A—C1 and Ni1—H17A—C17 bond angles are 109.6 and 112.7°, respectively. These observed values of contact distances and bond angles fall in the range for anagostic inter­actions reported by Brookhart et al. (2007). Similar observations have been reported recently by de Oliveira et al. (2014).

The crystal structure of (I) contains a network of C—H···O inter­actions (Table 2). First the inter­action C16—H16A···O1 links pairs of molecules to form inversion dimers enclosing centrosymmetric R22(10) ring motifs, as shown in Fig. 3. These dimers are further linked by C21—H21A···O2 inter­actions, resulting an infinite chains along [100] (Fig. 4). In addition, a C—H···π inter­action is also present (Table 2).

Synthesis and crystallization top

The title complex was prepared by adding a solution of aceto­phenone-4-benzoyl-3-thio­semicarbazone (75 mg; 0.25 mmol) in di­chloro­methane (10 mL) dropwise to a stirred solution of nickel(II) nitrate hexahydrate (47.5 mg; 0.26 mmol) in 2-propanol (10 mL) in a small beaker. The resulting mixture solution was stirred continuously for 1 h at 318–323 K. The resultant green precipitate was separated by vacuum filtration, washed with 2-propanol and then with ether, and dried in a vacuum desiccator over dry silica gel. Single crystals suitable for X-ray analysis were obtained after slow evaporation of a di­chloro­methane solution saturated with 2-propanol. Yield; 52.5 mg, 65%. Melting point: 521–523 K.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms attached to nitro­gen were located in difference Fourier maps and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Two anagostic interactions (dashed lines) between the nickel(II) ion and the aromatic C—H groups.
[Figure 3] Fig. 3. Inversion dimers found in complex (I), formed by C—H···O hydrogen bonds (dashed lines; see Table 2).
[Figure 4] Fig. 4. A view along the c axis of the crystal packing of complex (I), showing the infinite chain [100] formed by C—H···O interaction (dashed lines; see Table 2). H atoms not involved in the hydrogen bonding have been omitted for clarity.
Bis(acetophenone 4-benzoylthiosemicarbazonato-κ2N1,S)nickel(II) top
Crystal data top
[Ni(C16H14N3OS)2]F(000) = 1352
Mr = 651.43Dx = 1.430 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.220 (3) ÅCell parameters from 9846 reflections
b = 15.468 (5) Åθ = 2.2–30.1°
c = 19.151 (6) ŵ = 0.82 mm1
β = 92.150 (5)°T = 297 K
V = 3025.1 (17) Å3Block, dark green
Z = 40.19 × 0.18 × 0.09 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4635 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
φ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
k = 1919
43914 measured reflectionsl = 2323
5893 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0315P)2 + 3.0091P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5893 reflectionsΔρmax = 0.46 e Å3
398 parametersΔρmin = 0.38 e Å3
Crystal data top
[Ni(C16H14N3OS)2]V = 3025.1 (17) Å3
Mr = 651.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.220 (3) ŵ = 0.82 mm1
b = 15.468 (5) ÅT = 297 K
c = 19.151 (6) Å0.19 × 0.18 × 0.09 mm
β = 92.150 (5)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5893 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4635 reflections with I > 2σ(I)
Rint = 0.070
43914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.46 e Å3
5893 reflectionsΔρmin = 0.38 e Å3
398 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.38656 (3)0.38363 (2)0.14831 (2)0.03092 (11)
S10.29568 (8)0.25816 (5)0.14900 (5)0.0468 (2)
S20.20856 (7)0.44818 (5)0.11538 (4)0.03977 (19)
O10.4015 (4)0.09249 (17)0.07102 (13)0.0989 (12)
O20.0116 (2)0.58787 (16)0.14021 (16)0.0740 (8)
N10.5206 (2)0.33342 (14)0.20917 (11)0.0313 (5)
N20.5355 (2)0.24301 (14)0.20848 (12)0.0359 (5)
N30.4341 (3)0.11462 (16)0.18572 (14)0.0417 (6)
N40.4758 (2)0.48357 (14)0.11409 (11)0.0323 (5)
N50.4058 (2)0.56192 (15)0.10985 (12)0.0363 (6)
N60.2077 (3)0.62374 (18)0.09826 (14)0.0437 (7)
C10.4607 (3)0.4993 (2)0.27376 (15)0.0421 (7)
H1A0.38640.46260.26910.051*
C20.4439 (4)0.5856 (2)0.28904 (18)0.0600 (10)
H2A0.35850.60810.29490.072*
C30.5504 (5)0.6388 (2)0.2958 (2)0.0709 (12)
H3A0.53880.69830.30610.085*
C40.6732 (5)0.6070 (2)0.2879 (2)0.0708 (12)
H4A0.74680.64440.29240.085*
C50.6910 (3)0.5205 (2)0.27322 (18)0.0532 (9)
H5A0.77700.49840.26870.064*
C60.5840 (3)0.46575 (18)0.26511 (14)0.0351 (6)
C70.6017 (3)0.37289 (18)0.25164 (14)0.0327 (6)
C80.7109 (3)0.3267 (2)0.28965 (17)0.0496 (8)
H8A0.75280.36570.32410.074*
H8B0.77550.30790.25630.074*
H8C0.67620.27610.31360.074*
C90.4336 (3)0.20575 (18)0.18243 (14)0.0362 (7)
C100.4225 (4)0.0628 (2)0.12850 (16)0.0483 (8)
C110.4392 (3)0.03163 (18)0.14117 (15)0.0383 (7)
C120.4104 (3)0.07032 (19)0.20340 (16)0.0422 (7)
H12A0.38230.03620.24120.051*
C130.4223 (3)0.1588 (2)0.21092 (19)0.0529 (9)
H13A0.40060.18540.25370.063*
C140.4651 (3)0.2085 (2)0.1574 (2)0.0537 (9)
H14A0.47270.26940.16290.064*
C150.4970 (4)0.1705 (2)0.09600 (18)0.0558 (9)
H15A0.52910.20470.05910.067*
C160.4826 (4)0.0828 (2)0.08766 (17)0.0568 (9)
H16A0.50280.05690.04440.068*
C170.6155 (3)0.3332 (2)0.06147 (14)0.0391 (7)
H17A0.52430.33190.04980.047*
C180.6894 (3)0.2592 (2)0.05372 (15)0.0445 (8)
H18A0.64880.20730.03750.053*
C190.8210 (3)0.2609 (2)0.06944 (16)0.0495 (8)
H19A0.87200.21010.06430.059*
C200.8790 (3)0.3359 (2)0.09259 (17)0.0522 (9)
H20A0.97060.33690.10320.063*
C210.8063 (3)0.4102 (2)0.10076 (16)0.0451 (8)
H21A0.84810.46190.11640.054*
C220.6723 (3)0.40955 (19)0.08613 (14)0.0344 (6)
C230.5946 (3)0.48889 (18)0.09338 (14)0.0344 (6)
C240.6553 (3)0.5734 (2)0.07503 (18)0.0488 (8)
H24A0.69760.56800.03010.073*
H24B0.72080.58950.11140.073*
H24C0.58740.61800.07150.073*
C250.2822 (3)0.54878 (18)0.10913 (14)0.0337 (6)
C260.0801 (3)0.6392 (2)0.11104 (17)0.0443 (8)
C270.0329 (3)0.7260 (2)0.08622 (15)0.0391 (7)
C280.1022 (3)0.8009 (2)0.10018 (17)0.0482 (8)
H28A0.18240.79840.12690.058*
C290.0558 (4)0.8797 (2)0.07568 (18)0.0590 (9)
H29A0.10400.93100.08590.071*
C300.0587 (4)0.8839 (3)0.0369 (2)0.0629 (10)
H30A0.09020.93810.01990.075*
C310.1284 (4)0.8099 (3)0.02259 (18)0.0610 (10)
H31A0.20820.81300.00440.073*
C320.0837 (3)0.7306 (2)0.04694 (17)0.0501 (8)
H32A0.13260.67960.03680.060*
H1N30.469 (3)0.094 (2)0.2191 (16)0.040 (9)*
H1N60.247 (3)0.662 (2)0.0807 (18)0.057 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0308 (2)0.02381 (19)0.0382 (2)0.00201 (15)0.00162 (14)0.00350 (15)
S10.0369 (4)0.0279 (4)0.0755 (6)0.0047 (3)0.0012 (4)0.0022 (4)
S20.0331 (4)0.0334 (4)0.0527 (4)0.0017 (3)0.0002 (3)0.0065 (3)
O10.209 (4)0.0493 (16)0.0385 (13)0.043 (2)0.0135 (18)0.0059 (12)
O20.0527 (16)0.0495 (15)0.122 (2)0.0062 (12)0.0323 (16)0.0261 (15)
N10.0352 (13)0.0235 (12)0.0354 (12)0.0022 (10)0.0030 (10)0.0011 (9)
N20.0444 (15)0.0225 (13)0.0408 (13)0.0024 (11)0.0020 (11)0.0013 (10)
N30.0586 (18)0.0232 (13)0.0430 (15)0.0007 (12)0.0011 (13)0.0044 (12)
N40.0314 (13)0.0277 (13)0.0378 (12)0.0001 (10)0.0020 (10)0.0028 (10)
N50.0344 (14)0.0286 (13)0.0462 (14)0.0024 (11)0.0049 (11)0.0073 (10)
N60.0382 (16)0.0345 (15)0.0592 (17)0.0043 (13)0.0111 (13)0.0155 (13)
C10.0466 (19)0.0400 (18)0.0397 (16)0.0040 (15)0.0008 (14)0.0050 (13)
C20.076 (3)0.048 (2)0.056 (2)0.021 (2)0.0094 (19)0.0111 (17)
C30.108 (4)0.032 (2)0.070 (2)0.009 (2)0.031 (2)0.0107 (17)
C40.086 (3)0.040 (2)0.083 (3)0.020 (2)0.026 (2)0.0003 (19)
C50.050 (2)0.045 (2)0.064 (2)0.0099 (16)0.0082 (16)0.0020 (16)
C60.0408 (17)0.0321 (16)0.0321 (14)0.0011 (13)0.0021 (12)0.0003 (12)
C70.0335 (15)0.0321 (16)0.0326 (14)0.0006 (13)0.0046 (12)0.0008 (12)
C80.0474 (19)0.045 (2)0.0550 (19)0.0114 (16)0.0114 (15)0.0040 (15)
C90.0460 (18)0.0242 (15)0.0389 (15)0.0008 (13)0.0093 (13)0.0014 (12)
C100.072 (2)0.0336 (18)0.0398 (17)0.0091 (16)0.0133 (16)0.0018 (14)
C110.0477 (18)0.0260 (15)0.0411 (16)0.0049 (13)0.0005 (13)0.0012 (12)
C120.0474 (19)0.0321 (17)0.0477 (17)0.0006 (14)0.0103 (14)0.0012 (13)
C130.052 (2)0.0371 (19)0.070 (2)0.0007 (16)0.0124 (17)0.0146 (17)
C140.051 (2)0.0260 (17)0.083 (3)0.0021 (15)0.0117 (18)0.0024 (17)
C150.072 (2)0.040 (2)0.055 (2)0.0129 (17)0.0132 (18)0.0175 (16)
C160.089 (3)0.043 (2)0.0389 (17)0.0126 (19)0.0001 (17)0.0044 (15)
C170.0364 (16)0.0485 (19)0.0327 (14)0.0001 (14)0.0056 (12)0.0008 (13)
C180.054 (2)0.0422 (19)0.0374 (16)0.0025 (16)0.0067 (14)0.0032 (13)
C190.054 (2)0.051 (2)0.0435 (17)0.0151 (17)0.0088 (15)0.0042 (15)
C200.0327 (17)0.067 (2)0.057 (2)0.0062 (17)0.0055 (15)0.0032 (18)
C210.0358 (17)0.049 (2)0.0511 (18)0.0033 (15)0.0059 (14)0.0011 (15)
C220.0340 (16)0.0389 (17)0.0309 (14)0.0002 (13)0.0074 (12)0.0039 (12)
C230.0341 (16)0.0353 (16)0.0340 (14)0.0030 (13)0.0026 (12)0.0041 (12)
C240.0421 (19)0.0419 (19)0.063 (2)0.0059 (15)0.0133 (16)0.0101 (16)
C250.0370 (17)0.0304 (16)0.0341 (14)0.0039 (13)0.0068 (12)0.0065 (12)
C260.0406 (18)0.0385 (18)0.0542 (19)0.0018 (14)0.0093 (15)0.0042 (14)
C270.0345 (16)0.0404 (18)0.0431 (16)0.0049 (14)0.0101 (13)0.0025 (13)
C280.049 (2)0.044 (2)0.0521 (18)0.0039 (16)0.0020 (15)0.0012 (15)
C290.077 (3)0.038 (2)0.062 (2)0.0052 (19)0.006 (2)0.0033 (16)
C300.075 (3)0.050 (2)0.064 (2)0.022 (2)0.009 (2)0.0128 (18)
C310.047 (2)0.079 (3)0.057 (2)0.018 (2)0.0037 (17)0.0150 (19)
C320.0397 (18)0.053 (2)0.058 (2)0.0003 (16)0.0060 (15)0.0043 (16)
Geometric parameters (Å, º) top
Ni1—N41.922 (2)C11—C161.381 (4)
Ni1—N11.928 (2)C12—C131.381 (4)
Ni1—S22.1489 (10)C12—H12A0.9500
Ni1—S12.1518 (10)C13—C141.366 (5)
S1—C91.728 (3)C13—H13A0.9500
S2—C251.735 (3)C14—C151.365 (5)
O1—C101.204 (4)C14—H14A0.9500
O2—C261.210 (4)C15—C161.374 (5)
N1—C71.293 (3)C15—H15A0.9500
N1—N21.407 (3)C16—H16A0.9500
N2—C91.275 (4)C17—C181.383 (4)
N3—C101.359 (4)C17—C221.391 (4)
N3—C91.411 (4)C17—H17A0.9500
N3—H1N30.78 (3)C18—C191.367 (4)
N4—C231.294 (3)C18—H18A0.9500
N4—N51.408 (3)C19—C201.369 (5)
N5—C251.279 (4)C19—H19A0.9500
N6—C261.356 (4)C20—C211.381 (5)
N6—C251.399 (4)C20—H20A0.9500
N6—H1N60.80 (3)C21—C221.387 (4)
C1—C21.379 (5)C21—H21A0.9500
C1—C61.379 (4)C22—C231.471 (4)
C1—H1A0.9500C23—C241.494 (4)
C2—C31.366 (6)C24—H24A0.9800
C2—H2A0.9500C24—H24B0.9800
C3—C41.361 (6)C24—H24C0.9800
C3—H3A0.9500C26—C271.497 (4)
C4—C51.380 (5)C27—C281.380 (4)
C4—H4A0.9500C27—C321.387 (4)
C5—C61.388 (4)C28—C291.383 (5)
C5—H5A0.9500C28—H28A0.9500
C6—C71.472 (4)C29—C301.364 (5)
C7—C81.491 (4)C29—H29A0.9500
C8—H8A0.9800C30—C311.371 (5)
C8—H8B0.9800C30—H30A0.9500
C8—H8C0.9800C31—C321.383 (5)
C10—C111.490 (4)C31—H31A0.9500
C11—C121.375 (4)C32—H32A0.9500
N4—Ni1—N1101.23 (10)C14—C13—H13A119.7
N4—Ni1—S286.18 (7)C12—C13—H13A119.7
N1—Ni1—S2159.86 (7)C15—C14—C13119.9 (3)
N4—Ni1—S1159.67 (7)C15—C14—H14A120.1
N1—Ni1—S185.99 (7)C13—C14—H14A120.1
S2—Ni1—S193.44 (4)C14—C15—C16119.8 (3)
C9—S1—Ni194.53 (10)C14—C15—H15A120.1
C25—S2—Ni194.14 (10)C16—C15—H15A120.1
C7—N1—N2114.1 (2)C15—C16—C11121.1 (3)
C7—N1—Ni1127.91 (19)C15—C16—H16A119.5
N2—N1—Ni1118.01 (17)C11—C16—H16A119.5
C9—N2—N1111.4 (2)C18—C17—C22121.1 (3)
C10—N3—C9123.6 (3)C18—C17—H17A119.4
C10—N3—H1N3116 (2)C22—C17—H17A119.4
C9—N3—H1N3116 (2)C19—C18—C17119.8 (3)
C23—N4—N5114.1 (2)C19—C18—H18A120.1
C23—N4—Ni1128.18 (19)C17—C18—H18A120.1
N5—N4—Ni1117.74 (17)C18—C19—C20119.9 (3)
C25—N5—N4111.3 (2)C18—C19—H19A120.1
C26—N6—C25129.9 (3)C20—C19—H19A120.1
C26—N6—H1N6117 (3)C19—C20—C21120.9 (3)
C25—N6—H1N6113 (3)C19—C20—H20A119.5
C2—C1—C6120.8 (3)C21—C20—H20A119.5
C2—C1—H1A119.6C20—C21—C22120.2 (3)
C6—C1—H1A119.6C20—C21—H21A119.9
C3—C2—C1119.8 (4)C22—C21—H21A119.9
C3—C2—H2A120.1C21—C22—C17118.1 (3)
C1—C2—H2A120.1C21—C22—C23120.5 (3)
C4—C3—C2120.5 (3)C17—C22—C23121.4 (3)
C4—C3—H3A119.8N4—C23—C22119.5 (2)
C2—C3—H3A119.8N4—C23—C24122.0 (3)
C3—C4—C5120.1 (4)C22—C23—C24118.5 (2)
C3—C4—H4A119.9C23—C24—H24A109.5
C5—C4—H4A119.9C23—C24—H24B109.5
C4—C5—C6120.3 (4)H24A—C24—H24B109.5
C4—C5—H5A119.8C23—C24—H24C109.5
C6—C5—H5A119.8H24A—C24—H24C109.5
C1—C6—C5118.5 (3)H24B—C24—H24C109.5
C1—C6—C7120.5 (3)N5—C25—N6113.7 (3)
C5—C6—C7120.9 (3)N5—C25—S2124.9 (2)
N1—C7—C6119.4 (2)N6—C25—S2121.2 (2)
N1—C7—C8122.1 (3)O2—C26—N6123.0 (3)
C6—C7—C8118.5 (2)O2—C26—C27123.4 (3)
C7—C8—H8A109.5N6—C26—C27113.7 (3)
C7—C8—H8B109.5C28—C27—C32119.1 (3)
H8A—C8—H8B109.5C28—C27—C26122.3 (3)
C7—C8—H8C109.5C32—C27—C26118.6 (3)
H8A—C8—H8C109.5C27—C28—C29120.5 (3)
H8B—C8—H8C109.5C27—C28—H28A119.7
N2—C9—N3115.7 (3)C29—C28—H28A119.7
N2—C9—S1125.1 (2)C30—C29—C28120.2 (4)
N3—C9—S1119.1 (2)C30—C29—H29A119.9
O1—C10—N3121.3 (3)C28—C29—H29A119.9
O1—C10—C11122.5 (3)C29—C30—C31119.8 (3)
N3—C10—C11116.2 (3)C29—C30—H30A120.1
C12—C11—C16118.6 (3)C31—C30—H30A120.1
C12—C11—C10122.7 (3)C30—C31—C32120.7 (3)
C16—C11—C10118.6 (3)C30—C31—H31A119.7
C11—C12—C13120.0 (3)C32—C31—H31A119.7
C11—C12—H12A120.0C31—C32—C27119.7 (3)
C13—C12—H12A120.0C31—C32—H32A120.2
C14—C13—C12120.6 (3)C27—C32—H32A120.2
C7—N1—N2—C9161.4 (2)C12—C11—C16—C150.0 (5)
Ni1—N1—N2—C919.0 (3)C10—C11—C16—C15178.6 (3)
C23—N4—N5—C25159.4 (2)C22—C17—C18—C191.0 (4)
Ni1—N4—N5—C2520.2 (3)C17—C18—C19—C200.2 (5)
C6—C1—C2—C30.0 (5)C18—C19—C20—C210.4 (5)
C1—C2—C3—C40.3 (6)C19—C20—C21—C220.6 (5)
C2—C3—C4—C50.3 (6)C20—C21—C22—C171.7 (4)
C3—C4—C5—C61.2 (6)C20—C21—C22—C23178.8 (3)
C2—C1—C6—C51.0 (4)C18—C17—C22—C211.9 (4)
C2—C1—C6—C7177.5 (3)C18—C17—C22—C23179.0 (2)
C4—C5—C6—C11.6 (5)N5—N4—C23—C22171.8 (2)
C4—C5—C6—C7178.1 (3)Ni1—N4—C23—C227.8 (4)
N2—N1—C7—C6171.0 (2)N5—N4—C23—C247.0 (4)
Ni1—N1—C7—C69.4 (4)Ni1—N4—C23—C24173.5 (2)
N2—N1—C7—C86.9 (4)C21—C22—C23—N4145.6 (3)
Ni1—N1—C7—C8172.7 (2)C17—C22—C23—N437.4 (4)
C1—C6—C7—N141.4 (4)C21—C22—C23—C2435.6 (4)
C5—C6—C7—N1142.2 (3)C17—C22—C23—C24141.4 (3)
C1—C6—C7—C8136.6 (3)N4—N5—C25—N6174.2 (2)
C5—C6—C7—C839.8 (4)N4—N5—C25—S21.9 (3)
N1—N2—C9—N3174.0 (2)C26—N6—C25—N5161.8 (3)
N1—N2—C9—S12.2 (3)C26—N6—C25—S221.9 (5)
C10—N3—C9—N2121.1 (3)Ni1—S2—C25—N513.3 (3)
C10—N3—C9—S162.5 (4)Ni1—S2—C25—N6170.8 (2)
Ni1—S1—C9—N212.1 (3)C25—N6—C26—O25.6 (6)
Ni1—S1—C9—N3171.8 (2)C25—N6—C26—C27174.9 (3)
C9—N3—C10—O15.5 (6)O2—C26—C27—C28131.8 (4)
C9—N3—C10—C11173.7 (3)N6—C26—C27—C2847.7 (4)
O1—C10—C11—C12152.7 (4)O2—C26—C27—C3249.2 (5)
N3—C10—C11—C1228.1 (5)N6—C26—C27—C32131.3 (3)
O1—C10—C11—C1625.8 (6)C32—C27—C28—C290.3 (5)
N3—C10—C11—C16153.4 (3)C26—C27—C28—C29179.3 (3)
C16—C11—C12—C131.4 (5)C27—C28—C29—C300.4 (5)
C10—C11—C12—C13177.1 (3)C28—C29—C30—C310.3 (6)
C11—C12—C13—C141.3 (5)C29—C30—C31—C320.1 (6)
C12—C13—C14—C150.3 (5)C30—C31—C32—C270.1 (5)
C13—C14—C15—C161.7 (5)C28—C27—C32—C310.0 (5)
C14—C15—C16—C111.6 (6)C26—C27—C32—C31179.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16A···O1i0.952.513.306 (5)141
C21—H21A···O2ii0.952.603.522 (4)165
C19—H19A···Cg1iii0.952.863.400 (4)117
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z.
Selected geometric parameters (Å, º) top
Ni1—N41.922 (2)S1—C91.728 (3)
Ni1—N11.928 (2)S2—C251.735 (3)
Ni1—S22.1489 (10)N1—C71.293 (3)
Ni1—S12.1518 (10)N4—C231.294 (3)
N4—Ni1—N1101.23 (10)N4—Ni1—S1159.67 (7)
N4—Ni1—S286.18 (7)N1—Ni1—S185.99 (7)
N1—Ni1—S2159.86 (7)S2—Ni1—S193.44 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16A···O1i0.95002.51003.306 (5)141.00
C21—H21A···O2ii0.95002.60003.522 (4)165.00
C19—H19A···Cg1iii0.95002.86003.400 (4)117.00
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C16H14N3OS)2]
Mr651.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)10.220 (3), 15.468 (5), 19.151 (6)
β (°) 92.150 (5)
V3)3025.1 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.19 × 0.18 × 0.09
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
No. of measured, independent and
observed [I > 2σ(I)] reflections
43914, 5893, 4635
Rint0.070
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.100, 1.05
No. of reflections5893
No. of parameters398
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: mustaffa@kimia.fs.utm.my.

Acknowledgements

The authors thank the Universiti Teknologi Malaysia (UTM) for financial support through vote numbers 03H06 & 03H81 and the Kurdistan Regional Government–Human Capacity Development Program (KRG–HCDP) for the scholarship to FKK.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908–6914.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJagadeesh, M., Lavanya, M., Kalangi, S. K., Sarala, Y., Ramachandraiah, C. & Reddy, A. V. (2015). Spectrochim. Acta Part A, 135, 180–184.  CrossRef CAS Google Scholar
First citationLi, M. X., Zhang, L. Z., Yang, M., Niu, J. Y. & Zhou, J. (2012). Bioorg. Med. Chem. Lett. 22, 2418–2423.  CrossRef PubMed Google Scholar
First citationManikandan, R., Viswanathamurthi, P., Velmurugan, K., Nandhakumar, R., Hashimoto, T. & Endo, A. (2014). J. Photochem. Photobiol. B, 130, 205–216.  CrossRef CAS PubMed Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, 101–103.  CrossRef IUCr Journals Google Scholar
First citationPelosi, G., Bisceglie, F., Bignami, F., Ronzi, P., Schiavone, P., Re, M. C., Casoli, C. & Pilotti, E. (2010). J. Med. Chem. 53, 8765–8769.  CrossRef CAS PubMed Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSampath, K., Sathiyaraj, S., Raja, G. & Jayabalakrishnan, C. (2013). J. Mol. Struct. 1046, 82–91.  CrossRef CAS Google Scholar
First citationSankaraperumal, A., Karthikeyan, J., Nityananda Shetty, A. & Lakshmisundaram, R. (2013). Polyhedron, 50, 264–269.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuganthy, P. K., Prabhu, R. N. & Sridevi, V. S. (2013). Tetrahedron Lett. 54, 5695–5698.  CrossRef CAS Google Scholar
First citationWang, J., Zong, Y., Wei, S. & Pan, Y. (2014). Appl. Organomet. Chem. 28, 351–353.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousef, T. A., Abu El-Reash, G. M., Al-Jahdali, M. & El-Rakhawy, E. R. (2013). J. Mol. Struct. 1053, 15–21.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 760-763
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds