research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 616-619

Crystal structure of 1,4-bis­­(3-ammonio­prop­yl)piperazine-1,4-diium bis­­[dichromate(VI)]

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Physics, Government Arts College, Tiruvannamalai 606 603, Tamil Nadu, India, and bDepartment of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India
*Correspondence e-mail: mnizam_new@yahoo.in

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 March 2016; accepted 29 March 2016; online 5 April 2016)

The asymmetric unit of the organic–inorganic title salt, (C10H28N4)[Cr2O7]2, comprises one half of an 1,4-bis­(3-ammonio­prop­yl)piperazinediium cation (the other half being generated by the application of inversion symmetry) and a dichromate anion. The piperazine ring of the cation adopts a chair conformation, and the two CrO4 tetra­hedra of the anion are in an almost eclipsed conformation. In the crystal, the cations and anions form a layered arrangement parallel to (001). N—H⋯O hydrogen bonds between the cations and anions and additional C—H⋯O inter­actions lead to the formation of a three-dimensional network structure.

1. Chemical context

Chromium is usually found in trivalent and hexa­valent oxidation states in soil, ground water and seawater (Cespón-Romero et al., 1996[Cespón-Romero, R. M., Yebra-Biurrun, M. C. & Bermejo-Barrera, M. P. (1996). Anal. Chim. Acta, 327, 37-45.]). Trivalent chromium is an essential element in mammals for maintaining efficient glucose, lipid and protein metabolism. On the other hand, hexa­valent chromium is toxic and recognized as a carcinogen to humans and wildlife. Hence the dichromate ion is environmentally important due to its high toxicity (Yusof & Malek, 2009[Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019-1024.]) and its use in many industrial processes (Goyal et al., 2003[Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311-319.]). Recently, the reactions between hexa­ureachromium(III) and inorganic oxoanions (such as Cr2O72− or CrO42−) in aqueous solution have been investigated (Moon et al., 2015[Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336-1339.]). Numerous piperazine derivatives have shown a wide spectrum of biological activities, viz. anti­bacterial (Foroumadi et al., 2007[Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985-992.]), anti­fungal (Upadhayaya et al., 2004[Upadhayaya, R. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]), anti­cancer (Chen et al., 2006[Chen, J. J., Lu, M., Jing, Y. K. & Dong, J. H. (2006). Bioorg. Med. Chem. 14, 6539-6547.]), anti­parasitic (Cunico et al., 2009[Cunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009). Eur. J. Med. Chem. 44, 1363-1368.]), anti­histamine (Smits et al., 2008[Smits, R. A., Lim, H. D., Hanzer, A., Zuiderveld, O. P., Guaita, E., Adami, M., Coruzzi, G., Leurs, R. & de Esch, I. J. P. (2008). J. Med. Chem. 51, 2457-2467.]) or anti­depressive activities (Becker et al., 2006[Becker, O. M., Dhanoa, D. S., Marantz, Y., Chen, D., Shacham, S., Cheruku, S., Heifetz, A., Mohanty, P., Fichman, M., Sharadendu, A., Nudelman, R., Kauffman, M. & Noiman, S. (2006). J. Med. Chem. 49, 3116-3135.]). Anti­diabetic, anti-inflammatory, anti­tubercular, anti­malarial, anti­convulsant, anti­pyretic, anti­tumor, anthelmintic and analgesic activities (Gan et al., 2009a[Gan, L. L., Cai, J. L. & Zhou, C. H. (2009a). Chin. Pharm. J. 44, 1361-1368.],b[Gan, L. L., Lu, Y. H. & Zhou, C. H. (2009b). Chin. J. Biochem. Pharm. 30, 127-131.]; Willems & Ilzerman, 2010[Willems, L. I. & Ilzerman, A. P. (2010). Med. Chem. Res. 30, 778-817.]) have also been found to be caused by this versatile moiety. In view of these important properties, we have undertaken the synthesis and X-ray diffraction study of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular entities of the title compound, consisting of a centrosymmetric 1,4-bis­(3-ammonio­prop­yl)piperazinediium cation and a dichromate anion, are shown in Fig. 1[link]. In the cation, the central piperazine ring (N1/C1/C2/N1i/C1i/C2i; for symmetry operators, see Fig. 1[link]) is substituted at the two N atoms by two ammonio­propyl moieties. The piperazine ring adopts a chair conformation, as is evident from the puckering parameters: Q = 0.599 (2) Å, τ = 180.0° and φ = 0°. Atoms N1 and N1i are on opposite sides of the C1/C1i/C2/C2i plane and are both displaced from it by 0.2446 (19) Å. The chair conformation of the cation in the title structure is very similar to those of the same cation in the crystal structures of the 2-hy­droxy­benzoate (Cukrowski et al., 2012[Cukrowski, I., Adeyinka, A. S. & Liles, D. C. (2012). Acta Cryst. E68, o2387.]), the nitrate (Junk & Smith, 2005[Junk, P. C. & Smith, M. K. (2005). C. R. Chim. 8, 189-198.]) and the tetra­hydrogenpenta­borate (Jiang et al., 2009[Jiang, X., Liu, H.-X., Wu, S.-L. & Liang, Y.-X. (2009). Jiegou Huaxue (Chin. J. Struct. Chem.), 28, 723-729.]) salts, despite the differences in the size and shape of the anions in the various structures. The tetra­hedral CrO4 groups in the anion of the title structure are fused together by a common O atom (O8) and are in an almost eclipsed conformation (Brandon & Brown, 1968[Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933-941.]). The Cr—O bond lengths follow the characteristic distribution for dichromate anions, with two longer bridging Cr—O bonds of 1.7676 (16) and 1.7746 (15) Å and six shorter terminal Cr—O bonds [range 1.5909 (19)–1.6185 (15) Å]. The Cr1—O8—Cr2 bridging angle in the complex anion is 127.48 (10)°. The tetra­hedral O—Cr—O bond angles [range 106.52 (8) to 112.85 (12)°] indicate slight angular distortions.

[Figure 1]
Figure 1
The entities of the organic–inorganic title salt. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) −x + 2, −y, −z + 1.]

3. Supra­molecular features

The organic cations and inorganic anions are each arranged in rows parallel to [100] and alternate with each other along [010], forming a layered arrangement parallel to (001). N—H⋯O hydrogen bonds (Table 1[link]) between the cations, involving both primary and tertiary ammonium groups, and the anions lead to a three-dimensional network structure (Figs. 2[link] and 3[link]). Additional C—H⋯O inter­actions consolidate this arrangement.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.97 2.28 3.176 (3) 152
C1—H1A⋯O4ii 0.97 2.61 3.248 (3) 123
C1—H1B⋯O6 0.97 2.53 3.353 (3) 143
C2—H2A⋯O2iii 0.97 2.49 3.298 (3) 141
C2—H2A⋯O4iii 0.97 2.59 3.061 (3) 110
C2—H2B⋯O7iv 0.97 2.59 3.232 (2) 124
C3—H3B⋯O3i 0.97 2.58 3.383 (3) 140
C4—H4A⋯O5v 0.97 2.38 3.208 (3) 143
C4—H4B⋯O7iii 0.97 2.64 3.309 (2) 127
N2—H6A⋯O2vi 0.89 2.18 3.040 (2) 161
N2—H6B⋯O7iii 0.89 2.05 2.854 (2) 149
N2—H6C⋯O2v 0.89 2.22 2.865 (2) 129
N2—H6C⋯O5iii 0.89 2.64 3.239 (3) 125
N1—H1⋯O4iii 0.98 2.43 3.113 (2) 126
N1—H1⋯O7 0.98 1.95 2.763 (2) 139
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) -x+2, -y, -z+1; (v) x, y, z+1; (vi) -x, -y+1, -z+1.
[Figure 2]
Figure 2
The packing of the mol­ecular entities in the crystal structure of the title salt.
[Figure 3]
Figure 3
A part of the crystal structure of the title salt in a view along [100] showing N—H⋯O hydrogen-bonding inter­actions as dashed lines. C—H⋯O inter­actions are omitted for clarity.

4. Synthesis and crystallization

Potassium dichromate and 1,4-bis­(3-amino­prop­yl)piperazine (PDBP) were mixed in a molar ratio of 2:1 in water. Potassium dichromate was first dissolved in Millipore water of 18.2 MΩ·cm resistivity. Then the amount of PDBP was slowly added to the solution together with a few drops of concentrated hydro­chloric acid and the mixture stirred for 18 h. The solution was then filtered twice with Wattmann filter paper and poured into petri dishes to evaporate at room temperature for several days. Recrystallization from water improved the quality of the material and increased the size of the crystals (maximum crystal size 5×3×2 mm3 after 35 d). A specimen was cleaved for the present structure determination.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed geometrically and refined using a riding model: N—H = 0.89 Å for the primary ammonium group with Uiso(H) = 1.5Ueq(N); N—H = 0.98 Å for the tertiary ammonium group with Uiso(H) = 1.2Ueq(N); C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula (C10H28N4)[Cr2O7]2
Mr 636.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.5361 (3), 8.6272 (3), 8.8576 (3)
α, β, γ (°) 77.761 (1), 72.307 (1), 60.985 (1)
V3) 541.81 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.03
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.528, 0.649
No. of measured, independent and observed [I > 2σ(I)] reflections 10263, 1913, 1835
Rint 0.020
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.068, 1.06
No. of reflections 1913
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.45
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Chromium is usually found in trivalent and hexavalent oxidation states in soil, ground water and seawater (Cespon-Romero et al., 1996). Trivalent chromium is an essential element in mammals for maintaining efficient glucose, lipid and protein metabolism. On the other hand, hexavalent chromium is toxic and recognized as a carcinogen to humans and wildlife. Hence the dichromate ion is environmentally important due to its high toxicity (Yusof & Malek, 2009) and its use in many industrial processes (Goyal et al., 2003). Recently, the reactions between hexaureachromium(III) and inorganic oxoanions (such as Cr2O72- or CrO42-) in aqueous solution have been investigated (Moon et al., 2015). Numerous piperazine derivatives have shown a wide spectrum of biological activities, viz. anti­bacterial (Foroumadi et al., 2007), anti­fungal (Upadhayaya et al., 2004), anti­cancer (Chen et al., 2006), anti­parasitic (Cunico et al., 2009), anti­histamine (Smits et al., 2008) or anti­depressive activities (Becker et al., 2006). Anti­diabetic, anti-inflammatory, anti­tubercular, anti­malarial, anti­convulsant, anti­pyretic, anti­tumor, anthelmintic and analgesic activities (Gan et al., 2009a,b; Willems & Ilzerman, 2010) have also been found to be caused by this versatile moiety. In view of these important properties, we have undertaken the synthesis and X-ray diffraction study of the title compound.

Structural commentary top

The molecular entities of the title compound, consisting of a centrosymmetric 1,4-bis­(3-ammonio­propyl)­piperazinediium cation and a dichromate anion, are shown in Fig. 1. In the cation, the central piperazine ring (N1/C1/C2/N1i/C1i/C2i; for symmetry operators, see Fig. 1) is substituted at the two N atoms by two ammonio­propyl moieties. The piperazine ring adopts a chair conformation, as is evident from the puckering parameters: Q = 0.599 (2) Å, τ = 180.0° and φ = 0°. Atoms N1 and N1i are on opposite sides of the C1/C1i/C2/C2i plane and are both displaced from it by 0.2446 (19) Å. The chair conformation of the cation in the title structure is very similar to those of the same cation in the crystal structures of the 2-hy­droxy­benzoate (Cukrowski et al., 2012), the nitrate (Junk & Smith, 2005) and the tetra­hydrogenpenta­borate (Jiang et al., 2009) salts, despite the differences in the size and shape of the anions in the various structures. The tetra­hedral CrO4 groups in the anion of the title structure are fused together by a common O atom (O8) and are in an almost eclipsed conformation (Brandon & Brown, 1968). The Cr—O bond length follow the characteristic distribution for dichromate anions, with two longer bridging Cr—O bonds of 1.7676 (16) and 1.7746 (15) Å and six shorter terminal Cr—O bonds [range 1.5909 (19)–1.6185 (15) Å]. The Cr1—O8—Cr2 bridging angle in the complex anion is 127.48 (10)°. The tetra­hedral O—Cr—O bond angles [range 106.52 (8) to 112.85 (12)°] indicate slight angular distortions.

Supra­molecular features top

The organic cations and inorganic anions are each arranged in rows parallel to [100] and alternate with each other along [010], forming a layered arrangement parallel to (001). N—H···O hydrogen bonds (Table 1) between the cations, involving both primary and tertiary ammonium groups, and the anions lead to a three-dimensional network structure (Figs. 2 and 3). Additional C—H···O inter­actions consolidate this arrangement.

Synthesis and crystallization top

Potassium dichromate and 1,4-bis­(3-amino­propyl)­piperazine (PDBP) were mixed in a molar ratio of 2:1 in water. Potassium dichromate was first dissolved in Millipore water of 18.2 MΩ·cm resistivity. Then the amount of PDBP was slowly added to the solution together with a few drops of concentrated hydro­chloric acid and the mixture stirred for 18 h. The solution was then filtered twice with Wattmann filter paper and poured into petri dishes to evaporate at room temperature for several days. Recrystallization from water improved the quality of the material and increased the size of the crystals (maximum crystal size 5×3×2 mm3 after 35 d). A specimen was cleaved for the present structure determination.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed geometrically and refined using a riding model: N—H = 0.89 Å for the primary ammonium group with Uiso(H) = 1.5Ueq(N); N—H = 0.98 Å for the tertiary ammonium group with Uiso(H) = 1.2Ueq(N); C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

Chromium is usually found in trivalent and hexavalent oxidation states in soil, ground water and seawater (Cespon-Romero et al., 1996). Trivalent chromium is an essential element in mammals for maintaining efficient glucose, lipid and protein metabolism. On the other hand, hexavalent chromium is toxic and recognized as a carcinogen to humans and wildlife. Hence the dichromate ion is environmentally important due to its high toxicity (Yusof & Malek, 2009) and its use in many industrial processes (Goyal et al., 2003). Recently, the reactions between hexaureachromium(III) and inorganic oxoanions (such as Cr2O72- or CrO42-) in aqueous solution have been investigated (Moon et al., 2015). Numerous piperazine derivatives have shown a wide spectrum of biological activities, viz. anti­bacterial (Foroumadi et al., 2007), anti­fungal (Upadhayaya et al., 2004), anti­cancer (Chen et al., 2006), anti­parasitic (Cunico et al., 2009), anti­histamine (Smits et al., 2008) or anti­depressive activities (Becker et al., 2006). Anti­diabetic, anti-inflammatory, anti­tubercular, anti­malarial, anti­convulsant, anti­pyretic, anti­tumor, anthelmintic and analgesic activities (Gan et al., 2009a,b; Willems & Ilzerman, 2010) have also been found to be caused by this versatile moiety. In view of these important properties, we have undertaken the synthesis and X-ray diffraction study of the title compound.

The molecular entities of the title compound, consisting of a centrosymmetric 1,4-bis­(3-ammonio­propyl)­piperazinediium cation and a dichromate anion, are shown in Fig. 1. In the cation, the central piperazine ring (N1/C1/C2/N1i/C1i/C2i; for symmetry operators, see Fig. 1) is substituted at the two N atoms by two ammonio­propyl moieties. The piperazine ring adopts a chair conformation, as is evident from the puckering parameters: Q = 0.599 (2) Å, τ = 180.0° and φ = 0°. Atoms N1 and N1i are on opposite sides of the C1/C1i/C2/C2i plane and are both displaced from it by 0.2446 (19) Å. The chair conformation of the cation in the title structure is very similar to those of the same cation in the crystal structures of the 2-hy­droxy­benzoate (Cukrowski et al., 2012), the nitrate (Junk & Smith, 2005) and the tetra­hydrogenpenta­borate (Jiang et al., 2009) salts, despite the differences in the size and shape of the anions in the various structures. The tetra­hedral CrO4 groups in the anion of the title structure are fused together by a common O atom (O8) and are in an almost eclipsed conformation (Brandon & Brown, 1968). The Cr—O bond length follow the characteristic distribution for dichromate anions, with two longer bridging Cr—O bonds of 1.7676 (16) and 1.7746 (15) Å and six shorter terminal Cr—O bonds [range 1.5909 (19)–1.6185 (15) Å]. The Cr1—O8—Cr2 bridging angle in the complex anion is 127.48 (10)°. The tetra­hedral O—Cr—O bond angles [range 106.52 (8) to 112.85 (12)°] indicate slight angular distortions.

The organic cations and inorganic anions are each arranged in rows parallel to [100] and alternate with each other along [010], forming a layered arrangement parallel to (001). N—H···O hydrogen bonds (Table 1) between the cations, involving both primary and tertiary ammonium groups, and the anions lead to a three-dimensional network structure (Figs. 2 and 3). Additional C—H···O inter­actions consolidate this arrangement.

Synthesis and crystallization top

Potassium dichromate and 1,4-bis­(3-amino­propyl)­piperazine (PDBP) were mixed in a molar ratio of 2:1 in water. Potassium dichromate was first dissolved in Millipore water of 18.2 MΩ·cm resistivity. Then the amount of PDBP was slowly added to the solution together with a few drops of concentrated hydro­chloric acid and the mixture stirred for 18 h. The solution was then filtered twice with Wattmann filter paper and poured into petri dishes to evaporate at room temperature for several days. Recrystallization from water improved the quality of the material and increased the size of the crystals (maximum crystal size 5×3×2 mm3 after 35 d). A specimen was cleaved for the present structure determination.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed geometrically and refined using a riding model: N—H = 0.89 Å for the primary ammonium group with Uiso(H) = 1.5Ueq(N); N—H = 0.98 Å for the tertiary ammonium group with Uiso(H) = 1.2Ueq(N); C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The entities of the organic–inorganic title salt. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 2, -y, -z + 1.]
[Figure 2] Fig. 2. The packing of the molecular entities in the crystal structure of the title salt.
[Figure 3] Fig. 3. A part of the crystal structure of the title salt in a view along [100] showing N—H···O hydrogen-bonding interactions as dashed lines. C—H···O interactions are omitted for clarity.
1,4-Bis(3-ammoniopropyl)piperazine-1,4-diium bis[dichromate(VI)] top
Crystal data top
(C10H28N4)[Cr2O7]2Z = 1
Mr = 636.36F(000) = 324
Triclinic, P1Dx = 1.950 Mg m3
a = 8.5361 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6272 (3) ÅCell parameters from 9982 reflections
c = 8.8576 (3) Åθ = 2.4–39.1°
α = 77.761 (1)°µ = 2.03 mm1
β = 72.307 (1)°T = 293 K
γ = 60.985 (1)°Needle, brown
V = 541.81 (3) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1913 independent reflections
Radiation source: fine-focus sealed tube1835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and φ scanθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.528, Tmax = 0.649k = 1010
10263 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.4739P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1913 reflectionsΔρmax = 0.44 e Å3
145 parametersΔρmin = 0.45 e Å3
Crystal data top
(C10H28N4)[Cr2O7]2γ = 60.985 (1)°
Mr = 636.36V = 541.81 (3) Å3
Triclinic, P1Z = 1
a = 8.5361 (3) ÅMo Kα radiation
b = 8.6272 (3) ŵ = 2.03 mm1
c = 8.8576 (3) ÅT = 293 K
α = 77.761 (1)°0.35 × 0.30 × 0.25 mm
β = 72.307 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1913 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1835 reflections with I > 2σ(I)
Tmin = 0.528, Tmax = 0.649Rint = 0.020
10263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.06Δρmax = 0.44 e Å3
1913 reflectionsΔρmin = 0.45 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9278 (3)0.1703 (3)0.4169 (2)0.0217 (4)
H1A0.95480.23710.47210.026*
H1B0.86790.24980.33440.026*
C20.8955 (3)0.0195 (3)0.6574 (2)0.0209 (4)
H2A0.81580.06610.73190.025*
H2B0.92170.04540.71540.025*
C30.6197 (3)0.2538 (3)0.5974 (3)0.0247 (4)
H3A0.57100.33440.51010.030*
H3B0.63910.31910.66080.030*
C40.4805 (3)0.1911 (3)0.6986 (2)0.0218 (4)
H4A0.51940.12520.79460.026*
H4B0.47230.11270.64070.026*
C50.2943 (3)0.3494 (3)0.7415 (3)0.0259 (4)
H5A0.30460.43150.79310.031*
H5B0.25220.41090.64570.031*
N20.1592 (2)0.2910 (2)0.8492 (2)0.0261 (4)
H6A0.05010.38520.87360.039*
H6B0.14880.21680.80120.039*
H6C0.19730.23580.93760.039*
N10.8006 (2)0.1028 (2)0.53184 (19)0.0183 (3)
H10.77720.03380.47420.022*
O20.1839 (2)0.3536 (2)0.14426 (19)0.0359 (4)
O30.1272 (2)0.5696 (2)0.3451 (2)0.0402 (4)
O40.2800 (2)0.2224 (2)0.41686 (19)0.0359 (4)
O50.6705 (3)0.1105 (3)0.0133 (2)0.0612 (6)
O60.8440 (3)0.2646 (3)0.0538 (3)0.0564 (6)
O70.7517 (2)0.0359 (2)0.26223 (19)0.0325 (4)
O80.4835 (2)0.3730 (2)0.1987 (2)0.0370 (4)
Cr10.26337 (4)0.37840 (4)0.27693 (4)0.02227 (12)
Cr20.69282 (5)0.19141 (5)0.11987 (4)0.02748 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0192 (10)0.0226 (9)0.0222 (10)0.0120 (8)0.0008 (8)0.0007 (8)
C20.0202 (10)0.0260 (10)0.0166 (9)0.0124 (8)0.0013 (7)0.0014 (8)
C30.0179 (10)0.0213 (10)0.0303 (11)0.0073 (8)0.0011 (8)0.0071 (8)
C40.0157 (9)0.0230 (10)0.0246 (10)0.0080 (8)0.0029 (8)0.0026 (8)
C50.0200 (10)0.0246 (10)0.0281 (11)0.0088 (8)0.0008 (8)0.0051 (8)
N20.0163 (8)0.0313 (9)0.0275 (9)0.0091 (7)0.0014 (7)0.0056 (7)
N10.0155 (8)0.0201 (8)0.0190 (8)0.0087 (7)0.0006 (6)0.0042 (6)
O20.0460 (10)0.0430 (9)0.0291 (8)0.0252 (8)0.0145 (7)0.0021 (7)
O30.0322 (9)0.0346 (9)0.0514 (10)0.0121 (7)0.0011 (8)0.0190 (8)
O40.0387 (9)0.0418 (9)0.0313 (8)0.0217 (8)0.0124 (7)0.0042 (7)
O50.0591 (13)0.0843 (15)0.0348 (10)0.0178 (12)0.0145 (9)0.0260 (10)
O60.0323 (10)0.0645 (13)0.0619 (13)0.0286 (9)0.0011 (9)0.0150 (10)
O70.0384 (9)0.0356 (9)0.0321 (8)0.0221 (7)0.0120 (7)0.0006 (7)
O80.0250 (8)0.0364 (9)0.0484 (10)0.0163 (7)0.0005 (7)0.0085 (7)
Cr10.02026 (19)0.0254 (2)0.02321 (19)0.01134 (15)0.00346 (13)0.00582 (13)
Cr20.02130 (19)0.0382 (2)0.0210 (2)0.01414 (16)0.00041 (14)0.00334 (15)
Geometric parameters (Å, º) top
C1—N11.498 (2)C5—N21.478 (3)
C1—C2i1.502 (3)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700N2—H6A0.8900
C2—N11.493 (2)N2—H6B0.8900
C2—C1i1.502 (3)N2—H6C0.8900
C2—H2A0.9700N1—H10.9800
C2—H2B0.9700O2—Cr11.6185 (15)
C3—N11.498 (2)O3—Cr11.6035 (16)
C3—C41.509 (3)O4—Cr11.6070 (16)
C3—H3A0.9700O5—Cr21.5909 (19)
C3—H3B0.9700O6—Cr21.6068 (18)
C4—C51.511 (3)O7—Cr21.6299 (16)
C4—H4A0.9700O8—Cr21.7676 (16)
C4—H4B0.9700O8—Cr11.7746 (15)
N1—C1—C2i111.02 (16)C4—C5—H5B109.6
N1—C1—H1A109.4H5A—C5—H5B108.1
C2i—C1—H1A109.4C5—N2—H6A109.5
N1—C1—H1B109.4C5—N2—H6B109.5
C2i—C1—H1B109.4H6A—N2—H6B109.5
H1A—C1—H1B108.0C5—N2—H6C109.5
N1—C2—C1i110.02 (15)H6A—N2—H6C109.5
N1—C2—H2A109.7H6B—N2—H6C109.5
C1i—C2—H2A109.7C2—N1—C3113.18 (15)
N1—C2—H2B109.7C2—N1—C1108.55 (15)
C1i—C2—H2B109.7C3—N1—C1110.86 (15)
H2A—C2—H2B108.2C2—N1—H1108.0
N1—C3—C4112.22 (16)C3—N1—H1108.0
N1—C3—H3A109.2C1—N1—H1108.0
C4—C3—H3A109.2Cr2—O8—Cr1127.48 (10)
N1—C3—H3B109.2O3—Cr1—O4110.80 (9)
C4—C3—H3B109.2O3—Cr1—O2108.95 (9)
H3A—C3—H3B107.9O4—Cr1—O2109.39 (8)
C3—C4—C5109.66 (16)O3—Cr1—O8106.52 (8)
C3—C4—H4A109.7O4—Cr1—O8108.31 (8)
C5—C4—H4A109.7O2—Cr1—O8112.85 (9)
C3—C4—H4B109.7O5—Cr2—O6112.85 (12)
C5—C4—H4B109.7O5—Cr2—O7107.91 (11)
H4A—C4—H4B108.2O6—Cr2—O7109.68 (9)
N2—C5—C4110.30 (16)O5—Cr2—O8111.08 (10)
N2—C5—H5A109.6O6—Cr2—O8106.39 (10)
C4—C5—H5A109.6O7—Cr2—O8108.89 (8)
N2—C5—H5B109.6
N1—C3—C4—C5171.94 (16)C2i—C1—N1—C3176.16 (16)
C3—C4—C5—N2176.35 (16)Cr2—O8—Cr1—O3175.26 (12)
C1i—C2—N1—C3178.15 (15)Cr2—O8—Cr1—O456.03 (15)
C1i—C2—N1—C158.3 (2)Cr2—O8—Cr1—O265.22 (15)
C4—C3—N1—C264.5 (2)Cr1—O8—Cr2—O552.36 (17)
C4—C3—N1—C1173.31 (16)Cr1—O8—Cr2—O6175.53 (13)
C2i—C1—N1—C258.9 (2)Cr1—O8—Cr2—O766.33 (14)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3ii0.972.283.176 (3)152
C1—H1A···O4iii0.972.613.248 (3)123
C1—H1B···O60.972.533.353 (3)143
C2—H2A···O2iv0.972.493.298 (3)141
C2—H2A···O4iv0.972.593.061 (3)110
C2—H2B···O7i0.972.593.232 (2)124
C3—H3B···O3ii0.972.583.383 (3)140
C4—H4A···O5v0.972.383.208 (3)143
C4—H4B···O7iv0.972.643.309 (2)127
N2—H6A···O2vi0.892.183.040 (2)161
N2—H6B···O7iv0.892.052.854 (2)149
N2—H6C···O2v0.892.222.865 (2)129
N2—H6C···O5iv0.892.643.239 (3)125
N1—H1···O4iv0.982.433.113 (2)126
N1—H1···O70.981.952.763 (2)139
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.972.283.176 (3)152.3
C1—H1A···O4ii0.972.613.248 (3)123.4
C1—H1B···O60.972.533.353 (3)143.1
C2—H2A···O2iii0.972.493.298 (3)140.8
C2—H2A···O4iii0.972.593.061 (3)110.2
C2—H2B···O7iv0.972.593.232 (2)124.2
C3—H3B···O3i0.972.583.383 (3)139.6
C4—H4A···O5v0.972.383.208 (3)143.2
C4—H4B···O7iii0.972.643.309 (2)126.7
N2—H6A···O2vi0.892.183.040 (2)161.4
N2—H6B···O7iii0.892.052.854 (2)149.0
N2—H6C···O2v0.892.222.865 (2)128.7
N2—H6C···O5iii0.892.643.239 (3)125.1
N1—H1···O4iii0.982.433.113 (2)126.3
N1—H1···O70.981.952.763 (2)138.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+2, y, z+1; (v) x, y, z+1; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C10H28N4)[Cr2O7]2
Mr636.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5361 (3), 8.6272 (3), 8.8576 (3)
α, β, γ (°)77.761 (1), 72.307 (1), 60.985 (1)
V3)541.81 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.528, 0.649
No. of measured, independent and
observed [I > 2σ(I)] reflections
10263, 1913, 1835
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.068, 1.06
No. of reflections1913
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXT (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the SAIF, IIT, Madras, India, for the data collection.

References

First citationBecker, O. M., Dhanoa, D. S., Marantz, Y., Chen, D., Shacham, S., Cheruku, S., Heifetz, A., Mohanty, P., Fichman, M., Sharadendu, A., Nudelman, R., Kauffman, M. & Noiman, S. (2006). J. Med. Chem. 49, 3116–3135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCespón-Romero, R. M., Yebra-Biurrun, M. C. & Bermejo-Barrera, M. P. (1996). Anal. Chim. Acta, 327, 37–45.  Google Scholar
First citationChen, J. J., Lu, M., Jing, Y. K. & Dong, J. H. (2006). Bioorg. Med. Chem. 14, 6539–6547.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCukrowski, I., Adeyinka, A. S. & Liles, D. C. (2012). Acta Cryst. E68, o2387.  CSD CrossRef IUCr Journals Google Scholar
First citationCunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009). Eur. J. Med. Chem. 44, 1363–1368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985–992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGan, L. L., Cai, J. L. & Zhou, C. H. (2009a). Chin. Pharm. J. 44, 1361–1368.  CAS Google Scholar
First citationGan, L. L., Lu, Y. H. & Zhou, C. H. (2009b). Chin. J. Biochem. Pharm. 30, 127–131.  CAS Google Scholar
First citationGoyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319.  Web of Science CrossRef CAS Google Scholar
First citationJiang, X., Liu, H.-X., Wu, S.-L. & Liang, Y.-X. (2009). Jiegou Huaxue (Chin. J. Struct. Chem.), 28, 723–729.  CAS Google Scholar
First citationJunk, P. C. & Smith, M. K. (2005). C. R. Chim. 8, 189–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336–1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmits, R. A., Lim, H. D., Hanzer, A., Zuiderveld, O. P., Guaita, E., Adami, M., Coruzzi, G., Leurs, R. & de Esch, I. J. P. (2008). J. Med. Chem. 51, 2457–2467.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWillems, L. I. & Ilzerman, A. P. (2010). Med. Chem. Res. 30, 778–817.  CAS Google Scholar
First citationYusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 616-619
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds