research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 671-674

Crystal structure of tris­­(trans-1,2-cyclo­hexa­ne­di­amine-κ2N,N′)chromium(III) tetra­chlorido­zincate chloride trihydrate from synchrotron data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 April 2016; accepted 7 April 2016; online 12 April 2016)

The structure of the title double salt, [Cr(rac-chxn)3][ZnCl4]Cl·3H2O (chxn is trans-1,2-cyclo­hexa­nedi­amine; C6H14N2), has been determined from synchrotron data. The CrIII ion is coordinated by six N atoms of three chelating chxn ligands, displaying a slightly distorted octa­hedral coordination environment. The distorted tetra­hedral [ZnCl4]2− anion, the isolated Cl anion and three lattice water mol­ecules remain outside the coordination sphere. The Cr—N(chxn) bond lengths are in a narrow range between 2.0737 (12) and 2.0928 (12) Å; the mean N—Cr—N bite angle is 82.1 (4)°. The crystal packing is stabilized by hydrogen-bonding inter­actions between the amino groups of the chxn ligands and the water mol­ecules as donor groups, and O atoms of the water mol­ecules, chloride anions and Cl atoms of the [ZnCl4]2− anions as acceptor groups, leading to the formation of a three-dimensional network. The [ZnCl4]2− anion is disordered over two sets of sites with an occupancy ratio of 0.94:0.06.

1. Chemical context

trans-1,2-Cyclo­hexa­nedi­amine (chxn) can coordinate to a central metal ion as a bidentate ligand via the two nitro­gen atoms, forming a five-membered chelate ring. The synthetic procedures, crystal structures and detailed spectroscopic properties of such [Cr(chxn)3]3+ complexes with chloride or nitrate anions have been reported previously (Morooka et al., 1992[Morooka, M., Ohba, S. & Miyamae, H. (1992). Acta Cryst. B48, 667-672.]; Choi, 1994[Choi, J.-H. (1994). Bull. Korean Chem. Soc. 15, 145-150.]; Kalf et al., 2002[Kalf, I., Calmuschi, B. & Englert, U. (2002). CrystEngComm, 4, 548-551.]). Since counter-anionic species play a very important role in coordination chemistry and supra­molecular chemistry (Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]; Santos-Figueroa et al., 2013[Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489-3613.]), changing the type of anion can also result in different structural properties. With respect to the tetra­chlorido­zincate anion, [ZnCl4]2−, the crystal structures of complexes with trivalent chromium have been determined for [Cr(NH3)6][ZnCl4]Cl (Clegg, 1976[Clegg, W. (1976). Acta Cryst. B32, 2907-2909.]), [Cr(en)3][ZnCl4]Cl (en is ethyl­enedi­amine; Pons et al., 1988[Pons, J., Casabó, J., Palacio, F., Morón, M. C., Solans, X. & Carlin, R. L. (1988). Inorg. Chim. Acta, 146, 161-165.]) and trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O (cyclam is 1,4,8,11-tetra­aza­cyclo­tetra­decane; Moon & Choi, 2016[Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 456-459.]). However, a combination of the [Cr(chxn)3]3+ cation with [ZnCl4]2− and Cl as anions is unreported. In order to confirm that the resulting structure belongs to a double salt with [ZnCl4]2− and Cl anions and does not contain a [ZnCl5]3− anion, we prepared this material and report here on the mol­ecular and crystal structure of [Cr(rac-chxn)3][ZnCl4]Cl·3H2O, (I)[link].

[Scheme 1]

2. Structural commentary

First of all we performed a single-crystal structure analysis of the starting complex [Cr(chxn)3]Cl3·2H2O with 98 K synchrotron data to determine the exact composition and coordination geometry of the CrIII ion. The complex crystallizes in the space group I[\overline{4}]2d with eight formula units in a cell of dimensions a = 18.893 (3) and c = 14.069 (3) Å. The Cr—N(chxn) bond lengths are in the range 2.0723 (19) to 2.0937 (19) Å, and the N—Cr—N bite angles are in the range 82.53 (7) to 82.69 (10)°. In comparison with the bond lengths and angles of the structure of this complex determined with 223 K data (Kalf et al., 2002[Kalf, I., Calmuschi, B. & Englert, U. (2002). CrystEngComm, 4, 548-551.]), there are no remarkable differences, and also the the crystal packing has virtually identical features.

Fig. 1[link] shows the mol­ecular components of the title compound, (I)[link], which consists of a discrete complex cation [Cr(rac-chxn)3]3+, three lattice water mol­ecules, together with one tetra­hedral [ZnCl4]2− and one isolated Cl counter-ion. The nitro­gen atoms of the three 1,2-cyclo­hexa­nedi­amine ligands define a distorted octa­hedral coordination environment around the Cr(III) ion with a mean N—Cr—N bite angle of 82.1 (4)°. The resulting five-membered chelate rings of chxn ligands have the expected stable gauche conformation. The Cr—N(chxn) bond lengths are in the range 2.0737 (12) to 2.0928 (12) Å, in good agreement with those determined in [Cr(RR-chxn)3](NO3)3·3H2O (Morooka et al., 1992[Morooka, M., Ohba, S. & Miyamae, H. (1992). Acta Cryst. B48, 667-672.]) and [Cr(rac-chxn)3]Cl3·2H2O (Kalf et al., 2002[Kalf, I., Calmuschi, B. & Englert, U. (2002). CrystEngComm, 4, 548-551.]). The disordered tetra­hedral [ZnCl4]2− anion, the isolated Cl anion and the three water mol­ecules remain outside the coordination sphere of CrIII. The complex [ZnCl4]2− anion is distorted due to its involvement in hydrogen-bonding inter­actions. The [ZnCl4]2− and Cl anions are well separated by van der Waals contacts and consequently there is no basis for describing the ZnII species as a distorted [ZnCl5]3− anion.

[Figure 1]
Figure 1
The structures of the mol­ecular components of the title double salt, drawn with displacement parameters at the 50% probability level. Dashed lines represent hydrogen-bonding inter­actions.

3. Supra­molecular features

Extensive hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]), involving the N—H groups of the chxn ligands and the O—H groups of the lattice water mol­ecules as donors, and the chloride ions and Cl atoms of the disordered [ZnCl4]2− anions and water O atoms as acceptors. The supra­molecular architecture gives rise to a three-dimensional network structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl5i 0.91 2.40 3.2535 (15) 157
N1—H1B⋯O3W 0.91 2.36 3.0178 (16) 129
N2—H2A⋯O2W 0.91 2.01 2.9051 (17) 166
N2—H2B⋯Cl2Aii 0.91 2.45 3.2197 (14) 142
N2—H2B⋯Cl3Bii 0.91 2.36 3.180 (18) 150
N3—H3A⋯O2W 0.91 2.13 2.9832 (16) 156
N3—H3B⋯Cl1Aiii 0.91 2.52 3.2574 (13) 138
N3—H3B⋯Cl3Aiii 0.91 2.77 3.4547 (16) 133
N3—H3B⋯Cl2Biii 0.91 2.67 3.471 (10) 147
N3—H3B⋯Cl4Biii 0.91 2.68 3.35 (2) 131
N4—H4A⋯Cl1Biv 0.91 2.74 3.473 (11) 138
N4—H4B⋯Cl2Aii 0.91 2.64 3.4267 (15) 146
N4—H4B⋯O1Wii 0.91 2.39 2.9804 (17) 123
N5—H5A⋯Cl3Aiv 0.91 2.51 3.4245 (14) 178
N5—H5A⋯Cl4Biv 0.91 2.73 3.634 (19) 173
N5—H5B⋯Cl1Aiii 0.91 2.74 3.3664 (16) 127
N5—H5B⋯O3W 0.91 2.22 2.9724 (17) 140
N6—H6A⋯Cl5i 0.91 2.39 3.2474 (14) 158
O1W—H1O1⋯Cl5 0.85 (1) 2.24 (1) 3.0878 (17) 179 (2)
O1W—H2O1⋯Cl4Aii 0.84 (1) 2.28 (1) 3.1170 (13) 174 (2)
O2W—H1O2⋯Cl1A 0.83 (1) 2.28 (1) 3.1140 (12) 175 (2)
O2W—H1O2⋯Cl2B 0.83 (1) 2.45 (1) 3.271 (9) 167 (2)
O2W—H2O2⋯O1W 0.83 (1) 1.92 (1) 2.7468 (19) 177 (2)
O3W—H1O3⋯Cl5iii 0.84 (1) 2.41 (1) 3.2139 (13) 159 (2)
O3W—H2O3⋯Cl2Aiii 0.84 (1) 2.38 (1) 3.2153 (17) 175 (2)
O3W—H2O3⋯Cl3Biii 0.84 (1) 2.23 (2) 3.05 (2) 167 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.
[Figure 2]
Figure 2
The crystal packing in the title double salt viewed perpendicular to the bc plane. Dashed lines represent hydrogen-bonding inter­actions: N—H⋯Cl (pink), N—H⋯O (cyan), O—H⋯O (light green) and O—H⋯Cl (orange). The minor disorder components of the [ZnCl4]2− anion have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, May 2015 with last update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that there are three previous reports for CrIII complexes containing three chelating chxn ligands, viz. [Cr(RR-chxn)3](NO3)3·3H2O (Morooka et al., 1992[Morooka, M., Ohba, S. & Miyamae, H. (1992). Acta Cryst. B48, 667-672.]), [Cr(rac-chxn)3]Cl3·2H2O (Kalf et al., 2002[Kalf, I., Calmuschi, B. & Englert, U. (2002). CrystEngComm, 4, 548-551.]), and [Cr(RR-chxn)3][Co(SS-chxn)3]Cl6·4H2O (Kalf et al., 2002[Kalf, I., Calmuschi, B. & Englert, U. (2002). CrystEngComm, 4, 548-551.]). The structure of any double salt of [Cr(chxn)3]3+ with an additional [ZnCl4]2− anion has not been deposited.

5. Synthesis and crystallization

Commercially available (Aldrich) racemic trans-1,2-cyclo­hexa­nedi­amine was used as provided. All other chemicals with the best analytical grade available were used. The starting material, [Cr(rac-chxn)3]Cl3·2H2O was prepared according to the literature (Pedersen, 1970[Pedersen, E. (1970). Acta Chem. Scand. 24, 3362-3372.]). The crude trichloride salt (0.22 g) was dissolved in 10 mL of 1 M HCl at 313 K and 5 mL of 1 M HCl containing 0.5 g of solid ZnCl2 were added to this solution. The resulting solution was filtered and allowed to stand at room temperature for one week to give block-like yellow crystals of the tetra­chlorido­zincate(II) chloride salt suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were found from difference maps but were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99–1.00 Å and N—H = 0.91 Å, and with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms. The hydrogen atoms of water mol­ecules were restrained using DFIX and DANG commands during the least-squares refinement (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The [ZnCl4]2− anion was refined as positionally disordered over two sets of sites with a refined occupancy ratio constrained to 0.94:0.06 in the last refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula [Cr(C6H14N2)3][ZnCl4]Cl·3H2O
Mr 691.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.594 (2), 13.075 (3), 22.384 (5)
β (°) 100.87 (3)
V3) 3045.0 (11)
Z 4
Radiation type Synchrotron, λ = 0.62998 Å
μ (mm−1) 1.15
Crystal size (mm) 0.25 × 0.15 × 0.05
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.762, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 23113, 8090, 7647
Rint 0.034
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.05
No. of reflections 8090
No. of parameters 371
No. of restraints 15
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.07, −1.14
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

trans-1,2-Cyclo­hexanedi­amine (chxn) can coordinate to a central metal ion as a bidentate ligand via the two nitro­gen atoms, forming a five-membered chelate ring. The synthetic procedures, crystal structures and detailed spectroscopic properties of such [Cr(chxn)3]3+ complexes with chloride or nitrate anions have been reported previously (Morooka et al., 1992; Choi, 1994; Kalf et al., 2002). Since counter-anionic species play a very important role in coordination chemistry and supra­molecular chemistry (Fabbrizzi & Poggi, 2013; Santos-Figueroa et al., 2013), changing the type of anion can also result in different structural properties. With respect to the tetra­chloridozincate anion, [ZnCl4]2-, the crystal structures of complexes with trivalent chromium have been determined for [Cr(NH3)6][ZnCl4]Cl (Clegg, 1976), [Cr(en)3][ZnCl4]Cl (en is ethyl­enedi­amine; Pons et al., 1988) and trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O (cyclam is 1,4,8,11-tetra­aza­cyclo­tetra­decane; Moon & Choi, 2016). However, a combination of the [Cr(chxn)3]3+ cation with [ZnCl4]2- and Cl- as anions is unreported. In order to confirm that the resulting structure belongs to a double salt with [ZnCl4]2- and Cl- anions and does not contain a [ZnCl5]3- anion, we prepared this material and report here on the molecular and crystal structure of [Cr(rac-chxn)3][ZnCl4]Cl·3H2O, (I).

Structural commentary top

first of all we performed a single-crystal structure analysis of the starting complex [Cr(chxn)3]Cl3·2H2O with 98 K synchrotron data to determine the exact composition and coordination geometry of the CrIII ion. The complex crystallizes in the space group I42d with eight formula units in a cell of dimensions a = 18.893 (3) and c = 14.069 (3) Å. The Cr—N(chxn) bond lengths are in the range 2.0723 (19) to 2.0937 (19) Å, and the N—Cr—N bite angles are in the range 82.53 (7) to 82.69 (10)°. In comparison with the bond lengths and angles of the structure of this complex determined with 223 K data (Kalf et al., 2002), there are no remarkable differences, and also the the crystal packing has virtually identical features.

Fig. 1 shows the molecular components of the title compound, (I), which consists of a discrete complex cation [Cr(rac-chxn)3]3+, three lattice water molecules, together with one tetra­hedral [ZnCl4]2- and one isolated Cl- counter-ion. The nitro­gen atoms of the three 1,2-cyclo­hexanedi­amine ligands define a distorted o­cta­hedral coordination environment around the Cr(III) ion with a mean N—Cr—N bite angle of 82.1 (4)°. The resulting five-membered chelate rings of chxn ligands have the expected stable gauche conformation. The Cr—N(chxn) bond lengths are in the range 2.0737 (12) to 2.0928 (12) Å, in good agreement with those determined in [Cr(RR-chxn)3](NO3)3·3H2O (Morooka et al., 1992) and [Cr(rac-chxn)3]Cl3·2H2O (Kalf et al., 2002). The disordered tetra­hedral [ZnCl4]2- anion, the isolated Cl- anion and the three water molecules remain outside the coordination sphere of CrIII . The complex [ZnCl4]2- anion is distorted due to its involvement in hydrogen-bonding inter­actions. The [ZnCl4]2- and Cl- anions are well separated by van der Waals contacts and consequently there is no basis for describing the ZnII species as a distorted [ZnCl5]3- anion.

Supra­molecular features top

Extensive hydrogen-bonding inter­actions occur in the crystal structure (Table 1), involving the N—H groups of the chxn ligands and the O—H groups of the lattice water molecules as donors, and the chloride ions and Cl atoms of the disordered [ZnCl4]2- anions and water O atoms as acceptors. The supra­molecular architecture gives rise to a three-dimensional network structure (Fig. 2).

Database survey top

A search of the Cambridge Structural Database (Version 5.36, May 2015 with one update; Groom et al., 2016) shows that there are three previous reports for CrIII complexes containing three chelating chxn ligands, viz. [Cr(RR-chxn)3](NO3)3·3H2O (Morooka et al., 1992), [Cr(rac-chxn)3]Cl3·2H2O (Kalf et al., 2002), and [Cr(RR-chxn)3][Co(SS-chxn)3]Cl6·4H2O (Kalf et al., 2002). The structure of any double salt of [Cr(chxn)3]3+ with an additional [ZnCl4]2- anion has not been deposited.

Synthesis and crystallization top

Commercially available (Aldrich) racemic trans-1,2-cyclo­hexanedi­amine was used as provided. All other chemicals with the best analytical grade available were used. The starting material, [Cr(rac-chxn)3]Cl3·2H2O was prepared according to the literature (Pedersen, 1970). The crude trichloride salt (0.22 g) was dissolved in 10 ml of 1 M HCl at 313 K and 5 ml of 1 M HCl containing 0.5 g of solid ZnCl2 were added to this solution. The resulting solution was filtered and allowed to stand at room temperature for one week to give block-like yellow crystals of the tetra­chloridozincate(II) chloride salt suitable for X-ray structural analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were found from difference maps but were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99–1.00 Å and N—H = 0.91 Å, and with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms. The hydrogen atoms of water molecules were restrained using DFIX and DANG commands during the least-squares refinement (Sheldrick, 2015b). The [ZnCl4]2- anion was refined as positionally disordered over two sets of sites with a refined occupancy ratio constrained to 0.94:0.06 in the last refinement cycles.

Structure description top

trans-1,2-Cyclo­hexanedi­amine (chxn) can coordinate to a central metal ion as a bidentate ligand via the two nitro­gen atoms, forming a five-membered chelate ring. The synthetic procedures, crystal structures and detailed spectroscopic properties of such [Cr(chxn)3]3+ complexes with chloride or nitrate anions have been reported previously (Morooka et al., 1992; Choi, 1994; Kalf et al., 2002). Since counter-anionic species play a very important role in coordination chemistry and supra­molecular chemistry (Fabbrizzi & Poggi, 2013; Santos-Figueroa et al., 2013), changing the type of anion can also result in different structural properties. With respect to the tetra­chloridozincate anion, [ZnCl4]2-, the crystal structures of complexes with trivalent chromium have been determined for [Cr(NH3)6][ZnCl4]Cl (Clegg, 1976), [Cr(en)3][ZnCl4]Cl (en is ethyl­enedi­amine; Pons et al., 1988) and trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O (cyclam is 1,4,8,11-tetra­aza­cyclo­tetra­decane; Moon & Choi, 2016). However, a combination of the [Cr(chxn)3]3+ cation with [ZnCl4]2- and Cl- as anions is unreported. In order to confirm that the resulting structure belongs to a double salt with [ZnCl4]2- and Cl- anions and does not contain a [ZnCl5]3- anion, we prepared this material and report here on the molecular and crystal structure of [Cr(rac-chxn)3][ZnCl4]Cl·3H2O, (I).

first of all we performed a single-crystal structure analysis of the starting complex [Cr(chxn)3]Cl3·2H2O with 98 K synchrotron data to determine the exact composition and coordination geometry of the CrIII ion. The complex crystallizes in the space group I42d with eight formula units in a cell of dimensions a = 18.893 (3) and c = 14.069 (3) Å. The Cr—N(chxn) bond lengths are in the range 2.0723 (19) to 2.0937 (19) Å, and the N—Cr—N bite angles are in the range 82.53 (7) to 82.69 (10)°. In comparison with the bond lengths and angles of the structure of this complex determined with 223 K data (Kalf et al., 2002), there are no remarkable differences, and also the the crystal packing has virtually identical features.

Fig. 1 shows the molecular components of the title compound, (I), which consists of a discrete complex cation [Cr(rac-chxn)3]3+, three lattice water molecules, together with one tetra­hedral [ZnCl4]2- and one isolated Cl- counter-ion. The nitro­gen atoms of the three 1,2-cyclo­hexanedi­amine ligands define a distorted o­cta­hedral coordination environment around the Cr(III) ion with a mean N—Cr—N bite angle of 82.1 (4)°. The resulting five-membered chelate rings of chxn ligands have the expected stable gauche conformation. The Cr—N(chxn) bond lengths are in the range 2.0737 (12) to 2.0928 (12) Å, in good agreement with those determined in [Cr(RR-chxn)3](NO3)3·3H2O (Morooka et al., 1992) and [Cr(rac-chxn)3]Cl3·2H2O (Kalf et al., 2002). The disordered tetra­hedral [ZnCl4]2- anion, the isolated Cl- anion and the three water molecules remain outside the coordination sphere of CrIII . The complex [ZnCl4]2- anion is distorted due to its involvement in hydrogen-bonding inter­actions. The [ZnCl4]2- and Cl- anions are well separated by van der Waals contacts and consequently there is no basis for describing the ZnII species as a distorted [ZnCl5]3- anion.

Extensive hydrogen-bonding inter­actions occur in the crystal structure (Table 1), involving the N—H groups of the chxn ligands and the O—H groups of the lattice water molecules as donors, and the chloride ions and Cl atoms of the disordered [ZnCl4]2- anions and water O atoms as acceptors. The supra­molecular architecture gives rise to a three-dimensional network structure (Fig. 2).

A search of the Cambridge Structural Database (Version 5.36, May 2015 with one update; Groom et al., 2016) shows that there are three previous reports for CrIII complexes containing three chelating chxn ligands, viz. [Cr(RR-chxn)3](NO3)3·3H2O (Morooka et al., 1992), [Cr(rac-chxn)3]Cl3·2H2O (Kalf et al., 2002), and [Cr(RR-chxn)3][Co(SS-chxn)3]Cl6·4H2O (Kalf et al., 2002). The structure of any double salt of [Cr(chxn)3]3+ with an additional [ZnCl4]2- anion has not been deposited.

Synthesis and crystallization top

Commercially available (Aldrich) racemic trans-1,2-cyclo­hexanedi­amine was used as provided. All other chemicals with the best analytical grade available were used. The starting material, [Cr(rac-chxn)3]Cl3·2H2O was prepared according to the literature (Pedersen, 1970). The crude trichloride salt (0.22 g) was dissolved in 10 ml of 1 M HCl at 313 K and 5 ml of 1 M HCl containing 0.5 g of solid ZnCl2 were added to this solution. The resulting solution was filtered and allowed to stand at room temperature for one week to give block-like yellow crystals of the tetra­chloridozincate(II) chloride salt suitable for X-ray structural analysis.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were found from difference maps but were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99–1.00 Å and N—H = 0.91 Å, and with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms. The hydrogen atoms of water molecules were restrained using DFIX and DANG commands during the least-squares refinement (Sheldrick, 2015b). The [ZnCl4]2- anion was refined as positionally disordered over two sets of sites with a refined occupancy ratio constrained to 0.94:0.06 in the last refinement cycles.

Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structures of the molecular components of the title double salt, drawn with displacement parameters at the 50% probability level. Dashed lines represent hydrogen-bonding interactions.
[Figure 2] Fig. 2. The crystal packing in the title double salt viewed perpendicular to the bc plane. Dashed lines represent hydrogen-bonding interactions: N—H···Cl (pink), N—H···O (cyan), O—H···O (light green) and O—H···Cl (orange). The minor disorder components of the [ZnCl4]2- anion have been omitted for clarity.
Tris(trans-1,2-cyclohexanediamine-κ2N,N')chromium(III) tetrachloridozincate chloride trihydrate top
Crystal data top
[Cr(C6H14N2)3][ZnCl4]Cl·3H2OF(000) = 1444
Mr = 691.24Dx = 1.508 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.62998 Å
a = 10.594 (2) ÅCell parameters from 39315 reflections
b = 13.075 (3) Åθ = 0.4–33.6°
c = 22.384 (5) ŵ = 1.15 mm1
β = 100.87 (3)°T = 100 K
V = 3045.0 (11) Å3Block, yellow
Z = 40.25 × 0.15 × 0.05 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
7647 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.034
ω scanθmax = 26.0°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1413
Tmin = 0.762, Tmax = 0.945k = 1818
23113 measured reflectionsl = 3123
8090 independent reflections
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.582P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
8090 reflectionsΔρmax = 1.07 e Å3
371 parametersΔρmin = 1.14 e Å3
Crystal data top
[Cr(C6H14N2)3][ZnCl4]Cl·3H2OV = 3045.0 (11) Å3
Mr = 691.24Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.62998 Å
a = 10.594 (2) ŵ = 1.15 mm1
b = 13.075 (3) ÅT = 100 K
c = 22.384 (5) Å0.25 × 0.15 × 0.05 mm
β = 100.87 (3)°
Data collection top
ADSC Q210 CCD area detector
diffractometer
8090 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
7647 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.945Rint = 0.034
23113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02715 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.07 e Å3
8090 reflectionsΔρmin = 1.14 e Å3
371 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.74469 (2)0.93268 (2)0.34326 (2)0.00945 (5)
N10.64213 (11)0.83929 (8)0.39272 (5)0.0148 (2)
H1A0.65400.86100.43200.018*
H1B0.55670.84270.37660.018*
N20.86651 (10)0.80619 (8)0.35251 (5)0.01418 (19)
H2A0.85700.77190.31660.017*
H2B0.94970.82700.36290.017*
N30.64039 (10)0.87915 (8)0.26146 (5)0.01276 (18)
H3A0.66360.81360.25520.015*
H3B0.55500.87990.26250.015*
N40.84308 (11)1.01181 (8)0.28504 (5)0.01452 (19)
H4A0.82021.07900.28360.017*
H4B0.92931.00760.29910.017*
N50.61717 (10)1.05117 (7)0.35045 (5)0.01305 (18)
H5A0.62041.09890.32120.016*
H5B0.53551.02650.34530.016*
N60.85476 (11)1.00563 (8)0.41871 (5)0.0163 (2)
H6A0.85400.96800.45290.020*
H6B0.93761.01150.41350.020*
C10.68832 (12)0.73168 (8)0.39046 (6)0.0125 (2)
H10.65580.70350.34890.015*
C20.64271 (14)0.66233 (9)0.43714 (6)0.0179 (2)
H2C0.54800.65580.42730.021*
H2D0.66650.69290.47820.021*
C30.70450 (15)0.55615 (9)0.43674 (6)0.0208 (3)
H3C0.67730.51260.46820.025*
H3D0.67480.52340.39670.025*
C40.85043 (15)0.56437 (10)0.44909 (6)0.0220 (3)
H4C0.88850.49530.44840.026*
H4D0.88060.59410.49000.026*
C50.89466 (13)0.63175 (9)0.40110 (6)0.0175 (2)
H5C0.98950.63800.41020.021*
H5D0.86940.59980.36050.021*
C60.83391 (12)0.73752 (9)0.40071 (5)0.0126 (2)
H60.86540.77020.44120.015*
C70.66650 (12)0.94593 (8)0.21109 (5)0.0120 (2)
H70.62151.01260.21340.014*
C80.61868 (13)0.89995 (10)0.14856 (6)0.0169 (2)
H8A0.52410.89210.14170.020*
H8B0.65700.83130.14640.020*
C90.65520 (14)0.96868 (11)0.09937 (6)0.0221 (3)
H9A0.61041.03510.09920.026*
H9B0.62730.93630.05900.026*
C100.80021 (14)0.98656 (11)0.11056 (6)0.0208 (3)
H10A0.82131.03290.07890.025*
H10B0.84460.92070.10750.025*
C110.84846 (13)1.03355 (9)0.17347 (6)0.0162 (2)
H11A0.94321.04050.18050.019*
H11B0.81101.10260.17520.019*
C120.81033 (11)0.96599 (9)0.22289 (5)0.0123 (2)
H120.85600.89900.22320.015*
C130.65454 (12)1.09834 (9)0.41220 (6)0.0133 (2)
H130.62971.05030.44280.016*
C140.58832 (14)1.20051 (9)0.41731 (7)0.0199 (2)
H14A0.49401.19050.41000.024*
H14B0.60841.24820.38610.024*
C150.63376 (16)1.24644 (10)0.48076 (7)0.0253 (3)
H15A0.59311.31420.48290.030*
H15B0.60641.20160.51160.030*
C160.77959 (17)1.25828 (12)0.49508 (8)0.0303 (3)
H16A0.80631.28370.53720.036*
H16B0.80601.30940.46720.036*
C170.84742 (15)1.15638 (11)0.48828 (7)0.0255 (3)
H17A0.94131.16780.49420.031*
H17B0.83091.10810.52000.031*
C180.79971 (13)1.10982 (9)0.42553 (6)0.0164 (2)
H180.82501.15610.39420.020*
Zn1A0.76131 (2)0.36294 (2)0.25952 (2)0.01355 (6)0.94
Cl1A0.63241 (4)0.50140 (3)0.26301 (2)0.01450 (9)0.94
Cl2A0.86823 (7)0.38639 (5)0.18121 (3)0.02463 (12)0.94
Cl3A0.62548 (10)0.22658 (7)0.23764 (4)0.01813 (15)0.94
Cl4A0.89500 (4)0.34751 (3)0.34937 (2)0.02371 (8)0.94
Zn1B0.7716 (6)0.3345 (4)0.2463 (3)0.0287 (10)0.06
Cl1B0.9326 (9)0.2641 (8)0.3181 (5)0.056 (3)0.06
Cl2B0.6709 (11)0.4742 (7)0.2722 (6)0.040 (2)0.06
Cl3B0.8504 (18)0.3625 (15)0.1645 (9)0.062 (5)0.06
Cl4B0.6062 (18)0.2271 (16)0.2239 (8)0.031 (4)0.06
Cl50.76791 (6)0.60816 (3)0.03343 (2)0.04180 (13)
O1W0.94431 (12)0.64959 (9)0.15743 (6)0.0304 (3)
H1O10.8960 (19)0.6389 (15)0.1230 (6)0.037*
H2O10.982 (2)0.7057 (11)0.1558 (10)0.037*
O2W0.78942 (13)0.69376 (8)0.23958 (5)0.0276 (2)
H1O20.7480 (18)0.6407 (11)0.2436 (10)0.033*
H2O20.8389 (18)0.6809 (15)0.2159 (9)0.033*
O3W0.40117 (10)0.95853 (9)0.39920 (5)0.0259 (2)
H1O30.3764 (19)1.0020 (13)0.4223 (8)0.031*
H2O30.3341 (14)0.9374 (15)0.3769 (8)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.00941 (9)0.00891 (8)0.01117 (9)0.00020 (6)0.00483 (7)0.00071 (6)
N10.0136 (5)0.0139 (4)0.0196 (5)0.0054 (3)0.0102 (4)0.0066 (4)
N20.0111 (5)0.0135 (4)0.0204 (5)0.0001 (3)0.0094 (4)0.0001 (4)
N30.0125 (5)0.0125 (4)0.0143 (5)0.0047 (3)0.0050 (4)0.0004 (3)
N40.0151 (5)0.0154 (4)0.0142 (5)0.0072 (4)0.0057 (4)0.0016 (4)
N50.0126 (5)0.0117 (4)0.0145 (5)0.0015 (3)0.0019 (4)0.0012 (3)
N60.0112 (5)0.0196 (5)0.0178 (5)0.0035 (4)0.0023 (4)0.0034 (4)
C10.0119 (5)0.0119 (5)0.0154 (5)0.0019 (4)0.0066 (4)0.0035 (4)
C20.0235 (7)0.0145 (5)0.0191 (6)0.0009 (4)0.0124 (5)0.0052 (4)
C30.0355 (8)0.0122 (5)0.0169 (6)0.0012 (5)0.0109 (5)0.0025 (4)
C40.0328 (8)0.0146 (5)0.0184 (6)0.0089 (5)0.0042 (5)0.0027 (4)
C50.0185 (6)0.0141 (5)0.0205 (6)0.0070 (4)0.0053 (5)0.0009 (4)
C60.0118 (5)0.0117 (5)0.0152 (5)0.0026 (4)0.0045 (4)0.0004 (4)
C70.0127 (5)0.0122 (4)0.0121 (5)0.0024 (4)0.0050 (4)0.0008 (4)
C80.0162 (6)0.0203 (6)0.0143 (5)0.0045 (4)0.0033 (4)0.0025 (4)
C90.0229 (7)0.0294 (7)0.0139 (6)0.0025 (5)0.0038 (5)0.0017 (5)
C100.0225 (7)0.0270 (6)0.0149 (6)0.0026 (5)0.0089 (5)0.0008 (5)
C110.0170 (6)0.0176 (5)0.0162 (5)0.0049 (4)0.0088 (4)0.0019 (4)
C120.0127 (5)0.0126 (5)0.0130 (5)0.0030 (4)0.0058 (4)0.0004 (4)
C130.0140 (5)0.0108 (5)0.0156 (5)0.0015 (4)0.0041 (4)0.0001 (4)
C140.0227 (6)0.0123 (5)0.0265 (7)0.0055 (4)0.0096 (5)0.0000 (4)
C150.0329 (8)0.0169 (6)0.0294 (7)0.0023 (5)0.0145 (6)0.0063 (5)
C160.0357 (9)0.0223 (6)0.0345 (8)0.0063 (6)0.0104 (7)0.0146 (6)
C170.0231 (7)0.0269 (7)0.0256 (7)0.0030 (5)0.0020 (6)0.0132 (5)
C180.0149 (6)0.0145 (5)0.0202 (6)0.0010 (4)0.0047 (4)0.0048 (4)
Zn1A0.00992 (9)0.01085 (11)0.02095 (13)0.00062 (7)0.00562 (8)0.00178 (7)
Cl1A0.01152 (18)0.01180 (19)0.02058 (16)0.00198 (12)0.00407 (13)0.00062 (13)
Cl2A0.0129 (2)0.0329 (3)0.0317 (3)0.00436 (17)0.0133 (2)0.0052 (2)
Cl3A0.0171 (4)0.01019 (19)0.0277 (4)0.0013 (2)0.0058 (3)0.0002 (2)
Cl4A0.02115 (17)0.01976 (15)0.02746 (18)0.00188 (11)0.00247 (13)0.00251 (12)
Zn1B0.029 (2)0.027 (2)0.034 (3)0.0094 (19)0.0149 (16)0.0010 (17)
Cl1B0.037 (4)0.069 (6)0.059 (6)0.013 (4)0.002 (4)0.028 (5)
Cl2B0.037 (5)0.019 (4)0.071 (7)0.017 (3)0.030 (5)0.020 (4)
Cl3B0.041 (9)0.085 (12)0.066 (11)0.026 (7)0.028 (8)0.001 (7)
Cl4B0.010 (4)0.034 (5)0.045 (8)0.010 (3)0.008 (4)0.004 (5)
Cl50.0815 (4)0.03036 (19)0.01572 (16)0.0234 (2)0.01466 (19)0.00282 (13)
O1W0.0211 (5)0.0298 (5)0.0381 (7)0.0013 (4)0.0000 (5)0.0111 (5)
O2W0.0423 (7)0.0146 (4)0.0300 (6)0.0058 (4)0.0168 (5)0.0031 (4)
O3W0.0156 (5)0.0347 (6)0.0285 (5)0.0001 (4)0.0071 (4)0.0024 (4)
Geometric parameters (Å, º) top
Cr1—N32.0737 (12)C8—H8A0.9900
Cr1—N52.0817 (10)C8—H8B0.9900
Cr1—N22.0839 (11)C9—C101.527 (2)
Cr1—N12.0859 (11)C9—H9A0.9900
Cr1—N42.0899 (11)C9—H9B0.9900
Cr1—N62.0928 (12)C10—C111.5330 (19)
N1—C11.4937 (15)C10—H10A0.9900
N1—H1A0.9100C10—H10B0.9900
N1—H1B0.9100C11—C121.5283 (16)
N2—C61.4932 (15)C11—H11A0.9900
N2—H2A0.9100C11—H11B0.9900
N2—H2B0.9100C12—H121.0000
N3—C71.4927 (15)C13—C181.5178 (18)
N3—H3A0.9100C13—C141.5232 (16)
N3—H3B0.9100C13—H131.0000
N4—C121.4942 (15)C14—C151.533 (2)
N4—H4A0.9100C14—H14A0.9900
N4—H4B0.9100C14—H14B0.9900
N5—C131.4971 (16)C15—C161.525 (2)
N5—H5A0.9100C15—H15A0.9900
N5—H5B0.9100C15—H15B0.9900
N6—C181.5009 (16)C16—C171.535 (2)
N6—H6A0.9100C16—H16A0.9900
N6—H6B0.9100C16—H16B0.9900
C1—C61.5179 (17)C17—C181.5270 (19)
C1—C21.5289 (16)C17—H17A0.9900
C1—H11.0000C17—H17B0.9900
C2—C31.5356 (18)C18—H181.0000
C2—H2C0.9900Zn1A—Cl4A2.2400 (9)
C2—H2D0.9900Zn1A—Cl1A2.2779 (6)
C3—C41.522 (2)Zn1A—Cl2A2.2799 (9)
C3—H3C0.9900Zn1A—Cl3A2.2856 (10)
C3—H3D0.9900Zn1B—Cl3B2.18 (2)
C4—C51.529 (2)Zn1B—Cl4B2.23 (2)
C4—H4C0.9900Zn1B—Cl2B2.246 (11)
C4—H4D0.9900Zn1B—Cl1B2.304 (11)
C5—C61.5247 (16)Cl1B—O1Wi1.993 (11)
C5—H5C0.9900O1W—Cl1Bii1.993 (11)
C5—H5D0.9900O1W—H1O10.853 (9)
C6—H61.0000O1W—H2O10.841 (9)
C7—C121.5194 (17)O2W—H1O20.834 (9)
C7—C81.5197 (17)O2W—H2O20.829 (9)
C7—H71.0000O3W—H1O30.843 (9)
C8—C91.5267 (19)O3W—H2O30.835 (9)
N3—Cr1—N594.24 (5)C12—C7—C8112.19 (10)
N3—Cr1—N292.11 (5)N3—C7—H7108.2
N5—Cr1—N2169.03 (4)C12—C7—H7108.2
N3—Cr1—N191.55 (5)C8—C7—H7108.2
N5—Cr1—N189.09 (4)C7—C8—C9110.21 (10)
N2—Cr1—N181.81 (4)C7—C8—H8A109.6
N3—Cr1—N482.06 (4)C9—C8—H8A109.6
N5—Cr1—N494.99 (5)C7—C8—H8B109.6
N2—Cr1—N494.74 (5)C9—C8—H8B109.6
N1—Cr1—N4172.64 (4)H8A—C8—H8B108.1
N3—Cr1—N6171.68 (4)C8—C9—C10110.83 (12)
N5—Cr1—N682.49 (5)C8—C9—H9A109.5
N2—Cr1—N692.35 (5)C10—C9—H9A109.5
N1—Cr1—N696.04 (5)C8—C9—H9B109.5
N4—Cr1—N690.58 (5)C10—C9—H9B109.5
C1—N1—Cr1109.07 (7)H9A—C9—H9B108.1
C1—N1—H1A109.9C9—C10—C11111.28 (11)
Cr1—N1—H1A109.9C9—C10—H10A109.4
C1—N1—H1B109.9C11—C10—H10A109.4
Cr1—N1—H1B109.9C9—C10—H10B109.4
H1A—N1—H1B108.3C11—C10—H10B109.4
C6—N2—Cr1109.01 (7)H10A—C10—H10B108.0
C6—N2—H2A109.9C12—C11—C10110.21 (10)
Cr1—N2—H2A109.9C12—C11—H11A109.6
C6—N2—H2B109.9C10—C11—H11A109.6
Cr1—N2—H2B109.9C12—C11—H11B109.6
H2A—N2—H2B108.3C10—C11—H11B109.6
C7—N3—Cr1109.01 (7)H11A—C11—H11B108.1
C7—N3—H3A109.9N4—C12—C7106.28 (10)
Cr1—N3—H3A109.9N4—C12—C11113.29 (9)
C7—N3—H3B109.9C7—C12—C11111.54 (10)
Cr1—N3—H3B109.9N4—C12—H12108.5
H3A—N3—H3B108.3C7—C12—H12108.5
C12—N4—Cr1109.05 (7)C11—C12—H12108.5
C12—N4—H4A109.9N5—C13—C18107.70 (10)
Cr1—N4—H4A109.9N5—C13—C14112.66 (10)
C12—N4—H4B109.9C18—C13—C14111.25 (10)
Cr1—N4—H4B109.9N5—C13—H13108.4
H4A—N4—H4B108.3C18—C13—H13108.4
C13—N5—Cr1108.39 (7)C14—C13—H13108.4
C13—N5—H5A110.0C13—C14—C15110.15 (11)
Cr1—N5—H5A110.0C13—C14—H14A109.6
C13—N5—H5B110.0C15—C14—H14A109.6
Cr1—N5—H5B110.0C13—C14—H14B109.6
H5A—N5—H5B108.4C15—C14—H14B109.6
C18—N6—Cr1109.12 (8)H14A—C14—H14B108.1
C18—N6—H6A109.9C16—C15—C14111.29 (12)
Cr1—N6—H6A109.9C16—C15—H15A109.4
C18—N6—H6B109.9C14—C15—H15A109.4
Cr1—N6—H6B109.9C16—C15—H15B109.4
H6A—N6—H6B108.3C14—C15—H15B109.4
N1—C1—C6106.11 (9)H15A—C15—H15B108.0
N1—C1—C2112.82 (10)C15—C16—C17111.45 (12)
C6—C1—C2111.69 (10)C15—C16—H16A109.3
N1—C1—H1108.7C17—C16—H16A109.3
C6—C1—H1108.7C15—C16—H16B109.3
C2—C1—H1108.7C17—C16—H16B109.3
C1—C2—C3110.02 (10)H16A—C16—H16B108.0
C1—C2—H2C109.7C18—C17—C16110.94 (13)
C3—C2—H2C109.7C18—C17—H17A109.5
C1—C2—H2D109.7C16—C17—H17A109.5
C3—C2—H2D109.7C18—C17—H17B109.5
H2C—C2—H2D108.2C16—C17—H17B109.5
C4—C3—C2110.76 (11)H17A—C17—H17B108.0
C4—C3—H3C109.5N6—C18—C13106.80 (10)
C2—C3—H3C109.5N6—C18—C17112.82 (11)
C4—C3—H3D109.5C13—C18—C17111.57 (11)
C2—C3—H3D109.5N6—C18—H18108.5
H3C—C3—H3D108.1C13—C18—H18108.5
C3—C4—C5110.38 (11)C17—C18—H18108.5
C3—C4—H4C109.6Cl4A—Zn1A—Cl1A108.81 (2)
C5—C4—H4C109.6Cl4A—Zn1A—Cl2A112.38 (3)
C3—C4—H4D109.6Cl1A—Zn1A—Cl2A107.91 (3)
C5—C4—H4D109.6Cl4A—Zn1A—Cl3A112.84 (3)
H4C—C4—H4D108.1Cl1A—Zn1A—Cl3A105.66 (4)
C6—C5—C4109.98 (11)Cl2A—Zn1A—Cl3A108.92 (3)
C6—C5—H5C109.7Cl3B—Zn1B—Cl4B109.0 (8)
C4—C5—H5C109.7Cl3B—Zn1B—Cl2B110.8 (6)
C6—C5—H5D109.7Cl4B—Zn1B—Cl2B100.3 (7)
C4—C5—H5D109.7Cl3B—Zn1B—Cl1B107.6 (6)
H5C—C5—H5D108.2Cl4B—Zn1B—Cl1B110.7 (6)
N2—C6—C1106.74 (10)Cl2B—Zn1B—Cl1B118.1 (5)
N2—C6—C5113.24 (10)O1Wi—Cl1B—Zn1B148.4 (7)
C1—C6—C5111.78 (10)Cl1Bii—O1W—H1O1128.5 (15)
N2—C6—H6108.3Cl1Bii—O1W—H2O120.4 (15)
C1—C6—H6108.3H1O1—O1W—H2O1108.4 (17)
C5—C6—H6108.3H1O2—O2W—H2O2108.0 (17)
N3—C7—C12106.99 (10)H1O3—O3W—H2O3105.2 (17)
N3—C7—C8112.78 (9)
Cr1—N1—C1—C643.74 (11)Cr1—N4—C12—C11165.21 (8)
Cr1—N1—C1—C2166.35 (9)N3—C7—C12—N456.47 (11)
N1—C1—C2—C3174.32 (11)C8—C7—C12—N4179.35 (9)
C6—C1—C2—C354.88 (14)N3—C7—C12—C11179.60 (9)
C1—C2—C3—C456.88 (15)C8—C7—C12—C1155.42 (13)
C2—C3—C4—C558.90 (14)C10—C11—C12—N4174.49 (11)
C3—C4—C5—C657.83 (14)C10—C11—C12—C754.61 (14)
Cr1—N2—C6—C143.07 (10)Cr1—N5—C13—C1843.53 (10)
Cr1—N2—C6—C5166.49 (8)Cr1—N5—C13—C14166.59 (9)
N1—C1—C6—N257.08 (12)N5—C13—C14—C15178.16 (11)
C2—C1—C6—N2179.59 (10)C18—C13—C14—C1557.11 (15)
N1—C1—C6—C5178.59 (10)C13—C14—C15—C1656.49 (16)
C2—C1—C6—C555.27 (13)C14—C15—C16—C1755.32 (18)
C4—C5—C6—N2176.70 (11)C15—C16—C17—C1854.00 (18)
C4—C5—C6—C156.10 (14)Cr1—N6—C18—C1340.46 (11)
Cr1—N3—C7—C1243.41 (10)Cr1—N6—C18—C17163.39 (10)
Cr1—N3—C7—C8167.23 (8)N5—C13—C18—N655.59 (12)
N3—C7—C8—C9176.66 (11)C14—C13—C18—N6179.51 (10)
C12—C7—C8—C955.76 (14)N5—C13—C18—C17179.30 (10)
C7—C8—C9—C1056.43 (15)C14—C13—C18—C1756.79 (14)
C8—C9—C10—C1157.35 (15)C16—C17—C18—N6174.93 (12)
C9—C10—C11—C1255.91 (15)C16—C17—C18—C1354.69 (16)
Cr1—N4—C12—C742.38 (10)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl5iii0.912.403.2535 (15)157
N1—H1B···O3W0.912.363.0178 (16)129
N2—H2A···O2W0.912.012.9051 (17)166
N2—H2B···Cl2Aii0.912.453.2197 (14)142
N2—H2B···Cl3Bii0.912.363.180 (18)150
N3—H3A···O2W0.912.132.9832 (16)156
N3—H3B···Cl1Aiv0.912.523.2574 (13)138
N3—H3B···Cl3Aiv0.912.773.4547 (16)133
N3—H3B···Cl2Biv0.912.673.471 (10)147
N3—H3B···Cl4Biv0.912.683.35 (2)131
N4—H4A···Cl1Bv0.912.743.473 (11)138
N4—H4B···Cl2Aii0.912.643.4267 (15)146
N4—H4B···O1Wii0.912.392.9804 (17)123
N5—H5A···Cl3Av0.912.513.4245 (14)178
N5—H5A···Cl4Bv0.912.733.634 (19)173
N5—H5B···Cl1Aiv0.912.743.3664 (16)127
N5—H5B···O3W0.912.222.9724 (17)140
N6—H6A···Cl5iii0.912.393.2474 (14)158
O1W—H1O1···Cl50.85 (1)2.24 (1)3.0878 (17)179 (2)
O1W—H2O1···Cl4Aii0.84 (1)2.28 (1)3.1170 (13)174 (2)
O2W—H1O2···Cl1A0.83 (1)2.28 (1)3.1140 (12)175 (2)
O2W—H1O2···Cl2B0.83 (1)2.45 (1)3.271 (9)167 (2)
O2W—H2O2···O1W0.83 (1)1.92 (1)2.7468 (19)177 (2)
O3W—H1O3···Cl5iv0.84 (1)2.41 (1)3.2139 (13)159 (2)
O3W—H2O3···Cl2Aiv0.84 (1)2.38 (1)3.2153 (17)175 (2)
O3W—H2O3···Cl3Biv0.84 (1)2.23 (2)3.05 (2)167 (2)
Symmetry codes: (ii) x+2, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl5i0.912.403.2535 (15)157.1
N1—H1B···O3W0.912.363.0178 (16)128.9
N2—H2A···O2W0.912.012.9051 (17)165.5
N2—H2B···Cl2Aii0.912.453.2197 (14)142.1
N2—H2B···Cl3Bii0.912.363.180 (18)150.0
N3—H3A···O2W0.912.132.9832 (16)156.2
N3—H3B···Cl1Aiii0.912.523.2574 (13)138.2
N3—H3B···Cl3Aiii0.912.773.4547 (16)133.0
N3—H3B···Cl2Biii0.912.673.471 (10)146.9
N3—H3B···Cl4Biii0.912.683.35 (2)130.7
N4—H4A···Cl1Biv0.912.743.473 (11)138.0
N4—H4B···Cl2Aii0.912.643.4267 (15)145.7
N4—H4B···O1Wii0.912.392.9804 (17)122.9
N5—H5A···Cl3Aiv0.912.513.4245 (14)178.0
N5—H5A···Cl4Biv0.912.733.634 (19)172.5
N5—H5B···Cl1Aiii0.912.743.3664 (16)126.7
N5—H5B···O3W0.912.222.9724 (17)139.9
N6—H6A···Cl5i0.912.393.2474 (14)157.7
O1W—H1O1···Cl50.853 (9)2.235 (9)3.0878 (17)179 (2)
O1W—H2O1···Cl4Aii0.841 (9)2.279 (10)3.1170 (13)174 (2)
O2W—H1O2···Cl1A0.834 (9)2.282 (9)3.1140 (12)175 (2)
O2W—H1O2···Cl2B0.834 (9)2.453 (14)3.271 (9)167 (2)
O2W—H2O2···O1W0.829 (9)1.919 (10)2.7468 (19)177 (2)
O3W—H1O3···Cl5iii0.843 (9)2.412 (12)3.2139 (13)159.2 (18)
O3W—H2O3···Cl2Aiii0.835 (9)2.383 (10)3.2153 (17)174.6 (19)
O3W—H2O3···Cl3Biii0.835 (9)2.23 (2)3.05 (2)167 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cr(C6H14N2)3][ZnCl4]Cl·3H2O
Mr691.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.594 (2), 13.075 (3), 22.384 (5)
β (°) 100.87 (3)
V3)3045.0 (11)
Z4
Radiation typeSynchrotron, λ = 0.62998 Å
µ (mm1)1.15
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerADSC Q210 CCD area detector
Absorption correctionEmpirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.762, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
23113, 8090, 7647
Rint0.034
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.05
No. of reflections8090
No. of parameters371
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.07, 1.14

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Putz & Brandenburg, 2014), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by a grant from 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationChoi, J.-H. (1994). Bull. Korean Chem. Soc. 15, 145–150.  CrossRef CAS Web of Science Google Scholar
First citationClegg, W. (1976). Acta Cryst. B32, 2907–2909.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  CSD CrossRef IUCr Journals Google Scholar
First citationKalf, I., Calmuschi, B. & Englert, U. (2002). CrystEngComm, 4, 548–551.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 456–459.  CSD CrossRef IUCr Journals Google Scholar
First citationMorooka, M., Ohba, S. & Miyamae, H. (1992). Acta Cryst. B48, 667–672.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPedersen, E. (1970). Acta Chem. Scand. 24, 3362–3372.  CrossRef CAS Web of Science Google Scholar
First citationPons, J., Casabó, J., Palacio, F., Morón, M. C., Solans, X. & Carlin, R. L. (1988). Inorg. Chim. Acta, 146, 161–165.  CSD CrossRef CAS Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSantos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489–3613.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 671-674
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds