research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 734-736

Crystal structure of canagliflozin hemihydrate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and bCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: huxiurong@zju.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 8 April 2016; accepted 21 April 2016; online 26 April 2016)

There are two canagliflozin mol­ecules (A and B) and one water mol­ecule in the asymmetric unit of the title compound, C24H25FO5S·0.5H2O [systematic name: (2S,3R,4R,5S,6R)-2-(3-{[5-(4-fluoro­phen­yl)thio­phen-2-yl]meth­yl}-4-methylphen­yl)-6-(hy­droxy­meth­yl)-3,4,5,6-tetra­hydro-2H-pyran-3,4,5-triol hemihydrate]. The dihedral angles between the methyl­benzene and thio­phene rings are 115.7 (4) and 111.7 (4)°, while the dihedral angles between the fluoro­benzene and thio­phene rings are 24.2 (6) and 20.5 (9)° in mol­ecules A and B, respectively. The hydro­pyran ring exhibits a chair conformation in both canagliflozin mol­ecules. In the crystal, the canagliflozin mol­ecules and lattice water mol­ecules are connected via O—H⋯O hydrogen bonds into a three-dimensional supra­molecular architecture.

1. Chemical context

Canagliflozin is a member of a new class of anti-diabetic drugs which are used to improve glycemic control of diabetics (Cefalu et al., 2013[Cefalu, W. T., Leiter, L. A., Yoon, K. H., Arias, P., Niskanen, L., Xie, J., Balis, D. A., Canovatchel, W. & Meininger, G. (2013). Lancet, 382, 941-950.]). The crystalline forms of canagliflozin have been reported (Mitsubishi et al., 2013[Mitsubishi, T., Nomura, S. & Kawanishi, A. (2013). World Patent WO2008069327A1.]; Ahmed et al., 2013[Ahmed, F. A., Maureen, C., Steven, M., Lorraine, S., Kenneth, M. W., Fan, Z., Sumihiro, N., Mitsuya, H. & Yuichi, K. (2013). US Patent 2009/0233874 A1.]; Chen et al., 2013[Chen, M.-H., Zhang, Y.-F., Zhao, Y. & Zhang, X.-Y. (2013). Chin. Patent CN103588762A.]), we report here the single-crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The title compound crystallizes with two independent canagliflozin mol­ecules and one water mol­ecule in the asymmetric unit (Fig. 1[link]). The water mol­ecule links the two canagliflozin mol­ecules (A and B) via two O—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A1⋯O2Bi 0.82 2.42 2.841 (4) 113
O3A—H3A1⋯O2Bi 0.82 2.17 2.951 (4) 158
O4A—H4A⋯O5Bii 0.82 1.98 2.756 (5) 157
O2B—H2B1⋯O4Aiii 0.82 1.85 2.672 (4) 179
O3B—H3B1⋯O4Bi 0.82 1.99 2.797 (4) 168
O4B—H4B⋯O6 0.82 1.93 2.749 (5) 172
O5B—H5B1⋯O3Biv 0.82 2.31 3.015 (5) 144
O6—H61⋯O2A 0.82 2.23 3.031 (5) 166
O6—H62⋯O3Av 0.83 2.30 3.058 (5) 153
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x-1, y-1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, (I)[link], showing the atom-labeling scheme and displacement ellipsoids at the 40% probability level. H atoms are shown as small circles of arbitrary radii.

The conformations of the two canagliflozin mol­ecules are somewhat different with regard to the orientation of the central benzene ring (C12–C17) with respect to the thio­phene ring, as indicated by torsion angles C9A—C10A—C11A—C12A = 113.3 (6)° in mol­ecule A and C9B—C10B—C11B—C12B = 108.0 (6)° in mol­ecule B. The conformational difference is also shown by the angle C10—C11—C12, which is 115.7 (4)° in mol­ecule A and 111.7 (4)° in mol­ecule B. The terminal aromatic rings (C1–C6) are inclined to the thio­phene rings, forming dihedral angles of 24.2 (6) and 20.5 (9)° in mol­ecules A and B, respectively. The tetra­hydro­pyran rings exhibit a distorted chair conformation in both mol­ecules A and B.

3. Supra­molecular features

In the crystal, O3B—H3B1⋯O4Bi, O2B–H2B1⋯O4Aiii, and O5B—H5B1⋯O3Biv [symmetry code: (i) x − [{1\over 2}], −y + [{3\over 2}], −z + 1; (iii) x, y + 1, z; (iv) x + 1, y, z] link canagliflozin mol­ecules, generating a ring of graph-set motif R33(9). The presence of the water mol­ecules results in the formation of zigzag chains mediated by alternating O4B—H4B⋯O6, O6—H61⋯O2A and O4A—H4A⋯O5Bii [symmetry code: (ii) x − 1, y − 1, z] hydrogen bonds propagating along the a axis; the chains are stacked along the c axis by further hydrogen-bonding inter­actions, O3A—H3A1⋯O2Bi and O2A–-H2A1⋯O2Bi (Fig. 2[link]).

[Figure 2]
Figure 2
Part of the crystal packing of the title compound, showing the extensive inter­molecular hydrogen-bonding inter­actions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Synthesis and crystallization

The crude product was supplied by Zhejiang Huadong Pharmaceutical Co., Ltd. It was recrystallized from methanol solution, giving colorless crystals suitable for X-ray diffraction.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and O—H = 0.82 Å and included in the refinement using a riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq(carrier atom).

Table 2
Experimental details

Crystal data
Chemical formula 2C24H25FO5S·H2O
Mr 907.02
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 8.4259 (4), 11.4264 (7), 45.706 (2)
V3) 4400.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.48 × 0.28 × 0.26
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCORM. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.914, 0.952
No. of measured, independent and observed [I > 2σ(I)] reflections 43211, 9958, 5079
Rint 0.145
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.147, 1.00
No. of reflections 9958
No. of parameters 575
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.29
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3246 Friedel pairs
Absolute structure parameter 0.13 (11)
Computer programs: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2007[Rigaku. (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Chemical context top

Canagliflozin is a member of a new class of anti-diabetic drugs which are used to improve glycemic control of diabetics (Cefalu et al., 2013). The crystalline forms of canagliflozin have been reported (Mitsubishi et al., 2013; Ahmed et al., 2013; Chen et al., 2013), we report here the single-crystal structure of the title compound.

Structural commentary top

The title compound crystallizes with two independent canagliflozin molecules and one water molecule in the asymmetric unit (Fig. 1). The water molecule links the two independent canagliflozin molecule (A and B) via two O—H···O hydrogen bonds (Table 1).

The conformations of the two canagliflozin molecules are somewhat different with regard to the orientation of the central benzene ring (C12–C17) with respect to the thio­phene ring, as indicated by torsion angles C9A—C10A—C11A—C12A = 113.3 (6)° in molecule A and C9B—C10B—C11B—C12B = 108.0 (6)° in molecule B. The conformational difference is also shown by the angle C10—C11—C12, which is 115.7 (4)° in molecule A and 111.7 (4)° in molecule B. The terminal aromatic rings (C1–C6) are inclined to the thio­phene rings, forming dihedral angles of 24.2 (6) and 20.5 (9)° in molecules A and B, respectively. The tetra­hydro­pyran rings exhibit a distorted chair conformation in both molecules A and B.

Supra­molecular features top

In the crystal, O3B—H3B1···O4Bi, O2B–H2B1···O4Aiii, and O5B—H5B1···O3Biv [symmetry code: (i) x - 1/2, -y + 3/2, -z + 1; (iii) x, y + 1, z; (iv) x + 1, y, z] link canagliflozin molecules, generating a ring of graph-set motif R33(9). The presence of the water molecules results in the formation of zigzag chains mediated by alternating O4B—H4B···O6, O6—H61···O2A and O4A—H4A···O5Bii [symmetry code: (ii) x - 1, y - 1, z] hydrogen bonds propagating along the a axis; the chains are stacked along the c axis by further hydrogen-bonding inter­actions, O3A—H3A1···O2Bi and O2A–-H2A1···O2Bi (Fig. 2).

Synthesis and crystallization top

The crude product was supplied by Zhejiang Huadong Pharmaceutical Co., Ltd. It was recrystallized from methanol solution, giving colorless crystals suitable for X-ray diffraction.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and O—H = 0.82 Å and included in the refinement using a riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq(carrier atom).

Structure description top

Canagliflozin is a member of a new class of anti-diabetic drugs which are used to improve glycemic control of diabetics (Cefalu et al., 2013). The crystalline forms of canagliflozin have been reported (Mitsubishi et al., 2013; Ahmed et al., 2013; Chen et al., 2013), we report here the single-crystal structure of the title compound.

The title compound crystallizes with two independent canagliflozin molecules and one water molecule in the asymmetric unit (Fig. 1). The water molecule links the two independent canagliflozin molecule (A and B) via two O—H···O hydrogen bonds (Table 1).

The conformations of the two canagliflozin molecules are somewhat different with regard to the orientation of the central benzene ring (C12–C17) with respect to the thio­phene ring, as indicated by torsion angles C9A—C10A—C11A—C12A = 113.3 (6)° in molecule A and C9B—C10B—C11B—C12B = 108.0 (6)° in molecule B. The conformational difference is also shown by the angle C10—C11—C12, which is 115.7 (4)° in molecule A and 111.7 (4)° in molecule B. The terminal aromatic rings (C1–C6) are inclined to the thio­phene rings, forming dihedral angles of 24.2 (6) and 20.5 (9)° in molecules A and B, respectively. The tetra­hydro­pyran rings exhibit a distorted chair conformation in both molecules A and B.

In the crystal, O3B—H3B1···O4Bi, O2B–H2B1···O4Aiii, and O5B—H5B1···O3Biv [symmetry code: (i) x - 1/2, -y + 3/2, -z + 1; (iii) x, y + 1, z; (iv) x + 1, y, z] link canagliflozin molecules, generating a ring of graph-set motif R33(9). The presence of the water molecules results in the formation of zigzag chains mediated by alternating O4B—H4B···O6, O6—H61···O2A and O4A—H4A···O5Bii [symmetry code: (ii) x - 1, y - 1, z] hydrogen bonds propagating along the a axis; the chains are stacked along the c axis by further hydrogen-bonding inter­actions, O3A—H3A1···O2Bi and O2A–-H2A1···O2Bi (Fig. 2).

Synthesis and crystallization top

The crude product was supplied by Zhejiang Huadong Pharmaceutical Co., Ltd. It was recrystallized from methanol solution, giving colorless crystals suitable for X-ray diffraction.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and O—H = 0.82 Å and included in the refinement using a riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq(carrier atom).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), showing the atom-labeling scheme and displacement ellipsoids at the 40% probability level. H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, showing the extensive intermolecular hydrogen-bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
(2S,3R,4R,5S,6R)-2-(3-{[5-(4-Fluorophenyl)thiophen-2-yl]methyl}-4-methylphenyl)-6-(hydroxymethyl)-3,4,5,6-tetrahydro-2H-pyran-3,4,5-triol hemihydrate top
Crystal data top
2C24H25FO5S·H2OF(000) = 1912
Mr = 907.02Dx = 1.369 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 23292 reflections
a = 8.4259 (4) Åθ = 3.0–27.4°
b = 11.4264 (7) ŵ = 0.19 mm1
c = 45.706 (2) ÅT = 296 K
V = 4400.4 (4) Å3Needle, colorless
Z = 40.48 × 0.28 × 0.26 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9958 independent reflections
Radiation source: rotating anode5079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.145
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.914, Tmax = 0.952l = 5959
43211 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0408P)2 + 2.8647P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
9958 reflectionsΔρmax = 0.38 e Å3
575 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 3246 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (11)
Crystal data top
2C24H25FO5S·H2OV = 4400.4 (4) Å3
Mr = 907.02Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4259 (4) ŵ = 0.19 mm1
b = 11.4264 (7) ÅT = 296 K
c = 45.706 (2) Å0.48 × 0.28 × 0.26 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9958 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5079 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.952Rint = 0.145
43211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.147Δρmax = 0.38 e Å3
S = 1.00Δρmin = 0.29 e Å3
9958 reflectionsAbsolute structure: Flack (1983), 3246 Friedel pairs
575 parametersAbsolute structure parameter: 0.13 (11)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.8230 (6)0.7018 (5)0.29229 (10)0.0474 (13)
C2A0.9098 (7)0.7759 (5)0.27372 (11)0.0595 (16)
H2A0.88080.85420.27210.071*
C3A1.0373 (7)0.7347 (6)0.25788 (12)0.0692 (17)
H3A1.09560.78430.24580.083*
C4A1.0755 (7)0.6195 (7)0.26042 (13)0.0676 (18)
C5A0.9969 (7)0.5431 (5)0.27796 (12)0.0652 (16)
H5A1.02770.46510.27930.078*
C6A0.8699 (7)0.5855 (5)0.29361 (11)0.0601 (15)
H6A0.81340.53430.30550.072*
C7A0.6928 (6)0.7483 (5)0.31027 (9)0.0451 (12)
C8A0.6052 (6)0.8464 (5)0.30734 (11)0.0554 (15)
H8A0.61330.89640.29140.066*
C9A0.4994 (6)0.8657 (5)0.33098 (12)0.0557 (15)
H9A0.43060.92930.33180.067*
C10A0.5076 (6)0.7834 (4)0.35224 (10)0.0421 (12)
C11A0.4200 (6)0.7753 (4)0.38050 (10)0.0477 (13)
H11A0.36210.84780.38340.057*
H11B0.49690.76880.39620.057*
C12A0.3033 (5)0.6737 (4)0.38309 (9)0.0369 (11)
C13A0.3383 (5)0.5781 (4)0.40050 (9)0.0343 (11)
H13A0.43320.57790.41090.041*
C14A0.2385 (5)0.4834 (4)0.40311 (9)0.0369 (11)
C15A0.0979 (5)0.4846 (4)0.38708 (10)0.0404 (12)
H15A0.02830.42160.38830.049*
C16A0.0611 (6)0.5791 (5)0.36942 (10)0.0482 (13)
H16A0.03320.57840.35880.058*
C17A0.1607 (6)0.6745 (5)0.36711 (10)0.0463 (12)
C18A0.1135 (7)0.7778 (5)0.34833 (12)0.0690 (17)
H18A0.00410.77030.34280.104*
H18B0.17870.77980.33110.104*
H18C0.12780.84890.35920.104*
C19A0.2741 (5)0.3786 (4)0.42179 (9)0.0357 (11)
H19A0.38650.37970.42730.043*
C20A0.1737 (5)0.3719 (4)0.44938 (9)0.0326 (11)
H20A0.06150.37570.44380.039*
C21A0.2017 (5)0.2584 (4)0.46571 (8)0.0339 (10)
H21A0.30960.25910.47370.041*
C22A0.1845 (5)0.1543 (4)0.44575 (9)0.0340 (11)
H22A0.07260.14430.44050.041*
C23A0.2830 (6)0.1693 (4)0.41808 (9)0.0424 (12)
H23A0.39680.16440.42230.051*
C24A0.2307 (7)0.0731 (5)0.39562 (10)0.0588 (13)
H24A0.23860.00390.40450.071*
H24B0.12150.08580.38970.071*
C1B1.2588 (6)1.2409 (5)0.30205 (11)0.0562 (14)
C2B1.3509 (7)1.1863 (6)0.28096 (13)0.0768 (19)
H2B1.32401.11100.27510.092*
C3B1.4806 (7)1.2395 (8)0.26844 (14)0.085 (2)
H3B1.54301.20070.25480.102*
C4B1.5136 (8)1.3496 (8)0.27672 (16)0.085 (2)
C5B1.4341 (8)1.4082 (7)0.29795 (16)0.086 (2)
H5B1.46561.48240.30390.103*
C6B1.3035 (7)1.3528 (6)0.31044 (13)0.0697 (17)
H6B1.24511.39170.32470.084*
C7B1.1148 (6)1.1843 (5)0.31376 (10)0.0499 (13)
C8B1.0747 (7)1.0717 (6)0.31352 (12)0.0637 (16)
H8B1.13971.01330.30600.076*
C9B0.9242 (7)1.0495 (5)0.32585 (12)0.0627 (16)
H9B0.88060.97500.32740.075*
C10B0.8499 (6)1.1468 (5)0.33522 (9)0.0441 (13)
C11B0.6910 (6)1.1544 (5)0.35001 (10)0.0532 (14)
H11C0.63631.08010.34800.064*
H11D0.62741.21390.34040.064*
C12B0.7072 (5)1.1844 (5)0.38244 (9)0.0389 (12)
C13B0.7355 (5)1.0932 (4)0.40164 (9)0.0355 (11)
H13B0.73941.01700.39450.043*
C14B0.7583 (5)1.1132 (4)0.43165 (9)0.0334 (11)
C15B0.7535 (5)1.2272 (4)0.44152 (10)0.0373 (11)
H15B0.77061.24310.46120.045*
C16B0.7237 (5)1.3172 (4)0.42246 (10)0.0437 (12)
H16B0.71951.39330.42960.052*
C17B0.6997 (5)1.2985 (4)0.39290 (11)0.0411 (12)
C18B0.6624 (6)1.4007 (5)0.37319 (11)0.0586 (15)
H18D0.68251.47250.38350.088*
H18E0.55281.39770.36750.088*
H18F0.72811.39710.35610.088*
C19B0.7807 (5)1.0121 (4)0.45231 (9)0.0330 (10)
H19B0.83181.03990.47030.040*
C20B0.6217 (5)0.9556 (4)0.45993 (9)0.0302 (10)
H20B0.55950.94650.44200.036*
C21B0.6378 (5)0.8365 (4)0.47464 (9)0.0353 (11)
H21B0.67070.84890.49500.042*
C22B0.7590 (5)0.7601 (4)0.46008 (9)0.0341 (10)
H22B0.72000.73470.44090.041*
C23B0.9139 (5)0.8280 (4)0.45649 (9)0.0335 (11)
H23B0.95190.85390.47570.040*
C24B1.0424 (5)0.7610 (4)0.44114 (10)0.0466 (12)
H24C1.05930.68640.45080.056*
H24D1.01190.74610.42100.056*
F1A1.2033 (4)0.5781 (4)0.24514 (8)0.0935 (12)
F1B1.6394 (5)1.4058 (5)0.26352 (10)0.1351 (18)
O1A0.2438 (4)0.2775 (3)0.40429 (6)0.0421 (8)
O2A0.2095 (4)0.4714 (3)0.46711 (6)0.0440 (8)
H2A10.24000.44950.48320.066*
O3A0.0913 (4)0.2435 (3)0.48929 (6)0.0441 (8)
H3A10.09830.29910.50060.066*
O4A0.2376 (4)0.0535 (3)0.46192 (7)0.0406 (8)
H4A0.19730.00570.45500.061*
O5A0.3311 (6)0.0803 (4)0.37124 (10)0.0913 (14)
H5A10.30190.13400.36060.137*
O1B0.8812 (3)0.9285 (3)0.43833 (6)0.0370 (7)
O2B0.5393 (3)1.0343 (3)0.47925 (6)0.0371 (8)
H2B10.44651.04010.47410.056*
O3B0.4879 (4)0.7782 (3)0.47478 (7)0.0472 (8)
H3B10.43160.80620.48760.071*
O4B0.7951 (4)0.6600 (3)0.47784 (7)0.0463 (8)
H4B0.72230.61260.47680.069*
O5B1.1853 (4)0.8292 (3)0.44195 (8)0.0559 (9)
H5B11.26010.78720.44660.084*
O60.5619 (4)0.4920 (3)0.47940 (8)0.0602 (10)
H610.47110.48180.47330.090*
H620.57140.42040.48190.090*
S1A0.64414 (16)0.67821 (12)0.34263 (3)0.0523 (4)
S1B0.96635 (17)1.26679 (13)0.32902 (3)0.0598 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.055 (3)0.047 (4)0.041 (3)0.002 (3)0.004 (3)0.002 (2)
C2A0.067 (4)0.057 (4)0.054 (3)0.010 (3)0.002 (3)0.010 (3)
C3A0.063 (4)0.085 (5)0.060 (4)0.000 (4)0.014 (3)0.011 (4)
C4A0.060 (4)0.083 (5)0.060 (4)0.005 (4)0.005 (3)0.011 (4)
C5A0.077 (4)0.057 (4)0.062 (4)0.005 (4)0.010 (4)0.002 (3)
C6A0.071 (4)0.049 (4)0.060 (3)0.009 (3)0.009 (3)0.006 (3)
C7A0.052 (3)0.039 (3)0.044 (3)0.014 (3)0.000 (2)0.013 (3)
C8A0.066 (4)0.045 (4)0.055 (3)0.006 (3)0.010 (3)0.017 (3)
C9A0.062 (4)0.035 (3)0.070 (4)0.007 (3)0.003 (3)0.009 (3)
C10A0.047 (3)0.032 (3)0.048 (3)0.005 (2)0.006 (2)0.008 (2)
C11A0.061 (3)0.030 (3)0.052 (3)0.002 (3)0.005 (3)0.000 (2)
C12A0.047 (3)0.025 (3)0.038 (2)0.004 (2)0.008 (2)0.005 (2)
C13A0.033 (3)0.035 (3)0.035 (2)0.001 (2)0.001 (2)0.004 (2)
C14A0.042 (3)0.033 (3)0.036 (2)0.002 (2)0.004 (2)0.000 (2)
C15A0.042 (3)0.031 (3)0.048 (3)0.003 (2)0.009 (2)0.003 (2)
C16A0.045 (3)0.047 (3)0.053 (3)0.004 (3)0.013 (3)0.010 (3)
C17A0.055 (3)0.042 (3)0.042 (3)0.002 (3)0.005 (3)0.005 (2)
C18A0.074 (4)0.050 (4)0.083 (4)0.001 (3)0.020 (3)0.021 (3)
C19A0.034 (3)0.029 (3)0.044 (3)0.000 (2)0.002 (2)0.002 (2)
C20A0.037 (3)0.023 (3)0.038 (2)0.002 (2)0.000 (2)0.001 (2)
C21A0.033 (2)0.033 (3)0.036 (2)0.003 (2)0.004 (2)0.003 (2)
C22A0.033 (2)0.024 (3)0.045 (3)0.002 (2)0.005 (2)0.002 (2)
C23A0.049 (3)0.037 (3)0.042 (3)0.010 (3)0.003 (2)0.002 (2)
C24A0.0860.044 (3)0.046 (3)0.026 (3)0.038 (3)0.008 (3)
C1B0.058 (3)0.063 (4)0.047 (3)0.017 (3)0.003 (3)0.002 (3)
C2B0.062 (4)0.089 (5)0.079 (4)0.006 (4)0.001 (4)0.013 (4)
C3B0.056 (4)0.116 (7)0.082 (5)0.004 (5)0.012 (4)0.016 (5)
C4B0.051 (4)0.116 (7)0.088 (5)0.020 (4)0.008 (4)0.000 (5)
C5B0.070 (5)0.090 (6)0.098 (5)0.013 (4)0.001 (4)0.001 (5)
C6B0.064 (4)0.078 (5)0.068 (4)0.006 (4)0.009 (3)0.007 (3)
C7B0.048 (3)0.056 (4)0.046 (3)0.008 (3)0.003 (3)0.006 (3)
C8B0.062 (4)0.056 (4)0.073 (4)0.016 (3)0.002 (3)0.003 (3)
C9B0.075 (4)0.049 (4)0.064 (4)0.006 (3)0.012 (3)0.004 (3)
C10B0.058 (3)0.043 (3)0.032 (3)0.014 (3)0.000 (2)0.009 (2)
C11B0.057 (3)0.058 (4)0.045 (3)0.006 (3)0.002 (3)0.011 (3)
C12B0.031 (2)0.051 (3)0.035 (2)0.003 (2)0.004 (2)0.007 (2)
C13B0.040 (3)0.033 (3)0.034 (2)0.002 (2)0.002 (2)0.005 (2)
C14B0.028 (2)0.029 (3)0.043 (3)0.003 (2)0.003 (2)0.009 (2)
C15B0.036 (2)0.034 (3)0.042 (2)0.002 (2)0.004 (2)0.006 (2)
C16B0.040 (3)0.032 (3)0.059 (3)0.002 (2)0.013 (3)0.008 (3)
C17B0.033 (3)0.038 (3)0.052 (3)0.006 (2)0.007 (2)0.018 (2)
C18B0.055 (3)0.050 (4)0.070 (4)0.014 (3)0.005 (3)0.026 (3)
C19B0.037 (3)0.028 (3)0.034 (2)0.006 (2)0.001 (2)0.002 (2)
C20B0.030 (2)0.031 (3)0.029 (2)0.001 (2)0.000 (2)0.0001 (19)
C21B0.034 (2)0.034 (3)0.038 (2)0.005 (2)0.000 (2)0.004 (2)
C22B0.038 (3)0.023 (3)0.041 (2)0.002 (2)0.007 (2)0.005 (2)
C23B0.040 (3)0.022 (2)0.038 (2)0.011 (2)0.000 (2)0.001 (2)
C24B0.045 (3)0.038 (3)0.056 (3)0.004 (3)0.003 (2)0.006 (3)
F1A0.074 (2)0.115 (3)0.091 (2)0.010 (2)0.028 (2)0.011 (2)
F1B0.076 (3)0.183 (5)0.146 (4)0.037 (3)0.029 (3)0.007 (4)
O1A0.056 (2)0.0316 (19)0.0392 (16)0.0070 (17)0.0008 (15)0.0012 (15)
O2A0.061 (2)0.031 (2)0.0395 (17)0.0058 (17)0.0058 (17)0.0042 (15)
O3A0.057 (2)0.039 (2)0.0357 (17)0.0041 (18)0.0126 (15)0.0011 (16)
O4A0.045 (2)0.0237 (18)0.0527 (19)0.0026 (16)0.0045 (16)0.0017 (15)
O5A0.101 (4)0.085 (4)0.088 (3)0.020 (3)0.006 (3)0.006 (3)
O1B0.0411 (17)0.0312 (19)0.0388 (16)0.0069 (15)0.0085 (15)0.0103 (15)
O2B0.0341 (16)0.037 (2)0.0405 (17)0.0026 (15)0.0010 (15)0.0046 (15)
O3B0.0437 (19)0.040 (2)0.058 (2)0.0110 (17)0.0070 (16)0.0015 (16)
O4B0.047 (2)0.0264 (19)0.066 (2)0.0040 (16)0.0110 (18)0.0141 (17)
O5B0.042 (2)0.042 (2)0.084 (3)0.0068 (18)0.009 (2)0.002 (2)
O60.062 (2)0.041 (2)0.079 (3)0.0114 (19)0.011 (2)0.007 (2)
S1A0.0602 (8)0.0419 (8)0.0549 (8)0.0073 (7)0.0109 (7)0.0161 (7)
S1B0.0673 (9)0.0499 (10)0.0621 (8)0.0040 (8)0.0172 (7)0.0030 (7)
Geometric parameters (Å, º) top
C1A—C6A1.387 (7)C3B—C4B1.344 (9)
C1A—C2A1.405 (7)C3B—H3B0.9300
C1A—C7A1.470 (7)C4B—C5B1.356 (9)
C2A—C3A1.378 (8)C4B—F1B1.378 (7)
C2A—H2A0.9300C5B—C6B1.391 (8)
C3A—C4A1.360 (8)C5B—H5B0.9300
C3A—H3A0.9300C6B—H6B0.9300
C4A—C5A1.358 (8)C7B—C8B1.330 (8)
C4A—F1A1.368 (7)C7B—S1B1.715 (5)
C5A—C6A1.376 (8)C8B—C9B1.411 (8)
C5A—H5A0.9300C8B—H8B0.9300
C6A—H6A0.9300C9B—C10B1.345 (7)
C7A—C8A1.348 (7)C9B—H9B0.9300
C7A—S1A1.731 (4)C10B—C11B1.502 (7)
C8A—C9A1.418 (7)C10B—S1B1.710 (5)
C8A—H8A0.9300C11B—C12B1.527 (6)
C9A—C10A1.354 (6)C11B—H11C0.9700
C9A—H9A0.9300C11B—H11D0.9700
C10A—C11A1.491 (6)C12B—C13B1.383 (6)
C10A—S1A1.721 (5)C12B—C17B1.390 (6)
C11A—C12A1.526 (6)C13B—C14B1.404 (6)
C11A—H11A0.9700C13B—H13B0.9300
C11A—H11B0.9700C14B—C15B1.379 (6)
C12A—C13A1.383 (6)C14B—C19B1.504 (6)
C12A—C17A1.407 (6)C15B—C16B1.371 (6)
C13A—C14A1.375 (6)C15B—H15B0.9300
C13A—H13A0.9300C16B—C17B1.383 (6)
C14A—C15A1.394 (6)C16B—H16B0.9300
C14A—C19A1.501 (6)C17B—C18B1.508 (6)
C15A—C16A1.383 (6)C18B—H18D0.9600
C15A—H15A0.9300C18B—H18E0.9600
C16A—C17A1.379 (7)C18B—H18F0.9600
C16A—H16A0.9300C19B—O1B1.427 (5)
C17A—C18A1.513 (7)C19B—C20B1.528 (6)
C18A—H18A0.9600C19B—H19B0.9800
C18A—H18B0.9600C20B—O2B1.439 (5)
C18A—H18C0.9600C20B—C21B1.524 (6)
C19A—O1A1.428 (5)C20B—H20B0.9800
C19A—C20A1.521 (6)C21B—O3B1.428 (5)
C19A—H19A0.9800C21B—C22B1.499 (6)
C20A—O2A1.428 (5)C21B—H21B0.9800
C20A—C21A1.515 (6)C22B—O4B1.436 (5)
C20A—H20A0.9800C22B—C23B1.526 (6)
C21A—O3A1.434 (5)C22B—H22B0.9800
C21A—C22A1.506 (6)C23B—O1B1.444 (5)
C21A—H21A0.9800C23B—C24B1.500 (6)
C22A—O4A1.439 (5)C23B—H23B0.9800
C22A—C23A1.522 (6)C24B—O5B1.435 (5)
C22A—H22A0.9800C24B—H24C0.9700
C23A—O1A1.427 (5)C24B—H24D0.9700
C23A—C24A1.567 (7)O2A—H2A10.8200
C23A—H23A0.9800O3A—H3A10.8200
C24A—O5A1.401 (6)O4A—H4A0.8200
C24A—H24A0.9700O5A—H5A10.8200
C24A—H24B0.9700O2B—H2B10.8200
C1B—C2B1.386 (7)O3B—H3B10.8200
C1B—C6B1.387 (8)O4B—H4B0.8200
C1B—C7B1.476 (7)O5B—H5B10.8200
C2B—C3B1.375 (8)O6—H610.8228
C2B—H2B0.9300O6—H620.8292
C6A—C1A—C2A117.1 (5)C4B—C3B—H3B121.3
C6A—C1A—C7A122.3 (5)C2B—C3B—H3B121.3
C2A—C1A—C7A120.5 (5)C3B—C4B—C5B124.1 (7)
C3A—C2A—C1A121.1 (6)C3B—C4B—F1B118.2 (7)
C3A—C2A—H2A119.4C5B—C4B—F1B117.7 (8)
C1A—C2A—H2A119.4C4B—C5B—C6B117.4 (7)
C4A—C3A—C2A118.0 (6)C4B—C5B—H5B121.3
C4A—C3A—H3A121.0C6B—C5B—H5B121.3
C2A—C3A—H3A121.0C1B—C6B—C5B121.3 (6)
C5A—C4A—C3A123.9 (6)C1B—C6B—H6B119.3
C5A—C4A—F1A117.5 (6)C5B—C6B—H6B119.3
C3A—C4A—F1A118.5 (6)C8B—C7B—C1B129.0 (5)
C4A—C5A—C6A117.4 (6)C8B—C7B—S1B110.5 (4)
C4A—C5A—H5A121.3C1B—C7B—S1B120.4 (4)
C6A—C5A—H5A121.3C7B—C8B—C9B113.5 (6)
C5A—C6A—C1A122.4 (5)C7B—C8B—H8B123.3
C5A—C6A—H6A118.8C9B—C8B—H8B123.3
C1A—C6A—H6A118.8C10B—C9B—C8B113.4 (5)
C8A—C7A—C1A130.8 (4)C10B—C9B—H9B123.3
C8A—C7A—S1A109.9 (4)C8B—C9B—H9B123.3
C1A—C7A—S1A119.1 (4)C9B—C10B—C11B127.3 (5)
C7A—C8A—C9A113.5 (5)C9B—C10B—S1B110.0 (4)
C7A—C8A—H8A123.3C11B—C10B—S1B122.6 (4)
C9A—C8A—H8A123.3C10B—C11B—C12B111.7 (4)
C10A—C9A—C8A114.0 (5)C10B—C11B—H11C109.3
C10A—C9A—H9A123.0C12B—C11B—H11C109.3
C8A—C9A—H9A123.0C10B—C11B—H11D109.3
C9A—C10A—C11A129.8 (5)C12B—C11B—H11D109.3
C9A—C10A—S1A109.6 (4)H11C—C11B—H11D107.9
C11A—C10A—S1A120.6 (3)C13B—C12B—C17B119.8 (4)
C10A—C11A—C12A115.7 (4)C13B—C12B—C11B117.5 (5)
C10A—C11A—H11A108.4C17B—C12B—C11B122.7 (4)
C12A—C11A—H11A108.4C12B—C13B—C14B121.4 (4)
C10A—C11A—H11B108.4C12B—C13B—H13B119.3
C12A—C11A—H11B108.4C14B—C13B—H13B119.3
H11A—C11A—H11B107.4C15B—C14B—C13B118.0 (4)
C13A—C12A—C17A119.1 (4)C15B—C14B—C19B121.6 (4)
C13A—C12A—C11A120.6 (4)C13B—C14B—C19B120.4 (4)
C17A—C12A—C11A120.3 (4)C16B—C15B—C14B120.4 (4)
C14A—C13A—C12A122.8 (4)C16B—C15B—H15B119.8
C14A—C13A—H13A118.6C14B—C15B—H15B119.8
C12A—C13A—H13A118.6C15B—C16B—C17B122.1 (5)
C13A—C14A—C15A117.8 (4)C15B—C16B—H16B118.9
C13A—C14A—C19A123.7 (4)C17B—C16B—H16B118.9
C15A—C14A—C19A118.5 (4)C16B—C17B—C12B118.3 (4)
C16A—C15A—C14A120.3 (5)C16B—C17B—C18B119.6 (5)
C16A—C15A—H15A119.8C12B—C17B—C18B122.0 (5)
C14A—C15A—H15A119.8C17B—C18B—H18D109.5
C17A—C16A—C15A121.7 (5)C17B—C18B—H18E109.5
C17A—C16A—H16A119.2H18D—C18B—H18E109.5
C15A—C16A—H16A119.2C17B—C18B—H18F109.5
C16A—C17A—C12A118.4 (5)H18D—C18B—H18F109.5
C16A—C17A—C18A120.0 (4)H18E—C18B—H18F109.5
C12A—C17A—C18A121.6 (5)O1B—C19B—C14B107.9 (3)
C17A—C18A—H18A109.5O1B—C19B—C20B109.9 (3)
C17A—C18A—H18B109.5C14B—C19B—C20B110.9 (4)
H18A—C18A—H18B109.5O1B—C19B—H19B109.4
C17A—C18A—H18C109.5C14B—C19B—H19B109.4
H18A—C18A—H18C109.5C20B—C19B—H19B109.4
H18B—C18A—H18C109.5O2B—C20B—C21B109.3 (3)
O1A—C19A—C14A106.9 (3)O2B—C20B—C19B107.4 (3)
O1A—C19A—C20A109.0 (3)C21B—C20B—C19B113.5 (3)
C14A—C19A—C20A113.6 (4)O2B—C20B—H20B108.8
O1A—C19A—H19A109.1C21B—C20B—H20B108.8
C14A—C19A—H19A109.1C19B—C20B—H20B108.8
C20A—C19A—H19A109.1O3B—C21B—C22B109.5 (4)
O2A—C20A—C21A111.7 (3)O3B—C21B—C20B109.8 (4)
O2A—C20A—C19A108.2 (3)C22B—C21B—C20B112.6 (3)
C21A—C20A—C19A111.4 (4)O3B—C21B—H21B108.3
O2A—C20A—H20A108.5C22B—C21B—H21B108.3
C21A—C20A—H20A108.5C20B—C21B—H21B108.3
C19A—C20A—H20A108.5O4B—C22B—C21B110.9 (3)
O3A—C21A—C22A107.4 (4)O4B—C22B—C23B106.5 (3)
O3A—C21A—C20A111.7 (4)C21B—C22B—C23B109.5 (4)
C22A—C21A—C20A111.3 (3)O4B—C22B—H22B109.9
O3A—C21A—H21A108.8C21B—C22B—H22B109.9
C22A—C21A—H21A108.8C23B—C22B—H22B109.9
C20A—C21A—H21A108.8O1B—C23B—C24B105.9 (3)
O4A—C22A—C21A106.9 (3)O1B—C23B—C22B107.6 (3)
O4A—C22A—C23A110.3 (4)C24B—C23B—C22B114.1 (4)
C21A—C22A—C23A111.2 (4)O1B—C23B—H23B109.7
O4A—C22A—H22A109.5C24B—C23B—H23B109.7
C21A—C22A—H22A109.5C22B—C23B—H23B109.7
C23A—C22A—H22A109.5O5B—C24B—C23B108.5 (4)
O1A—C23A—C22A109.8 (4)O5B—C24B—H24C110.0
O1A—C23A—C24A104.7 (3)C23B—C24B—H24C110.0
C22A—C23A—C24A108.2 (4)O5B—C24B—H24D110.0
O1A—C23A—H23A111.3C23B—C24B—H24D110.0
C22A—C23A—H23A111.3H24C—C24B—H24D108.4
C24A—C23A—H23A111.3C23A—O1A—C19A114.3 (3)
O5A—C24A—C23A108.1 (5)C20A—O2A—H2A1109.5
O5A—C24A—H24A110.1C21A—O3A—H3A1109.5
C23A—C24A—H24A110.1C22A—O4A—H4A109.5
O5A—C24A—H24B110.1C24A—O5A—H5A1109.5
C23A—C24A—H24B110.1C19B—O1B—C23B112.8 (3)
H24A—C24A—H24B108.4C20B—O2B—H2B1109.5
C2B—C1B—C6B117.1 (6)C21B—O3B—H3B1109.5
C2B—C1B—C7B121.0 (6)C22B—O4B—H4B109.5
C6B—C1B—C7B121.8 (5)C24B—O5B—H5B1109.5
C3B—C2B—C1B122.4 (6)H61—O6—H6289.8
C3B—C2B—H2B118.8C10A—S1A—C7A93.0 (2)
C1B—C2B—H2B118.8C10B—S1B—C7B92.6 (3)
C4B—C3B—C2B117.5 (6)
C6A—C1A—C2A—C3A0.9 (8)C7B—C1B—C6B—C5B176.1 (5)
C7A—C1A—C2A—C3A176.6 (5)C4B—C5B—C6B—C1B1.6 (10)
C1A—C2A—C3A—C4A0.9 (8)C2B—C1B—C7B—C8B20.5 (9)
C2A—C3A—C4A—C5A1.0 (10)C6B—C1B—C7B—C8B162.9 (6)
C2A—C3A—C4A—F1A179.0 (5)C2B—C1B—C7B—S1B156.6 (4)
C3A—C4A—C5A—C6A1.1 (9)C6B—C1B—C7B—S1B20.1 (7)
F1A—C4A—C5A—C6A179.1 (5)C1B—C7B—C8B—C9B177.8 (5)
C4A—C5A—C6A—C1A1.0 (9)S1B—C7B—C8B—C9B0.5 (6)
C2A—C1A—C6A—C5A0.9 (8)C7B—C8B—C9B—C10B0.6 (7)
C7A—C1A—C6A—C5A176.5 (5)C8B—C9B—C10B—C11B178.3 (5)
C6A—C1A—C7A—C8A161.5 (6)C8B—C9B—C10B—S1B0.3 (6)
C2A—C1A—C7A—C8A21.2 (8)C9B—C10B—C11B—C12B108.0 (6)
C6A—C1A—C7A—S1A24.2 (6)S1B—C10B—C11B—C12B69.8 (5)
C2A—C1A—C7A—S1A153.1 (4)C10B—C11B—C12B—C13B84.3 (5)
C1A—C7A—C8A—C9A174.5 (5)C10B—C11B—C12B—C17B93.7 (6)
S1A—C7A—C8A—C9A0.2 (6)C17B—C12B—C13B—C14B0.6 (7)
C7A—C8A—C9A—C10A0.9 (7)C11B—C12B—C13B—C14B177.4 (4)
C8A—C9A—C10A—C11A178.1 (5)C12B—C13B—C14B—C15B0.7 (6)
C8A—C9A—C10A—S1A1.5 (6)C12B—C13B—C14B—C19B177.0 (4)
C9A—C10A—C11A—C12A113.3 (6)C13B—C14B—C15B—C16B1.4 (6)
S1A—C10A—C11A—C12A67.1 (5)C19B—C14B—C15B—C16B176.2 (4)
C10A—C11A—C12A—C13A106.6 (5)C14B—C15B—C16B—C17B0.9 (7)
C10A—C11A—C12A—C17A71.5 (6)C15B—C16B—C17B—C12B0.4 (7)
C17A—C12A—C13A—C14A0.6 (7)C15B—C16B—C17B—C18B178.1 (4)
C11A—C12A—C13A—C14A178.7 (4)C13B—C12B—C17B—C16B1.1 (7)
C12A—C13A—C14A—C15A0.9 (7)C11B—C12B—C17B—C16B176.8 (4)
C12A—C13A—C14A—C19A179.8 (4)C13B—C12B—C17B—C18B177.3 (4)
C13A—C14A—C15A—C16A0.5 (7)C11B—C12B—C17B—C18B4.7 (7)
C19A—C14A—C15A—C16A179.5 (4)C15B—C14B—C19B—O1B141.6 (4)
C14A—C15A—C16A—C17A0.2 (8)C13B—C14B—C19B—O1B40.9 (5)
C15A—C16A—C17A—C12A0.5 (8)C15B—C14B—C19B—C20B98.1 (5)
C15A—C16A—C17A—C18A178.0 (5)C13B—C14B—C19B—C20B79.5 (5)
C13A—C12A—C17A—C16A0.1 (7)O1B—C19B—C20B—O2B167.9 (3)
C11A—C12A—C17A—C16A178.0 (4)C14B—C19B—C20B—O2B72.9 (4)
C13A—C12A—C17A—C18A178.3 (4)O1B—C19B—C20B—C21B46.9 (5)
C11A—C12A—C17A—C18A3.6 (7)C14B—C19B—C20B—C21B166.2 (4)
C13A—C14A—C19A—O1A132.3 (4)O2B—C20B—C21B—O3B73.6 (4)
C15A—C14A—C19A—O1A46.7 (5)C19B—C20B—C21B—O3B166.5 (3)
C13A—C14A—C19A—C20A107.5 (5)O2B—C20B—C21B—C22B164.1 (3)
C15A—C14A—C19A—C20A73.6 (5)C19B—C20B—C21B—C22B44.2 (5)
O1A—C19A—C20A—O2A178.0 (3)O3B—C21B—C22B—O4B69.7 (4)
C14A—C19A—C20A—O2A62.9 (5)C20B—C21B—C22B—O4B167.8 (3)
O1A—C19A—C20A—C21A54.8 (5)O3B—C21B—C22B—C23B173.0 (3)
C14A—C19A—C20A—C21A173.9 (4)C20B—C21B—C22B—C23B50.5 (5)
O2A—C20A—C21A—O3A67.4 (5)O4B—C22B—C23B—O1B179.2 (3)
C19A—C20A—C21A—O3A171.4 (3)C21B—C22B—C23B—O1B60.8 (4)
O2A—C20A—C21A—C22A172.5 (4)O4B—C22B—C23B—C24B62.0 (5)
C19A—C20A—C21A—C22A51.4 (5)C21B—C22B—C23B—C24B178.0 (4)
O3A—C21A—C22A—O4A66.4 (4)O1B—C23B—C24B—O5B67.8 (4)
C20A—C21A—C22A—O4A171.0 (4)C22B—C23B—C24B—O5B174.0 (4)
O3A—C21A—C22A—C23A173.2 (3)C22A—C23A—O1A—C19A61.0 (5)
C20A—C21A—C22A—C23A50.5 (5)C24A—C23A—O1A—C19A176.9 (4)
O4A—C22A—C23A—O1A172.3 (3)C14A—C19A—O1A—C23A175.6 (4)
C21A—C22A—C23A—O1A53.9 (5)C20A—C19A—O1A—C23A61.2 (5)
O4A—C22A—C23A—C24A74.0 (4)C14B—C19B—O1B—C23B178.8 (3)
C21A—C22A—C23A—C24A167.6 (4)C20B—C19B—O1B—C23B60.1 (4)
O1A—C23A—C24A—O5A68.2 (5)C24B—C23B—O1B—C19B169.8 (3)
C22A—C23A—C24A—O5A174.7 (4)C22B—C23B—O1B—C19B67.7 (4)
C6B—C1B—C2B—C3B0.5 (9)C9A—C10A—S1A—C7A1.4 (4)
C7B—C1B—C2B—C3B176.3 (5)C11A—C10A—S1A—C7A178.3 (4)
C1B—C2B—C3B—C4B2.0 (10)C8A—C7A—S1A—C10A0.9 (4)
C2B—C3B—C4B—C5B4.7 (11)C1A—C7A—S1A—C10A174.5 (4)
C2B—C3B—C4B—F1B177.5 (6)C9B—C10B—S1B—C7B0.0 (4)
C3B—C4B—C5B—C6B4.5 (11)C11B—C10B—S1B—C7B178.1 (4)
F1B—C4B—C5B—C6B177.7 (6)C8B—C7B—S1B—C10B0.3 (4)
C2B—C1B—C6B—C5B0.7 (8)C1B—C7B—S1B—C10B177.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A1···O2Bi0.822.422.841 (4)113
O3A—H3A1···O2Bi0.822.172.951 (4)158
O4A—H4A···O5Bii0.821.982.756 (5)157
O2B—H2B1···O4Aiii0.821.852.672 (4)179
O3B—H3B1···O4Bi0.821.992.797 (4)168
O4B—H4B···O60.821.932.749 (5)172
O5B—H5B1···O3Biv0.822.313.015 (5)144
O6—H61···O2A0.822.233.031 (5)166
O6—H62···O3Av0.832.303.058 (5)153
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A1···O2Bi0.822.422.841 (4)113
O3A—H3A1···O2Bi0.822.172.951 (4)158
O4A—H4A···O5Bii0.821.982.756 (5)157
O2B—H2B1···O4Aiii0.821.852.672 (4)179
O3B—H3B1···O4Bi0.821.992.797 (4)168
O4B—H4B···O60.821.932.749 (5)172
O5B—H5B1···O3Biv0.822.313.015 (5)144
O6—H61···O2A0.822.233.031 (5)166
O6—H62···O3Av0.832.303.058 (5)153
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula2C24H25FO5S·H2O
Mr907.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.4259 (4), 11.4264 (7), 45.706 (2)
V3)4400.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.48 × 0.28 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.914, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
43211, 9958, 5079
Rint0.145
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.147, 1.00
No. of reflections9958
No. of parameters575
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.29
Absolute structureFlack (1983), 3246 Friedel pairs
Absolute structure parameter0.13 (11)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 2012).

 

Acknowledgements

This project was supported by the Analysis and Measurement Foundation of Zhejiang Province, China (grant No. 2014 C37055).

References

First citationAhmed, F. A., Maureen, C., Steven, M., Lorraine, S., Kenneth, M. W., Fan, Z., Sumihiro, N., Mitsuya, H. & Yuichi, K. (2013). US Patent 2009/0233874 A1.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCefalu, W. T., Leiter, L. A., Yoon, K. H., Arias, P., Niskanen, L., Xie, J., Balis, D. A., Canovatchel, W. & Meininger, G. (2013). Lancet, 382, 941–950.  CrossRef CAS PubMed Google Scholar
First citationChen, M.-H., Zhang, Y.-F., Zhao, Y. & Zhang, X.-Y. (2013). Chin. Patent CN103588762A.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCORM. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsubishi, T., Nomura, S. & Kawanishi, A. (2013). World Patent WO2008069327A1.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku. (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 734-736
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds