research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3-bis­­(1H-benzotriazol-1-yl­meth­yl)benzene

CROSSMARK_Color_square_no_text.svg

aCryssmat-Lab/Cátedra de Física/DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay, bGrupo INTERFASE, Universidad Industrial de Santander, Carrera 27, Calle 9, Ciudad Universitaria, Bucaramanga, Colombia, and cDepartamento de Química, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
*Correspondence e-mail: jj.hurtado@uniandes.edu.co, leopoldo@fq.edu.uy

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 4 May 2016; accepted 11 May 2016; online 17 May 2016)

The mol­ecular structure of the title compound, C20H16N6, contains two benzotriazole units bonded to a benzene nucleus in a meta configuration, forming dihedral angles of 88.74 (11) and 85.83 (10)° with the central aromatic ring and 57.08 (9)° with each other. The three-dimensional structure is controlled mainly by weak C—H⋯N and C—H⋯π inter­actions. The mol­ecules are connected in inversion-related pairs, forming the slabs of infinite chains that run along the [-110] and [110] directions.

1. Chemical context

Bis(1H-benzotriazol-1-ylmeth­yl)arene compounds are used as precursors for the synthesis of benzotriazolophanes, a class of positively charged cyclo­phanes that have the potential ability to trap anions and guest mol­ecules with high electron density (Rajakumar & Murali, 2000[Rajakumar, P. & Murali, V. (2000). Tetrahedron, 56, 7995-7999.]). On the other hand, the study of the self-assembly of helicates from the reaction of metal ions with bis­(1H-benzotriazol-1-ylmeth­yl)arene ligands has been of great inter­est. In these complexes, the metal center coord­inates through the N3-nitro­gen of the benzotriazole ring (O'Keefe & Steel, 2000[O'Keefe, B. J. & Steel, P. J. (2000). Inorg. Chem. Commun. 3, 473-475.]). We have been inter­ested in the synthesis of metal complexes with ligands derived from benzotriazole, which show high activity as catalysts for oxidative amination of allyl butyl ether (Hurtado et al., 2013[Hurtado, J., Rojas, R., Pérez, E. & Valderrama, M. (2013). J. Chil. Chem. Soc. 58, 1534-1536.]).The crystal structures for a number of bis­(1H-benzotriazol-1-ylmeth­yl)arene ligands have been determined: 2,6-bis­(1H-benzotriazol-1-ylmeth­yl)pyridine (Selvanayagam et al., 2002[Selvanayagam, S., Rajakannan, V., Velmurugan, D., Dhanasekaran, M., Rajakumar, P. & Moon, J.-K. (2002). Acta Cryst. E58, o1190-o1192.]), 1,4-bis­(1H-benzotriazol-1-yl­meth­yl)­benzene tetra­hydrate (Cai et al., 2004[Cai, Y.-P., Li, G.-B., He, G.-P., Su, C.-Y., Xu, A.-W. & Zhang, C. (2004). Acta Cryst. E60, o2062-o2064.]) and benzyl 3,5-bis­(1H-benzotriazol-1-yl­meth­yl)­phenyl ether (Selvanayagam et al., 2004[Selvanayagam, S., Velmurugan, D., Ravikumar, K., Dhanasekaran, M. & Rajakumar, P. (2004). Acta Cryst. E60, o2165-o2167.]). As part of structural studies of the self-assembly process of metal ions with ligands derived from benzotriazole, we report here the crystal structure of the ligand 1,3-bis­(1H-benzotriazol-1-yl­meth­yl)benzene.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the mol­ecule of the title compound. The mol­ecular structure is built by two benzotriazole groups describing a meta substitution of the central benzene ring. The dihedral angle between the two benzotriazole units is 57.08 (9)° and those between each benzotriazole moiety (N1–N3/C2–C7) and the central benzene ring are 88.74 (11) and 85.83 (10)° for the A and B groups, respectively. These values differ from the related structures 2,6-bis­(N,N′-benzotriazol-1-ylmeth­yl)pyridine, with a pyridine central ring, where the angle between the two benzotriazole units is 72.49 (6)° and those between the pyridine ring and the two benzotriazole units are 70.26 (6) and 57.70 (7)° (Selvanayagam et al., 2002[Selvanayagam, S., Rajakannan, V., Velmurugan, D., Dhanasekaran, M., Rajakumar, P. & Moon, J.-K. (2002). Acta Cryst. E58, o1190-o1192.]), and from the 1,4-bis­(1H-benzotriazol-1-ylmeth­yl)benzene tetra­hydrate, with para substitution, where the two benzotriazole units are parallel and the dihedral angle between each benzotriazole unit and the central benzene ring is 74.95 (9)° (Cai et al., 2004[Cai, Y.-P., Li, G.-B., He, G.-P., Su, C.-Y., Xu, A.-W. & Zhang, C. (2004). Acta Cryst. E60, o2062-o2064.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing anisotropic displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The packing is directed by weak C—H⋯N and C—H⋯π inter­actions as shown in Table 1[link]. Pairs of inversion-related mol­ecules, connected by two equivalent weak C1B—H1BA⋯N3Ai [symmetry code: (i) −x + 1, −y + 1, −z + 1] inter­actions form slabs of infinite chains of mol­ecules running along [[\overline{1}]10]. Each mol­ecule in a slab connects to two translation-equivalent mol­ecules through C4A—H4A⋯N3Bii [symmetry code: (ii) x − 1, y + 1, z] inter­actions (Fig. 2[link]a). Parallel chains inter­act through C7A—H7ACg1iii [Cg1 is the centroid of the N2B–N1B–C2B–C3B–N3B ring; symmetry code: (iii) 1 − x, y, z] (Fig. 2[link]b). Since the chains run along the diagonal of the ab plane and ab, the 21 screw axis parallel to b transforms each chain into an orthogonal one, running along [110] (Fig. 2[link]c). This orthogonal chain inter­acts with the initial one through C4B—H4BCg2iv [Cg2 is the centroid of the C4A-C3A-C2A-C7A-C6A-C5A ring; symmetry code: (iv) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z] (Fig. 2[link]b). In this way, each mol­ecule displays four pairs of inter­actions with seven neighbouring mol­ecules. This crystallographic three-dimensional organization differs from the related 1,4-bis­(1H-benzotriazol-1-ylmeth­yl)benzene tetra­hydrate where a two-dimensional network is observed (Cai et al., 2004[Cai, Y.-P., Li, G.-B., He, G.-P., Su, C.-Y., Xu, A.-W. & Zhang, C. (2004). Acta Cryst. E60, o2062-o2064.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1B–N3B/C2B/C3B C2A–C7A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1B—H1BA⋯N3Ai 0.97 2.59 3.409 (4) 142
C4A—H4A⋯N3Bii 0.93 2.66 3.443 (4) 143
C7A—H7ACg1iii 0.93 2.69 3.423 (3) 136
C4B—H4BCg2iv 0.93 2.89 3.481 (3) 132
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y+1, z; (iii) x-1, y, z; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal structure of the title compound showing the hydrogen-bond inter­actions: (a) C—H⋯N along [[\overline{1}]10], (b) C—H⋯π and (c) orthogonal chains viewed along [001].

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.36 with one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1,3-bis­(1H-benzotriazol-1-ylmeth­yl)benzene mol­ecular structure with the possibility of any group replacing the 2,4,5,6-H atoms in the central benzene ring gave four hits, from which two have one additional arene substituent (Br, -OCH2Ph), one has the bis­(1H-benzotriazole-1-yl­methanone) moiety instead of bis­(1H-benzotriazol-1-ylmeth­yl) and the last one corresponds to a more complex mol­ecular structure. When the search also considers heterocyclic compounds, two new hits (in addition to the first four structures) appear, one cyclic bi­pyridine and the related mol­ecular structure 2,6-bis­(1H-benzotriazol-1-yl­meth­yl)pyridine. A search for the 1,4-bis­(1H-benzotriazol-1-ylmeth­yl)-substituted benzene ring gave four hits, one of which corresponds to a ligand with additional methyl groups at the 1,3,5,6-sites of the central benzene ring and the other to its corresponding palladium complex. The remaining two relate to the same compound, viz. 1,4-bis­(1H-benzotriazol-1-yl­meth­yl)benzene tetra­hydrate, a related mol­ecular structure.

5. Synthesis and crystallization

m-Xylylene dibromide (1.16 g, 4.4 mmol) was added to a solution of 1H-benzotriazole (1.04 g, 8.7 mmol) in toluene (60 mL), and the mixture was heated at reflux for 72 h. The resulting mixture was filtered, and the toluene solution was concentrated and cooled to give a white solid. Single crystals suitable for X-ray structure analysis were obtained by dissolv­ing the compound in the minimum volume of di­chloro­methane, adding diethyl ether and cooling the solution to 277 K. The title compound formed colorless parallelepipeds. Yield: 668 mg (45%). M.p. 423–424 K. IR (KBr, cm−1): ν 3058 (w), 3031 (w), 2979 (w), 2944 (w), 1613 (m), 1494 (m), 1452 (s), 1228 (s), 1159 (m), 1080 (s), 781 (s), 754 (s), 743 (s). 1H NMR (400 MHz, DMSO-d6): δ (p.p.m.) 8.04 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.47 (t, J = 8.1 Hz, 2H), 7.38 (t, J = 8.2 Hz, 2H), 7.36 (s, 1H), 7.32 (dd, J = 8.5, 6.6 Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 5.95 (s, 4H). 13C NMR (100 MHz, DMSO-d6): δ (p.p.m.) 145.3 (C), 136.5 (C), 132.6 (C), 129.3 (CH), 127.5 (CH), 127.4 (CH), 127.2 (CH), 124.0 (CH), 119.2 (CH), 110.6 (CH), 50.7 (CH2). HRMS m/z (ESI) calculated for [C20H16N6+H]+: 341.1509; found 341.1532 [M+H]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H: 0.93–0.97 Å) and included as riding contributions with isotropic displacement parameters set at 1.2–1.5 times the Ueq value of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C20H16N6
Mr 340.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 9.3050 (5), 9.4479 (5), 19.5429 (9)
β (°) 99.205 (2)
V3) 1695.94 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.39 × 0.18
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 28764, 3480, 2830
Rint 0.035
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.160, 1.42
No. of reflections 3480
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

1,3-Bis(1H-benzotriazol-1-ylmethyl)benzene top
Crystal data top
C20H16N6F(000) = 712
Mr = 340.39Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.3050 (5) ÅCell parameters from 9846 reflections
b = 9.4479 (5) Åθ = 3.0–27.1°
c = 19.5429 (9) ŵ = 0.08 mm1
β = 99.205 (2)°T = 293 K
V = 1695.94 (15) Å3Parallelepiped, colorless
Z = 40.40 × 0.39 × 0.18 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
3480 independent reflections
Radiation source: Mo sealed tube2830 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.035
φ and ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1111
Tmin = 0.666, Tmax = 0.746k = 1111
28764 measured reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.036P)2 + 0.9412P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.160(Δ/σ)max < 0.001
S = 1.42Δρmax = 0.24 e Å3
3480 reflectionsΔρmin = 0.27 e Å3
236 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0162 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2899 (2)0.1606 (3)0.54469 (11)0.0400 (5)
C20.2736 (3)0.0198 (3)0.56154 (13)0.0475 (6)
H20.18140.02070.55520.057*
C30.3936 (3)0.0607 (3)0.58775 (13)0.0499 (6)
H30.38200.15540.59850.060*
C40.5308 (3)0.0010 (3)0.59803 (13)0.0454 (6)
H40.61090.05600.61590.054*
C50.5505 (2)0.1396 (2)0.58204 (11)0.0366 (5)
C60.4286 (2)0.2197 (3)0.55500 (12)0.0401 (5)
H60.44030.31410.54370.048*
C1A0.1582 (3)0.2463 (3)0.51371 (14)0.0516 (7)
H1AA0.15470.25220.46390.062*
H1AB0.07080.19810.52230.062*
N1A0.1601 (2)0.3890 (2)0.54221 (10)0.0433 (5)
C2A0.1399 (2)0.4294 (2)0.60655 (12)0.0380 (5)
N2A0.1856 (3)0.5036 (3)0.50437 (13)0.0606 (6)
C1B0.6995 (3)0.2062 (3)0.59004 (13)0.0457 (6)
H1BA0.73110.20920.54510.055*
H1BB0.69320.30300.60590.055*
N1B0.8073 (2)0.1311 (2)0.63824 (10)0.0408 (5)
C3A0.1528 (3)0.5760 (3)0.60636 (14)0.0458 (6)
N3A0.1814 (3)0.6171 (3)0.54235 (14)0.0621 (7)
C2B0.8262 (2)0.1272 (2)0.70871 (12)0.0400 (5)
N2B0.9063 (2)0.0455 (2)0.61519 (12)0.0530 (6)
C4A0.1384 (3)0.6549 (3)0.66532 (18)0.0633 (8)
H4A0.14540.75310.66580.076*
C3B0.9426 (3)0.0367 (3)0.72765 (14)0.0455 (6)
N3B0.9888 (2)0.0122 (2)0.66848 (14)0.0589 (6)
C5A0.1133 (4)0.5806 (4)0.72234 (18)0.0716 (9)
H5A0.10390.62970.76260.086*
C4B0.9949 (3)0.0093 (3)0.79741 (17)0.0656 (9)
H4B1.07480.04920.81080.079*
C6A0.1013 (4)0.4324 (4)0.72188 (15)0.0654 (8)
H6A0.08400.38640.76180.078*
C5B0.9239 (4)0.0719 (4)0.84490 (18)0.0782 (11)
H5B0.95530.05500.89180.094*
C7A0.1143 (3)0.3539 (3)0.66457 (13)0.0504 (6)
H7A0.10650.25570.66430.060*
C7B0.7529 (3)0.1924 (3)0.75700 (15)0.0589 (7)
H7B0.67440.25290.74390.071*
C6B0.8042 (4)0.1616 (4)0.82488 (16)0.0756 (10)
H6B0.75800.20150.85910.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (12)0.0479 (14)0.0339 (11)0.0014 (10)0.0059 (9)0.0096 (10)
C20.0445 (13)0.0528 (15)0.0460 (14)0.0082 (12)0.0102 (11)0.0078 (11)
C30.0537 (15)0.0423 (14)0.0545 (15)0.0078 (12)0.0106 (12)0.0013 (12)
C40.0477 (13)0.0418 (13)0.0466 (13)0.0024 (11)0.0074 (11)0.0043 (11)
C50.0393 (12)0.0386 (12)0.0324 (11)0.0002 (10)0.0067 (9)0.0014 (9)
C60.0422 (12)0.0378 (12)0.0396 (12)0.0009 (10)0.0048 (10)0.0001 (10)
C1A0.0419 (13)0.0631 (17)0.0472 (14)0.0063 (12)0.0009 (11)0.0123 (12)
N1A0.0405 (11)0.0486 (12)0.0407 (11)0.0041 (9)0.0059 (9)0.0062 (9)
C2A0.0316 (11)0.0408 (12)0.0414 (12)0.0029 (9)0.0052 (9)0.0043 (10)
N2A0.0552 (14)0.0708 (17)0.0561 (14)0.0028 (12)0.0096 (11)0.0247 (13)
C1B0.0420 (13)0.0432 (13)0.0502 (14)0.0009 (11)0.0027 (11)0.0070 (11)
N1B0.0351 (10)0.0399 (11)0.0474 (11)0.0040 (8)0.0071 (8)0.0005 (9)
C3A0.0370 (12)0.0391 (13)0.0600 (16)0.0051 (10)0.0041 (11)0.0074 (11)
N3A0.0586 (14)0.0537 (14)0.0725 (16)0.0015 (12)0.0062 (12)0.0232 (13)
C2B0.0373 (12)0.0360 (12)0.0466 (13)0.0016 (10)0.0061 (10)0.0005 (10)
N2B0.0445 (12)0.0517 (13)0.0651 (14)0.0055 (10)0.0155 (11)0.0103 (11)
C4A0.0559 (17)0.0421 (15)0.091 (2)0.0059 (13)0.0083 (16)0.0118 (15)
C3B0.0354 (12)0.0368 (12)0.0615 (16)0.0022 (10)0.0006 (11)0.0035 (11)
N3B0.0445 (12)0.0496 (13)0.0823 (17)0.0103 (10)0.0087 (12)0.0032 (12)
C5A0.067 (2)0.078 (2)0.073 (2)0.0010 (17)0.0205 (16)0.0281 (18)
C4B0.0582 (17)0.0525 (17)0.077 (2)0.0098 (14)0.0182 (15)0.0150 (16)
C6A0.077 (2)0.072 (2)0.0515 (16)0.0086 (17)0.0232 (15)0.0035 (15)
C5B0.100 (3)0.071 (2)0.0560 (19)0.028 (2)0.0110 (18)0.0139 (17)
C7A0.0571 (15)0.0460 (14)0.0490 (14)0.0057 (12)0.0119 (12)0.0020 (11)
C7B0.0622 (17)0.0583 (17)0.0587 (17)0.0045 (14)0.0176 (14)0.0055 (14)
C6B0.102 (3)0.076 (2)0.0519 (18)0.012 (2)0.0221 (18)0.0090 (16)
Geometric parameters (Å, º) top
C1—C21.384 (4)N1B—N2B1.355 (3)
C1—C61.391 (3)N1B—C2B1.361 (3)
C1—C1A1.513 (3)C3A—N3A1.376 (3)
C2—C31.380 (4)C3A—C4A1.397 (4)
C2—H20.9300C2B—C3B1.383 (3)
C3—C41.380 (4)C2B—C7B1.394 (4)
C3—H30.9300N2B—N3B1.310 (3)
C4—C51.384 (3)C4A—C5A1.369 (5)
C4—H40.9300C4A—H4A0.9300
C5—C61.395 (3)C3B—N3B1.376 (4)
C5—C1B1.507 (3)C3B—C4B1.396 (4)
C6—H60.9300C5A—C6A1.404 (5)
C1A—N1A1.457 (3)C5A—H5A0.9300
C1A—H1AA0.9700C4B—C5B1.358 (5)
C1A—H1AB0.9700C4B—H4B0.9300
N1A—N2A1.354 (3)C6A—C7A1.365 (4)
N1A—C2A1.355 (3)C6A—H6A0.9300
C2A—C3A1.390 (3)C5B—C6B1.405 (5)
C2A—C7A1.392 (3)C5B—H5B0.9300
N2A—N3A1.308 (4)C7A—H7A0.9300
C1B—N1B1.447 (3)C7B—C6B1.367 (4)
C1B—H1BA0.9700C7B—H7B0.9300
C1B—H1BB0.9700C6B—H6B0.9300
H1BA···N3Ai2.59H7A···Cg1iii2.69
H4A···N3Bii2.66H4B···Cg2iv2.79
C2—C1—C6119.1 (2)N2B—N1B—C1B120.9 (2)
C2—C1—C1A119.8 (2)C2B—N1B—C1B129.5 (2)
C6—C1—C1A121.1 (2)N3A—C3A—C2A108.2 (2)
C3—C2—C1120.3 (2)N3A—C3A—C4A131.1 (3)
C3—C2—H2119.8C2A—C3A—C4A120.7 (3)
C1—C2—H2119.8N2A—N3A—C3A108.2 (2)
C2—C3—C4120.2 (2)N1B—C2B—C3B104.9 (2)
C2—C3—H3119.9N1B—C2B—C7B132.5 (2)
C4—C3—H3119.9C3B—C2B—C7B122.6 (2)
C3—C4—C5120.8 (2)N3B—N2B—N1B109.1 (2)
C3—C4—H4119.6C5A—C4A—C3A116.7 (3)
C5—C4—H4119.6C5A—C4A—H4A121.7
C4—C5—C6118.5 (2)C3A—C4A—H4A121.7
C4—C5—C1B122.0 (2)N3B—C3B—C2B108.6 (2)
C6—C5—C1B119.4 (2)N3B—C3B—C4B130.7 (3)
C1—C6—C5121.1 (2)C2B—C3B—C4B120.8 (3)
C1—C6—H6119.4N2B—N3B—C3B107.8 (2)
C5—C6—H6119.4C4A—C5A—C6A122.0 (3)
N1A—C1A—C1112.5 (2)C4A—C5A—H5A119.0
N1A—C1A—H1AA109.1C6A—C5A—H5A119.0
C1—C1A—H1AA109.1C5B—C4B—C3B117.1 (3)
N1A—C1A—H1AB109.1C5B—C4B—H4B121.5
C1—C1A—H1AB109.1C3B—C4B—H4B121.5
H1AA—C1A—H1AB107.8C7A—C6A—C5A122.0 (3)
N2A—N1A—C2A110.1 (2)C7A—C6A—H6A119.0
N2A—N1A—C1A121.6 (2)C5A—C6A—H6A119.0
C2A—N1A—C1A128.3 (2)C4B—C5B—C6B121.5 (3)
N1A—C2A—C3A104.7 (2)C4B—C5B—H5B119.2
N1A—C2A—C7A132.7 (2)C6B—C5B—H5B119.2
C3A—C2A—C7A122.6 (2)C6A—C7A—C2A116.0 (3)
N3A—N2A—N1A108.8 (2)C6A—C7A—H7A122.0
N1B—C1B—C5113.11 (19)C2A—C7A—H7A122.0
N1B—C1B—H1BA109.0C6B—C7B—C2B115.5 (3)
C5—C1B—H1BA109.0C6B—C7B—H7B122.3
N1B—C1B—H1BB109.0C2B—C7B—H7B122.3
C5—C1B—H1BB109.0C7B—C6B—C5B122.5 (3)
H1BA—C1B—H1BB107.8C7B—C6B—H6B118.8
N2B—N1B—C2B109.6 (2)C5B—C6B—H6B118.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x1, y, z; (iv) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1B–N3B/C2B/C3B C2A–C7A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1B—H1BA···N3Ai0.972.593.409 (4)142
C4A—H4A···N3Bii0.932.663.443 (4)143
C7A—H7A···Cg1iii0.932.693.423 (3)136
C4B—H4B···Cg2iv0.932.893.481 (3)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x1, y, z; (iv) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The financial support from the Departamento de Química, Facultad de Ciencias and Vicerrectoría de Investigaciones of the Universidad de los Andes is gratefully acknowledged. NND is also grateful to COLCIENCIAS for his doctoral scholarship (Conv. 617). The authors wish to thank ANII (EQC_2012_07), CSIC and Facultad de Química for the funds to purchase the diffractometer. MAM also thanks ANII for his post-doctoral contract (PD_NAC_2014_1_102409).

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Y.-P., Li, G.-B., He, G.-P., Su, C.-Y., Xu, A.-W. & Zhang, C. (2004). Acta Cryst. E60, o2062–o2064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHurtado, J., Rojas, R., Pérez, E. & Valderrama, M. (2013). J. Chil. Chem. Soc. 58, 1534–1536.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationO'Keefe, B. J. & Steel, P. J. (2000). Inorg. Chem. Commun. 3, 473–475.  CAS Google Scholar
First citationRajakumar, P. & Murali, V. (2000). Tetrahedron, 56, 7995–7999.  CrossRef CAS Google Scholar
First citationSelvanayagam, S., Rajakannan, V., Velmurugan, D., Dhanasekaran, M., Rajakumar, P. & Moon, J.-K. (2002). Acta Cryst. E58, o1190–o1192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, S., Velmurugan, D., Ravikumar, K., Dhanasekaran, M. & Rajakumar, P. (2004). Acta Cryst. E60, o2165–o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds