research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1RS,21SR,22RS,24SR)-28-oxo-24-propyl-8,11,14-trioxa-24,27-di­aza­penta­cyclo[19.5.1.122,26.02,7.015,20]octa­cosa-2,4,6,15(20),16,18-hexa­ene acetic acid monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam, bDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, cOrganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, dInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation, and eX-Ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: thh1101@yahoo.com

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 20 April 2016; accepted 5 May 2016; online 20 May 2016)

The title compound, C26H32N2O4(M)·C2H4O2, (I), is the product of the Petrenko–Kritchenko condensation of N-propyl­piperidinone with 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane and ammonium acetate. In M, the aza-14-crown-3-ether ring adopts a bowl conformation, with the configuration of the C—O—C—C —O—C—C—O—C polyether chain being tg(−)ttg(+)t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 62.75 (5)°. The central piperidinone ring has a boat conformation, whereas the terminal piperidinone ring adopts a chair conformation. The boat conformation of the central piperidinone ring is supported by the bifurcated intra­molecular N—H⋯O hydrogen bond. In the crystal, each solvent mol­ecule is linked to mol­ecule M via strong O—H⋯N hydrogen bonding, forming hydrogen-bonded pairs of mol­ecules, which further inter­act through weak C—H⋯O hydrogen bonds, forming layers parallel to the ac plane.

1. Chemical context

The design, synthesis and applications of macrocyclic ligands for coordination and supra­molecular chemistry have attracted very great attention from investigators over the last several decades (Hiraoka, 1978[Hiraoka, M. (1978). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.]; Pedersen, 1988[Pedersen, C. J. (1988). Angew. Chem. 100, 1053-1059.]; Schwan & Warkentin, 1988[Schwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686-1694.]; Gokel & Murillo, 1996[Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]; Bradshaw & Izatt, 1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]). Recently, we have developed effective methods of synthesis of aza­crown ethers containing piperidine (Levov et al., 2006[Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-36.], 2008[Levov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.]; Anh et al., 2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.], 2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386-o1387.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588-o1589.],c[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165-o2166.]; Hieu et al. (2012a[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431-o2432.],b[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848-o2849.], 2013[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, o565-o566.]), perhydro­pyrimidine (Hieu et al., 2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd. 47, 1307-1308.]), perhydro­triazine (Khieu et al., 2011[Khieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]) and bis­pidine (Komarova et al., 2008[Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624-625.]; Sokol et al., 2011[Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2124-2127.]) subunits.

In attempts to apply this chemistry to obtain a macrocyclic ligand containing the N-propyl­substituted bis­pidine moiety, we studied the Petrenko–Kritchenko condensation of N-propyl­piperidinone with 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane and ammonium acetate. The reaction proceeded smoothly to give the expected aza­crown system with a high yield of 73% (Fig. 1[link]).

[Figure 1]
Figure 1
Petrenko–Kritchenko condensation of N-propyl­piperidinone with 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane and ammonium acetate.

The prepared compound was studied by X-ray diffraction analysis. It is a stable complex and crystallized as an acetic acid monosolvate, C26H32N2O4(M)·C2H4O2, (I)[link] (Fig. 2[link]). This finding seems to show the possibility of forming the second piperidine ring by the direct participation of the ammonium ion without the loss of its counter-ionic nature.

[Scheme 1]
[Figure 2]
Figure 2
The mol­ecular structure of (I)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate the intra­molecular N—H⋯O and inter­molecular O—H⋯N hydrogen bonds.

2. Structural commentary

The mol­ecule of M forms a robust hydrogen-bonded complex with an acetic acid mol­ecule by a strong inter­molecular O—H⋯N hydrogen bond (Fig. 2[link] and Table 1[link]). The mol­ecule of M comprises a fused penta­cyclic system containing the aza-14-crown-3-ether macrocycle, two piperidinone and two benzene rings (Fig. 2[link]). The aza-14-crown-3-ether ring adopts a bowl conformation. The conformation of the C7—O8—C9—C10 —O11—C12—C13—O14—C15 polyether chain is tg(−)ttg(+)t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 62.75 (5)°. The central piperidinone ring has a boat conformation, whereas the terminal piperidinone ring adopts a chair conformation. Apparently, the conformation of the central piperidinone ring is determined by the bifurcated intra­molecular N—H⋯O hydrogen bond (Fig. 2[link] and Table 1[link]). Both nitro­gen atoms N25 and N27 have a trigonal–pyramidal geometry (the sums of the bond angles are 326.9 and 335.2°, respectively). The bulk propyl substituent at the nitro­gen atom N27 occupies the more favourable equatorial position.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N25—H25⋯O8 0.91 2.27 2.867 (2) 123
N25—H25⋯O14 0.91 2.45 3.008 (2) 120
O32—H32⋯N25 0.93 1.67 2.595 (2) 176
C1—H1⋯O33 1.00 2.57 3.249 (3) 125
C5—H5⋯O32i 0.95 2.58 3.442 (2) 152
C16—H16⋯O32ii 0.95 2.47 3.340 (2) 153
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+1, -z.

The mol­ecule of M possesses four asymmetric centers at the C1, C21, C22 and C24 carbon atoms and can have potentially numerous diastereomers. The crystal of (I)[link] is racemic and consists of enanti­omeric pairs of M with the following relative configuration of the centers: rac-1R*, 21S*,22R*,24S*.

3. Supra­molecular features

In the crystal, the hydrogen-bonded complex (I)[link] forms centrosymmetric dimers by C—H⋯O hydrogen bonds (Fig. 3[link] and Table 1[link]). The dimers inter­act through weak C—H⋯O hydrogen bonds, forming layers parallel to ac plane (Fig. 4[link] and Table 1[link]).

[Figure 3]
Figure 3
The centrosymmetric hydrogen-bonded dimer of (I)[link]. Dashed lines indicate the intra­molecular N—H⋯O and inter­molecular O—H⋯N and C—H⋯O hydrogen bonds [symmetry code: (A) −x + 2, −y + 1, −z].
[Figure 4]
Figure 4
Crystal packing of (I)[link] showing the layers parallel to the ac plane. Dashed lines indicate the intra­molecular N—H⋯O and inter­molecular O—H⋯N and C—H⋯O hydrogen bonds.

4. Synthesis and crystallization

1,5-Bis(2-formyl-phen­oxy)-3-oxa­pentane was synthesized according to the procedure described previously (Levov et al., 2008[Levov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.]) and purified by recrystallization in ethanol.

Ammonium acetate (3.0 g, 39 mmol) was added to a solution of 1,5-bis­(2-formyl- phen­oxy)-3-oxa­pentane (3.14 g, 10.0 mmol) and N-propyl­piperidone (1.41 g, 10.0 mmol) in ethanol (30 mL) mixed with acetic acid (1 mL). The reaction mixture was stirred at 293 K for 3 d (monitoring by TLC until disappearance of the starting heterocyclic ketone spot). At the end of the reaction, the formed precipitate was filtered off, washed with ethanol and recrystallized from ethanol to give 3.60 g of colourless block-like crystals of (I)[link] (yield 73%; m.p. = 490–492 K).

IR (KBr), ν/cm−1: 1602, 1728, 3263, 3463. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 1.08 (t, 3H, CH3, J = 6.7), 1.25 (m, 2H, CH2CH2CH3), 1.61 (m, 2H, NCH2CH2), 1.83 (s, 3H, s, 3H, CH3COO), 2.49 (m, 4H, 2H23 and 2H25), 2.76 (m, 2H, H22 and H26), 3.12 (br m, 1H, NH), 3.86–4.10 (m, 8H, OCH2CH2OCH2CH2O), 4.83 (m, 2H, H1 and H21), 6.78–6.86 (m, 4H, Harom), 7.25–7.41 (m, 4H, Harom). 13C NMR (CDCl3, 80 MHz, 300 K): δ = 12.3 (CH3), 21.2 (CH2), 22.6 (CH2), 54.4 (CH2), 57.7 (CH2), 60.5 (CH2), 64.3 (CH2), 67.0 (CH), 79.1 (CH), 111.5 (Carom), 121.1 (Carom), 129.1 (Carom), 131.8 (Carom), 175.7 C=O). Analysis calculated for C28H36N2O6: C, 67.72; H, 7.31; N, 5.64. Found: C, 67.54; H, 7.42; N, 5.41.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms of the amino and hy­droxy groups were localized in the difference-Fourier maps and included in the refinement with fixed positional (using a riding model) and isotropic displacement parameters [Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl group and 1.2Ueq(C) for the other groups].

Table 2
Experimental details

Crystal data
Chemical formula C26H32N2O4·C2H4O2
Mr 496.59
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 9.4610 (8), 11.673 (1), 12.9862 (11)
α, β, γ (°) 83.780 (2), 79.998 (2), 67.335 (2)
V3) 1301.95 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.946, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 17314, 7954, 5223
Rint 0.046
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.143, 1.01
No. of reflections 7954
No. of parameters 327
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.29
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(1RS,21SR,22RS,24SR)-28-Oxo-24-propyl-8,11,14-trioxa-24,27-diazapentacyclo[19.5.1.122,26.02,7.015,20]octacosa-2,4,6,15(20),16,18-hexaene acetic acid monosolvate top
Crystal data top
C26H32N2O4·C2H4O2Z = 2
Mr = 496.59F(000) = 532
Triclinic, P1Dx = 1.267 Mg m3
a = 9.4610 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.673 (1) ÅCell parameters from 3303 reflections
c = 12.9862 (11) Åθ = 2.4–29.1°
α = 83.780 (2)°µ = 0.09 mm1
β = 79.998 (2)°T = 120 K
γ = 67.335 (2)°Prism, colourless
V = 1301.95 (19) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
5223 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
φ and ω scansθmax = 30.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.946, Tmax = 0.963k = 1616
17314 measured reflectionsl = 1818
7954 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.143H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.4449P]
where P = (Fo2 + 2Fc2)/3
7954 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7020 (2)0.80143 (16)0.32331 (13)0.0151 (3)
H10.59430.80300.34320.018*
C20.7882 (2)0.73774 (16)0.41389 (13)0.0156 (3)
C30.7109 (2)0.70361 (17)0.50551 (14)0.0187 (4)
H30.60390.71880.50990.022*
C40.7870 (2)0.64764 (17)0.59081 (14)0.0219 (4)
H40.73210.62620.65340.026*
C50.9433 (2)0.62344 (17)0.58399 (14)0.0217 (4)
H50.99570.58460.64210.026*
C61.0246 (2)0.65524 (16)0.49323 (14)0.0199 (4)
H61.13220.63740.48870.024*
C70.9465 (2)0.71355 (16)0.40895 (14)0.0171 (3)
O81.01351 (14)0.75192 (12)0.31660 (10)0.0216 (3)
C91.1750 (2)0.73063 (18)0.30576 (15)0.0212 (4)
H9A1.23780.64040.30710.025*
H9B1.19610.76770.36360.025*
C101.2134 (2)0.79095 (18)0.20263 (15)0.0236 (4)
H10A1.13910.87790.19750.028*
H10B1.31880.79180.19630.028*
O111.20538 (16)0.72247 (12)0.12144 (10)0.0241 (3)
C121.1807 (2)0.79105 (18)0.02482 (15)0.0244 (4)
H12A1.28020.79120.01440.029*
H12B1.11040.87820.03740.029*
C131.1102 (2)0.73105 (19)0.03698 (15)0.0240 (4)
H13A1.10110.77130.10790.029*
H13B1.17480.64160.04370.029*
O140.95979 (15)0.74700 (12)0.01989 (10)0.0232 (3)
C150.8744 (2)0.69058 (16)0.01385 (14)0.0194 (4)
C160.9239 (2)0.61671 (17)0.10028 (14)0.0226 (4)
H161.02160.60390.14140.027*
C170.8277 (2)0.56197 (18)0.12541 (15)0.0258 (4)
H170.86120.51080.18380.031*
C180.6844 (2)0.58076 (18)0.06688 (15)0.0256 (4)
H180.61940.54350.08510.031*
C190.6368 (2)0.65503 (17)0.01915 (14)0.0215 (4)
H190.53840.66820.05950.026*
C200.7302 (2)0.71058 (16)0.04736 (13)0.0166 (3)
C210.6760 (2)0.78938 (16)0.14221 (13)0.0152 (3)
H210.56810.79480.16910.018*
C220.6672 (2)0.92585 (16)0.11686 (14)0.0166 (3)
H220.71290.93570.04260.020*
C230.7502 (2)0.96020 (16)0.19043 (14)0.0173 (4)
O230.84543 (15)1.00757 (12)0.16251 (10)0.0237 (3)
C240.6875 (2)0.93985 (16)0.30267 (14)0.0166 (3)
H240.74600.96010.35050.020*
N250.76982 (17)0.72799 (13)0.22760 (11)0.0149 (3)
H250.86750.72590.20650.018*
C260.4975 (2)1.01694 (17)0.13699 (14)0.0191 (4)
H26A0.49251.10320.12160.023*
H26B0.43661.00020.08980.023*
N270.43102 (17)1.00357 (14)0.24556 (11)0.0173 (3)
C280.5164 (2)1.02988 (17)0.31802 (14)0.0187 (4)
H28A0.46881.02060.39100.022*
H28B0.51071.11660.30540.022*
C290.2644 (2)1.07837 (17)0.26161 (15)0.0208 (4)
H29A0.21691.06270.20520.025*
H29B0.24951.16740.25570.025*
C300.1803 (2)1.05181 (18)0.36677 (16)0.0244 (4)
H30A0.20051.09300.42220.029*
H30B0.21990.96120.38370.029*
C310.0058 (2)1.0991 (2)0.36409 (18)0.0352 (5)
H31A0.04761.09010.43440.053*
H31B0.01521.05060.31580.053*
H31C0.03141.18690.34040.053*
O320.75677 (15)0.50970 (13)0.27083 (11)0.0263 (3)
H320.76520.58680.25690.039*
O330.51282 (18)0.61820 (16)0.33797 (16)0.0489 (5)
C320.6186 (2)0.5196 (2)0.31786 (19)0.0335 (5)
C330.6036 (3)0.3964 (3)0.3473 (3)0.0692 (10)
H33A0.53850.40090.41540.104*
H33B0.70640.33200.35160.104*
H33C0.55610.37590.29420.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0143 (8)0.0166 (8)0.0132 (8)0.0045 (7)0.0020 (6)0.0009 (6)
C20.0168 (8)0.0149 (8)0.0142 (8)0.0040 (7)0.0046 (7)0.0011 (6)
C30.0187 (9)0.0212 (9)0.0175 (9)0.0094 (7)0.0024 (7)0.0006 (7)
C40.0291 (10)0.0221 (9)0.0147 (8)0.0102 (8)0.0041 (7)0.0025 (7)
C50.0282 (10)0.0178 (9)0.0189 (9)0.0050 (8)0.0123 (8)0.0015 (7)
C60.0181 (9)0.0183 (9)0.0222 (9)0.0030 (7)0.0077 (7)0.0024 (7)
C70.0181 (9)0.0166 (8)0.0161 (8)0.0052 (7)0.0031 (7)0.0023 (7)
O80.0138 (6)0.0316 (7)0.0192 (6)0.0089 (6)0.0033 (5)0.0025 (6)
C90.0120 (8)0.0273 (10)0.0250 (10)0.0068 (7)0.0031 (7)0.0051 (8)
C100.0166 (9)0.0253 (10)0.0305 (10)0.0103 (8)0.0002 (8)0.0037 (8)
O110.0293 (8)0.0220 (7)0.0208 (7)0.0099 (6)0.0040 (6)0.0011 (6)
C120.0186 (9)0.0263 (10)0.0253 (10)0.0085 (8)0.0004 (8)0.0062 (8)
C130.0179 (9)0.0302 (10)0.0186 (9)0.0068 (8)0.0044 (7)0.0009 (8)
O140.0183 (7)0.0290 (7)0.0226 (7)0.0103 (6)0.0037 (5)0.0076 (6)
C150.0238 (10)0.0161 (8)0.0164 (8)0.0053 (7)0.0042 (7)0.0001 (7)
C160.0274 (10)0.0201 (9)0.0139 (8)0.0031 (8)0.0008 (7)0.0002 (7)
C170.0395 (12)0.0206 (9)0.0148 (9)0.0068 (9)0.0072 (8)0.0015 (7)
C180.0344 (11)0.0219 (9)0.0226 (10)0.0101 (9)0.0092 (9)0.0025 (8)
C190.0242 (10)0.0210 (9)0.0205 (9)0.0085 (8)0.0068 (8)0.0006 (7)
C200.0197 (9)0.0171 (8)0.0123 (8)0.0048 (7)0.0055 (7)0.0006 (7)
C210.0131 (8)0.0183 (8)0.0143 (8)0.0057 (7)0.0032 (6)0.0002 (7)
C220.0170 (8)0.0159 (8)0.0153 (8)0.0040 (7)0.0041 (7)0.0010 (7)
C230.0156 (8)0.0121 (8)0.0215 (9)0.0020 (7)0.0043 (7)0.0009 (7)
O230.0236 (7)0.0240 (7)0.0266 (7)0.0129 (6)0.0044 (6)0.0033 (6)
C240.0152 (8)0.0168 (8)0.0172 (8)0.0041 (7)0.0043 (7)0.0025 (7)
N250.0134 (7)0.0183 (7)0.0119 (7)0.0047 (6)0.0023 (5)0.0004 (6)
C260.0189 (9)0.0189 (9)0.0169 (9)0.0035 (7)0.0054 (7)0.0006 (7)
N270.0144 (7)0.0186 (7)0.0160 (7)0.0021 (6)0.0035 (6)0.0021 (6)
C280.0181 (9)0.0171 (8)0.0185 (9)0.0031 (7)0.0040 (7)0.0026 (7)
C290.0160 (9)0.0187 (9)0.0242 (9)0.0018 (7)0.0035 (7)0.0037 (7)
C300.0191 (9)0.0236 (10)0.0287 (10)0.0069 (8)0.0011 (8)0.0055 (8)
C310.0198 (10)0.0460 (13)0.0418 (13)0.0136 (10)0.0039 (9)0.0197 (11)
O320.0226 (7)0.0234 (7)0.0322 (8)0.0096 (6)0.0017 (6)0.0025 (6)
O330.0194 (8)0.0413 (10)0.0799 (14)0.0085 (8)0.0020 (8)0.0035 (9)
C320.0218 (10)0.0343 (12)0.0450 (13)0.0121 (10)0.0105 (10)0.0106 (10)
C330.0372 (15)0.0426 (15)0.129 (3)0.0252 (13)0.0097 (17)0.0252 (18)
Geometric parameters (Å, º) top
C1—N251.490 (2)C19—C201.394 (2)
C1—C21.510 (2)C19—H190.9500
C1—C241.565 (2)C20—C211.513 (2)
C1—H11.0000C21—N251.487 (2)
C2—C31.389 (2)C21—C221.564 (2)
C2—C71.404 (2)C21—H211.0000
C3—C41.389 (2)C22—C231.508 (2)
C3—H30.9500C22—C261.542 (2)
C4—C51.383 (3)C22—H221.0000
C4—H40.9500C23—O231.215 (2)
C5—C61.389 (3)C23—C241.505 (2)
C5—H50.9500C24—C281.545 (2)
C6—C71.392 (2)C24—H241.0000
C6—H60.9500N25—H250.9090
C7—O81.371 (2)C26—N271.459 (2)
O8—C91.434 (2)C26—H26A0.9900
C9—C101.499 (3)C26—H26B0.9900
C9—H9A0.9900N27—C281.466 (2)
C9—H9B0.9900N27—C291.468 (2)
C10—O111.419 (2)C28—H28A0.9900
C10—H10A0.9900C28—H28B0.9900
C10—H10B0.9900C29—C301.522 (3)
O11—C121.418 (2)C29—H29A0.9900
C12—C131.499 (3)C29—H29B0.9900
C12—H12A0.9900C30—C311.531 (3)
C12—H12B0.9900C30—H30A0.9900
C13—O141.437 (2)C30—H30B0.9900
C13—H13A0.9900C31—H31A0.9800
C13—H13B0.9900C31—H31B0.9800
O14—C151.369 (2)C31—H31C0.9800
C15—C161.392 (3)O32—C321.310 (2)
C15—C201.402 (3)O32—H320.9300
C16—C171.392 (3)O33—C321.217 (3)
C16—H160.9500C32—C331.502 (3)
C17—C181.383 (3)C33—H33A0.9800
C17—H170.9500C33—H33B0.9800
C18—C191.392 (3)C33—H33C0.9800
C18—H180.9500
N25—C1—C2111.06 (14)C15—C20—C21121.60 (15)
N25—C1—C24112.37 (13)N25—C21—C20111.21 (14)
C2—C1—C24112.90 (14)N25—C21—C22111.78 (13)
N25—C1—H1106.7C20—C21—C22113.66 (14)
C2—C1—H1106.7N25—C21—H21106.6
C24—C1—H1106.7C20—C21—H21106.6
C3—C2—C7118.35 (16)C22—C21—H21106.6
C3—C2—C1120.22 (16)C23—C22—C26105.47 (14)
C7—C2—C1121.42 (15)C23—C22—C21110.33 (14)
C2—C3—C4121.25 (17)C26—C22—C21109.81 (14)
C2—C3—H3119.4C23—C22—H22110.4
C4—C3—H3119.4C26—C22—H22110.4
C5—C4—C3119.51 (17)C21—C22—H22110.4
C5—C4—H4120.2O23—C23—C24124.69 (16)
C3—C4—H4120.2O23—C23—C22124.22 (17)
C4—C5—C6120.77 (16)C24—C23—C22110.82 (15)
C4—C5—H5119.6C23—C24—C28105.96 (14)
C6—C5—H5119.6C23—C24—C1109.72 (14)
C5—C6—C7119.24 (17)C28—C24—C1111.30 (14)
C5—C6—H6120.4C23—C24—H24109.9
C7—C6—H6120.4C28—C24—H24109.9
O8—C7—C6124.44 (16)C1—C24—H24109.9
O8—C7—C2114.69 (15)C21—N25—C1109.49 (13)
C6—C7—C2120.87 (16)C21—N25—H25108.3
C7—O8—C9117.94 (14)C1—N25—H25109.1
O8—C9—C10106.49 (14)N27—C26—C22110.50 (14)
O8—C9—H9A110.4N27—C26—H26A109.6
C10—C9—H9A110.4C22—C26—H26A109.6
O8—C9—H9B110.4N27—C26—H26B109.6
C10—C9—H9B110.4C22—C26—H26B109.6
H9A—C9—H9B108.6H26A—C26—H26B108.1
O11—C10—C9108.52 (15)C26—N27—C28111.21 (14)
O11—C10—H10A110.0C26—N27—C29110.59 (14)
C9—C10—H10A110.0C28—N27—C29113.43 (14)
O11—C10—H10B110.0N27—C28—C24110.26 (14)
C9—C10—H10B110.0N27—C28—H28A109.6
H10A—C10—H10B108.4C24—C28—H28A109.6
C12—O11—C10114.24 (15)N27—C28—H28B109.6
O11—C12—C13108.19 (15)C24—C28—H28B109.6
O11—C12—H12A110.1H28A—C28—H28B108.1
C13—C12—H12A110.1N27—C29—C30114.01 (15)
O11—C12—H12B110.1N27—C29—H29A108.7
C13—C12—H12B110.1C30—C29—H29A108.7
H12A—C12—H12B108.4N27—C29—H29B108.7
O14—C13—C12106.24 (15)C30—C29—H29B108.7
O14—C13—H13A110.5H29A—C29—H29B107.6
C12—C13—H13A110.5C29—C30—C31110.60 (17)
O14—C13—H13B110.5C29—C30—H30A109.5
C12—C13—H13B110.5C31—C30—H30A109.5
H13A—C13—H13B108.7C29—C30—H30B109.5
C15—O14—C13118.86 (14)C31—C30—H30B109.5
O14—C15—C16124.32 (17)H30A—C30—H30B108.1
O14—C15—C20114.57 (15)C30—C31—H31A109.5
C16—C15—C20121.10 (17)C30—C31—H31B109.5
C15—C16—C17118.93 (18)H31A—C31—H31B109.5
C15—C16—H16120.5C30—C31—H31C109.5
C17—C16—H16120.5H31A—C31—H31C109.5
C18—C17—C16121.24 (18)H31B—C31—H31C109.5
C18—C17—H17119.4C32—O32—H32111.9
C16—C17—H17119.4O33—C32—O32124.0 (2)
C17—C18—C19119.05 (19)O33—C32—C33122.7 (2)
C17—C18—H18120.5O32—C32—C33113.3 (2)
C19—C18—H18120.5C32—C33—H33A109.5
C18—C19—C20121.43 (18)C32—C33—H33B109.5
C18—C19—H19119.3H33A—C33—H33B109.5
C20—C19—H19119.3C32—C33—H33C109.5
C19—C20—C15118.25 (16)H33A—C33—H33C109.5
C19—C20—C21120.15 (16)H33B—C33—H33C109.5
N25—C1—C2—C3120.84 (17)C19—C20—C21—N25111.18 (17)
C24—C1—C2—C3111.90 (18)C15—C20—C21—N2568.4 (2)
N25—C1—C2—C760.4 (2)C19—C20—C21—C22121.62 (17)
C24—C1—C2—C766.9 (2)C15—C20—C21—C2258.8 (2)
C7—C2—C3—C40.4 (3)N25—C21—C22—C232.93 (19)
C1—C2—C3—C4178.42 (17)C20—C21—C22—C23129.83 (15)
C2—C3—C4—C51.1 (3)N25—C21—C22—C26118.76 (15)
C3—C4—C5—C60.5 (3)C20—C21—C22—C26114.33 (16)
C4—C5—C6—C70.8 (3)C26—C22—C23—O23110.80 (19)
C5—C6—C7—O8178.32 (17)C21—C22—C23—O23130.67 (18)
C5—C6—C7—C21.5 (3)C26—C22—C23—C2463.50 (17)
C3—C2—C7—O8178.95 (15)C21—C22—C23—C2455.02 (18)
C1—C2—C7—O80.1 (2)O23—C23—C24—C28111.02 (19)
C3—C2—C7—C60.9 (3)C22—C23—C24—C2863.25 (17)
C1—C2—C7—C6179.71 (16)O23—C23—C24—C1128.72 (18)
C6—C7—O8—C90.1 (2)C22—C23—C24—C157.00 (18)
C2—C7—O8—C9179.88 (15)N25—C1—C24—C231.16 (19)
C7—O8—C9—C10175.18 (15)C2—C1—C24—C23125.40 (16)
O8—C9—C10—O1169.33 (18)N25—C1—C24—C28115.80 (15)
C9—C10—O11—C12157.26 (15)C2—C1—C24—C28117.65 (16)
C10—O11—C12—C13156.70 (15)C20—C21—N25—C1173.72 (14)
O11—C12—C13—O1465.88 (19)C22—C21—N25—C158.06 (17)
C12—C13—O14—C15173.95 (15)C2—C1—N25—C21176.47 (13)
C13—O14—C15—C160.5 (3)C24—C1—N25—C2155.99 (17)
C13—O14—C15—C20179.35 (15)C23—C22—C26—N2760.27 (18)
O14—C15—C16—C17178.54 (17)C21—C22—C26—N2758.60 (18)
C20—C15—C16—C170.2 (3)C22—C26—N27—C2860.27 (18)
C15—C16—C17—C180.6 (3)C22—C26—N27—C29172.75 (14)
C16—C17—C18—C190.5 (3)C26—N27—C28—C2459.54 (18)
C17—C18—C19—C200.0 (3)C29—N27—C28—C24175.04 (14)
C18—C19—C20—C150.4 (3)C23—C24—C28—N2759.27 (18)
C18—C19—C20—C21179.16 (17)C1—C24—C28—N2759.95 (18)
O14—C15—C20—C19179.19 (15)C26—N27—C29—C30169.32 (15)
C16—C15—C20—C190.3 (3)C28—N27—C29—C3064.9 (2)
O14—C15—C20—C210.4 (2)N27—C29—C30—C31161.57 (16)
C16—C15—C20—C21179.25 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N25—H25···O80.912.272.867 (2)123
N25—H25···O140.912.453.008 (2)120
O32—H32···N250.931.672.595 (2)176
C1—H1···O331.002.573.249 (3)125
C5—H5···O32i0.952.583.442 (2)152
C16—H16···O32ii0.952.473.340 (2)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z.
 

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.01–2014.39.

References

First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.  CrossRef CAS Web of Science Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd. 47, 1307–1308.  Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431–o2432.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, o565–o566.  CSD CrossRef IUCr Journals Google Scholar
First citationHiraoka, M. (1978). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.  Google Scholar
First citationKhieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  Web of Science CrossRef CAS Google Scholar
First citationKomarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624–625.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665–1670.  CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–36.  Web of Science CSD CrossRef Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. 100, 1053–1059.  CrossRef CAS Google Scholar
First citationSchwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686–1694.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2124–2127.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds