research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ring-strain release in neutral and dicationic 7,8,17,18-tetra­bromo-5,10,15,20-tetra­phenyl­porphyrin: crystal structures of C44H26Br4N4 and C44H28Br4N42+·2ClO4·3CH2Cl2

CROSSMARK_Color_square_no_text.svg

a235 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: scheidt.1@nd.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 April 2016; accepted 2 May 2016; online 20 May 2016)

Two porphyrin complexes were studied to determine the effects of protonation on ring deformation within the porphyrin. The porphyrin 7,8,17,18-tetra­bromo-5,10,15,20-tetra­phenyl­porphyrin, C44H26Br4N4, was selected because the neutral species is readily doubly protonated to yield a dication, which was crystallized here with perchlorate counter-ions as a di­chloro­methane tris­olvate, C44H28Br4N42+·2ClO4·3CH2Cl2. The centrosymmetric neutral species is observed to have a mild `ruffling' of the pyrrole rings and is essentially planar throughout; intra­molecular N—H⋯N hydrogen bonds occur. In contrast, the dication exhibits considerable deformation, with the pyrrole rings oriented well out of the plane of the porphyrin, resulting in a `saddle' conformation of the ring. The charged species forms N—H⋯O hydrogen bonds to the perchlorate anions, which lie above and below the plane of the porphyrin ring. Distortions to the planarity of the pyrrole rings in both cases are very minor. The characterization of the neutral species represents a low-temperature redetermination of the previous room-temperature analyses [Zou et al. (1995[Zou, J.-Z., Xu, Z., Li, M., You, X.-Z. & Wang, H.-Q. (1995). Acta Cryst. C51, 760-761.]). Acta Cryst. C51, 760–761; Rayati et al. (2008[Rayati, S., Zakavi, S., Motlagh, S. H., Noroozi, V., Razmjoo, M., Wojtczak, A. & Kozakiewicz, A. (2008). Polyhedron, pp. 2285-2290.]). Polyhedron, pp. 2285–2290], which showed disorder and physically unrealistic displacement parameters.

1. Chemical context

Ring folding in porphyrins has long been of inter­est with characteristics such as ruffling, doming and saddling resulting in strain relief about the ring. In particular, the inter­actions within the constrained environment of the tetra-pyrrole core predominantly affect the orientation of the pyrrole rings. Two porphyrin mol­ecules were studied to examine the effects of protonation of the pyrrole nitro­gen atoms upon the overall geometry of the porphyrin ring systems. The porphyrin: 7,8,17,18-tetra­bromo-5,10,15,20-tetra­phenyl­porphyrin (I)[link], H2TPPBr4 was adopted for this study. It readily accepts two protons forming a dicationic species (II)[link], [H4TPPBr4]2+. The neutral porphyrin (I)[link] has previously been reported in two different, room-temperature determinations (Zou et al., 1995[Zou, J.-Z., Xu, Z., Li, M., You, X.-Z. & Wang, H.-Q. (1995). Acta Cryst. C51, 760-761.]; Rayati et al., 2008[Rayati, S., Zakavi, S., Motlagh, S. H., Noroozi, V., Razmjoo, M., Wojtczak, A. & Kozakiewicz, A. (2008). Polyhedron, pp. 2285-2290.]). However, those two structures display disorder that is not present in the low-temperature determination provided herein.

2. Structural commentary

The neutral porphyrin (I)[link] was found to crystallize about the center of symmetry at the origin (Fig. 1[link]). Distinctly different, the dicationic porphyrin (II)[link] was found to crystallize with one complete porphyrin dication, two perchlorate ions and three mol­ecules of di­chloro­methane solvent of crystallization in the asymmetric unit (Fig. 2[link]). Thus, the geometry of (I)[link] is influenced by symmetry, while the geometry of (II)[link] is independent of such constraints. In both studies, we elected to use the meta-carbon atoms of the porphyrin ring (labeled as CMn in the Figures; n = atom number) as the basis for an arbitrary mean plane for analyzing distortions.

[Scheme 1]
[Scheme 2]
[Figure 1]
Figure 1
Structure and labeling scheme of (I)[link]. Atomic displacement parameters are depicted at 50% probability. H atoms are depicted as spheres of an arbitrary radius. [Symmetry code: (i) −x, −y, −z.]
[Figure 2]
Figure 2
Structure and labelling scheme of (II)[link]. Atomic displacement parameters are depicted at 50% probability. H atoms are depicted as spheres of an arbitrary radius. Hydrogen bonds are represented as light-blue dashed lines.

The neutral compound (I)[link] exhibits very mild `ruffling' of the pyrrole rings. The two independent pyrrole rings form periplanar angles of 3.0 (3) and 6.5 (3)° with the four porphyrin meta-carbon atoms (Table 1[link]). This is largely influenced by the lack of steric hindrance of the two hydrogen atoms within the core of the porphyrin ring (Fig. 3[link]). This lack of hindrance is also reflected in the intra­molecular N—H⋯N hydrogen bonds formed in the core that have typical DA distances (Table 2[link]). However, these intra­molecular hydrogen bonds are not well directed, as demonstrated by the relatively constrained N—H⋯N angles. The pyrrole rings experience very little distortion, with the greatest deviation from the mean-plane being −0.018 (3) Å for CB2 (Table 3[link]). The ruffling of the ring is reflected more so in the deviations of the bromine and ipso-carbon atoms of the phenyl groups from the mean plane (Table 4[link]). It should be noted that due to the center of symmetry, the transannular pairs of pyrrole rings are tilted in opposite directions with respect to the mean plane. Presumably this also plays a role in reducing steric hindrance of the pyrrole hydrogen atoms.

Table 1
Pyrrole periplanar angles (°)

Angles with respect to the mean four atom meta-carbon plane. A `negative' angle represents an arbitrary orientation with the pyrrole N atom below the mean porphyrin plane.

Pyrrole Ring (I) (II)
N1—CA1—CB1—CB2—CA2 3.0 (3) 31.0 (5)
N2—CA3—CB3—CB4—CA4 6.5 (3) −30.1 (5)
N3—CA5—CB5—CB6—CA6   33.6 (4)
N4—CA7—CB7—CB8—CA8   −23.2 (3)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.88 2.47 2.973 (5) 117
N2—H2⋯N1i 0.88 2.40 2.921 (5) 118
Symmetry code: (i) -x, -y, -z.

Table 3
Deviations from pyrrole planes for (I)[link] and (II)[link] (Å)

Atom (I) (II)
N1 −0.008 (3) −0.012 (7)
CA1 −0.004 (3) 0.006 (7)
CA2 0.015 (3) 0.013 (7)
CB1 0.014 (3) 0.002 (7)
CB2 −0.018 (3) −0.009 (7)
Br1 −0.117 (8) −0.28 (2)
Br2 0.403 (7) −0.28 (2)
     
N2 0.006 (3) 0.021 (7)
CA3 −0.001 (3) −0.006 (7)
CA4 −0.009 (3) −0.027 (7)
CB3 −0.005 (3) −0.011 (7)
CB4 0.008 (3) 0.023 (7)
     
N3   −0.015 (6)
CA5   0.017 (6)
CA6   0.007 (7)
CB5   −0.013 (7)
CB6   0.004 (7)
Br3   −0.283 (18)
Br4   −0.114 (19)
     
N4   0.005 (8)
CA7   0.000 (7)
CA8   −0.007 (8)
CB7   −0.004 (8)
CB8   0.006 (8)

Table 4
Deviations of peripheral atoms from mean meta-carbon plane for (I)[link] and (II)[link] (Å)

Atom (I) (II)
C11 −0.240 (7) −0.038 (19)
C21 0.205 (8) 0.194 (18)
C31   0.061 (18)
C41   0.232 (19)
[Figure 3]
Figure 3
View through the porphyrin plane of (I)[link] showing ring `ruffling'. H atoms, except pyrrole H atoms, have been omitted for clarity.

In contrast the dicationic porphyrin (II)[link] relieves strain by adopting a `saddled' conformation (Fig. 4[link]). In this fashion, steric repulsion between the four hydrogen atoms intruding on the core of the porphyrin is significantly reduced. Furthermore, due to the presence of charge-balancing perchlorate anions, each pair of transannular pyrrole nitro­gen atoms form hydrogen bonds to one oxygen atom of either perchlorate anion (N1/N3⋯O21, N2/N4⋯O25, Fig. 2[link], Table 5[link]).

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2 0.88 2.57 3.018 (12) 113
N1—H1⋯O21 0.88 2.12 2.956 (14) 158
N2—H2⋯N1 0.88 2.60 3.018 (12) 110
N2—H2⋯N3 0.88 2.59 3.026 (12) 111
N2—H2⋯O11 0.88 2.07 2.896 (12) 157
N3—H3⋯O21 0.88 2.08 2.932 (13) 162
N4—H4⋯N3 0.88 2.62 3.034 (12) 110
N4—H4⋯O11 0.88 2.01 2.844 (13) 159
[Figure 4]
Figure 4
View through the porphyrin plane of (II)[link] demonstrating ring `saddling'. H atoms, except pyrrole H atoms, have been omitted for clarity.

Surprisingly, the pyrrole rings in (II)[link] do not adopt any crystallographic symmetry. Crystallographically, each pair of rings oriented `up' and `down' (arbitrarily defined) form different angles with respect to the meta-carbon plane. Inspection of the structure shows that the bromo-pyrrole rings are inclined in the same fashion (we have arbitrarily defined this as `down' or a negative periplanar angle with regards to the pyrrole nitro­gen atoms with respect to the porphyrin mean plane). In contrast with (I)[link], the pyrrole rings in (II)[link] form angles ±30° with respect to the mean porphyrin plane (Table 1[link]). Compared with (I)[link] wherein one bromine atom is deformed `above' the pyrrole plane and the other `below', the bromine atoms in (II)[link] are all oriented out of the mean plane of their respective pyrrole rings in the same fashion (i.e. all of the deviations from the mean pyrrole plane are negative). The atoms of the pyrrole rings are essentially co-planar with the largest deviation from the mean plane for any pyrrole atom being −0.027 (7) Å for CA4 (Table 3[link]).

Comparing bond distances around the neutral and dicationic porphyrin ring systems reveals little change in the bond distances associated with the pyrrole rings or backbone (see CIF files). Thus, in either a neutral or charged state the porphyrin consists largely of delocalized bonds, rather than the single-bond/double-bond formalism.

3. Supra­molecular features

The neutral compound (I)[link] packs with typical van der Waals contacts. Potential close contacts from C16 to the pyrrole of an adjacent mol­ecule have the shortest heavy-atom contact around 3.45 Å.

In contrast, compound (II)[link] is formed with hydrogen bonds from the pyrrole nitro­gen atoms to perchlorate oxygen atoms (Fig. 2[link], Table 5[link] for details). Remaining inter­molecular contacts throughout the structure are all usual van der Waals inter­actions.

4. Database survey

Inspection of the Cambridge Structure Database (Version 5.38 plus 1 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals three structures that incorporate the H2TPPBr4 moiety. Two structures (GOGNIA: Rayati et al., 2008[Rayati, S., Zakavi, S., Motlagh, S. H., Noroozi, V., Razmjoo, M., Wojtczak, A. & Kozakiewicz, A. (2008). Polyhedron, pp. 2285-2290.]; LINPON: Zou et al., 1995[Zou, J.-Z., Xu, Z., Li, M., You, X.-Z. & Wang, H.-Q. (1995). Acta Cryst. C51, 760-761.]) are room-temperature determinations of the low-temperature structure (I)[link] reported herein. Examination of those two structures reveals several underlying problems, such as disorder and unreasonable atomic displacement parameters that are not present in this study. The third compound that incorporates H2TPPBr4 is a co-crystallant with C60 fullerene (TUBPAJ: Karunanithi & Bhyrappa, 2015[Karunanithi, K. & Bhyrappa, P. (2015). Inorg. Chim. Acta, 427, 41-51.]). To the best of our knowledge, the dicationic species (II)[link] has not been structurally characterized in any form.

5. Synthesis and crystallization

Compound (I)[link] was prepared following literature procedures (Callot, 1973[Callot, H. J. (1973). Tetrahedron Lett. 14, 4987-4990.]; Crossley et al., 1991[Crossley, M. J., Burn, P. L., Chew, S. S., Cuttance, F. B. & Newsom, I. A. (1991). J. Chem. Soc. Chem. Commun. pp. 1564-1566.]). Compound (II)[link] was prepared with procedures as previously described (Cheng et al., 1997[Cheng, B., Munro, O. Q., Marques, H. M. & Scheidt, W. R. (1997). J. Am. Chem. Soc. 119, 10732-10742.]).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. C-bound hydrogen atoms were included in geometrically calculated positions. N-bound hydrogen atoms were initially located from a difference Fourier map and subsequently included using a riding model. Uiso(H) = 1.2Ueq(C/N); C—H distances were set at 0.95 Å and N—H set at 0.88 Å for (I)[link] and (II)[link]. Due to the age of the data and an infelicity in data archiving, only the printed structure-factor tables and final residuals file were available. Data were reconstituted from these tables into an h k l F σ(F) format file and the atomic models refined against these to result in the structures contained herein. It was not considered reasonable to attempt to resynthesize and recrystallize the compounds and collect new intensity data.

Table 6
Experimental details

  (I) (II)
Crystal data
Chemical formula C44H26Br4N4 C44H28Br4N42+·2ClO4·3CH2Cl2
Mr 930.33 1386.02
Crystal system, space group Monoclinic, P21/n Monoclinic, Pn
Temperature (K) 130 130
a, b, c (Å) 13.883 (3), 6.7448 (13), 19.110 (4) 12.903 (3), 13.761 (3), 14.876 (3)
β (°) 102.00 (3) 96.67 (3)
V3) 1750.3 (7) 2623.5 (10)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.64 3.53
Crystal size (mm) 0.15 × 0.10 × 0.05 0.33 × 0.17 × 0.06
 
Data collection
Diffractometer Enraf–Nonius fast area-detector Enraf–Nonius fast area-detector
Absorption correction Part of the refinement model (ΔF) (DIFABS; Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Part of the refinement model (ΔF) (DIFABS; Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.])
Tmin, Tmax 0.72, 1.00 0.65, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 4589, 4589, 3439 11251, 11251, 8745
(sin θ/λ)max−1) 0.701 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.156, 1.08 0.060, 0.185, 1.06
No. of reflections 4589 11251
No. of parameters 235 640
No. of restraints 0 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.17, −1.41 1.03, −1.05
Absolute structure Classical Flack method preferred over Parsons because s.u. lower (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter −0.032 (14)
Computer programs: MADNES (Pflugrath & Messerschmidt, 1989[Pflugrath, J. W. & Messerschmidt, A. (1989). MADNES. Delft Instruments, The Netherlands.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: MADNES (Pflugrath & Messerschmidt, 1989); cell refinement: MADNES (Pflugrath & Messerschmidt, 1989); data reduction: MADNES (Pflugrath & Messerschmidt, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) 7,8,17,18-Tetrabromo-5,10,15,20-tetraphenylporphyrin top
Crystal data top
C44H26Br4N4F(000) = 916
Mr = 930.33Dx = 1.765 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.883 (3) ÅCell parameters from 250 reflections
b = 6.7448 (13) Åθ = 2.5–20.5°
c = 19.110 (4) ŵ = 4.64 mm1
β = 102.00 (3)°T = 130 K
V = 1750.3 (7) Å3Prism, dark blue
Z = 20.15 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius fast area-detector
diffractometer
4589 measured reflections
Radiation source: ROTATING ANODE4589 independent reflections
Graphite monochromator3439 reflections with I > 2σ(I)
Detector resolution: 8.53 pixels mm-1θmax = 29.9°, θmin = 3.0°
ELLIPSOID–MASK FITTING scansh = 1918
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
k = 09
Tmin = 0.72, Tmax = 1.00l = 026
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0649P)2 + 9.9345P]
where P = (Fo2 + 2Fc2)/3
4589 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 1.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1162 (3)0.2085 (6)0.02369 (19)0.0155 (7)
N20.0795 (3)0.1542 (6)0.0612 (2)0.0176 (7)
H20.05270.10210.02760.021*
CA10.2010 (3)0.2138 (6)0.0031 (2)0.0163 (8)
CA20.1182 (3)0.3683 (6)0.0676 (2)0.0148 (8)
CA30.0411 (3)0.3106 (7)0.1040 (2)0.0156 (8)
CA40.1664 (3)0.0898 (7)0.0785 (2)0.0183 (8)
CB10.2583 (3)0.3860 (7)0.0253 (2)0.0178 (8)
CB20.2072 (3)0.4848 (7)0.0667 (2)0.0172 (8)
CB30.1091 (3)0.3476 (7)0.1503 (3)0.0204 (9)
HB30.10240.44710.18620.025*
CB40.1835 (3)0.2172 (7)0.1340 (3)0.0223 (9)
HB40.23890.21100.15600.027*
CM10.0469 (3)0.4092 (6)0.1078 (2)0.0151 (8)
CM20.2222 (3)0.0767 (6)0.0529 (2)0.0161 (8)
C110.0682 (3)0.5628 (7)0.1657 (2)0.0161 (8)
C120.1363 (3)0.5217 (7)0.2295 (2)0.0198 (9)
H120.17020.39850.23450.024*
C130.1550 (4)0.6569 (7)0.2854 (3)0.0218 (9)
H130.20130.62780.32830.026*
C140.1035 (4)0.8386 (8)0.2771 (3)0.0258 (10)
H140.11490.93290.31480.031*
C150.0370 (4)0.8803 (8)0.2150 (3)0.0265 (10)
H150.00331.00370.21010.032*
C160.0185 (4)0.7440 (7)0.1589 (3)0.0244 (10)
H160.02790.77430.11630.029*
C210.3085 (3)0.1125 (7)0.0877 (3)0.0202 (9)
C220.3923 (4)0.0027 (8)0.0723 (3)0.0242 (10)
H220.39780.10640.03800.029*
C230.4683 (4)0.0344 (9)0.1075 (3)0.0330 (12)
H230.52570.04620.09730.040*
C240.4629 (4)0.1832 (9)0.1563 (3)0.0299 (11)
H240.51670.20830.17870.036*
C250.3791 (4)0.2968 (9)0.1728 (3)0.0309 (11)
H250.37490.40050.20690.037*
C260.3000 (4)0.2606 (8)0.1398 (3)0.0261 (10)
H260.24110.33570.15260.031*
Br20.24434 (4)0.73342 (7)0.10682 (2)0.02175 (14)
Br10.38509 (4)0.46336 (8)0.01738 (3)0.02782 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0159 (17)0.0179 (18)0.0124 (16)0.0043 (14)0.0023 (13)0.0017 (13)
N20.0131 (16)0.0218 (19)0.0163 (16)0.0018 (14)0.0005 (14)0.0062 (14)
CA10.021 (2)0.0157 (19)0.0128 (18)0.0005 (16)0.0049 (16)0.0029 (15)
CA20.0117 (18)0.0167 (19)0.0135 (17)0.0008 (14)0.0031 (15)0.0017 (15)
CA30.0146 (19)0.019 (2)0.0132 (18)0.0013 (15)0.0018 (15)0.0031 (15)
CA40.0163 (19)0.020 (2)0.019 (2)0.0044 (16)0.0054 (17)0.0036 (17)
CB10.0152 (19)0.023 (2)0.0158 (19)0.0011 (16)0.0039 (15)0.0018 (16)
CB20.017 (2)0.018 (2)0.0145 (19)0.0030 (16)0.0015 (16)0.0002 (16)
CB30.020 (2)0.022 (2)0.021 (2)0.0066 (17)0.0058 (18)0.0029 (17)
CB40.017 (2)0.023 (2)0.026 (2)0.0001 (17)0.0023 (18)0.0072 (18)
CM10.0182 (19)0.0144 (19)0.0106 (18)0.0013 (15)0.0019 (15)0.0013 (14)
CM20.0170 (19)0.017 (2)0.0146 (18)0.0008 (15)0.0030 (16)0.0007 (15)
C110.0137 (18)0.020 (2)0.0120 (18)0.0034 (15)0.0036 (15)0.0001 (15)
C120.023 (2)0.023 (2)0.0120 (18)0.0046 (17)0.0002 (17)0.0020 (16)
C130.025 (2)0.020 (2)0.018 (2)0.0052 (17)0.0025 (18)0.0005 (17)
C140.029 (2)0.025 (2)0.023 (2)0.007 (2)0.005 (2)0.0124 (19)
C150.027 (2)0.022 (2)0.028 (2)0.0071 (19)0.000 (2)0.009 (2)
C160.021 (2)0.026 (2)0.022 (2)0.0019 (18)0.0048 (18)0.0073 (18)
C210.0147 (19)0.024 (2)0.023 (2)0.0047 (17)0.0060 (17)0.0086 (18)
C220.021 (2)0.026 (2)0.026 (2)0.0004 (18)0.0040 (19)0.0017 (19)
C230.020 (2)0.044 (3)0.035 (3)0.002 (2)0.006 (2)0.003 (2)
C240.021 (2)0.042 (3)0.032 (3)0.009 (2)0.017 (2)0.004 (2)
C250.038 (3)0.038 (3)0.020 (2)0.002 (2)0.014 (2)0.007 (2)
C260.023 (2)0.035 (3)0.022 (2)0.002 (2)0.0089 (19)0.008 (2)
Br20.0263 (3)0.0177 (2)0.0210 (2)0.00664 (17)0.00424 (18)0.00363 (16)
Br10.0226 (3)0.0307 (3)0.0331 (3)0.01189 (19)0.0126 (2)0.0098 (2)
Geometric parameters (Å, º) top
N1—CA21.363 (5)C11—C161.396 (6)
N1—CA11.378 (6)C11—C121.407 (6)
N2—CA31.372 (6)C12—C131.387 (6)
N2—CA41.385 (5)C12—H120.9500
N2—H20.8800C13—C141.411 (7)
CA1—CM21.402 (6)C13—H130.9500
CA1—CB11.447 (6)C14—C151.372 (7)
CA2—CM11.400 (6)C14—H140.9500
CA2—CB21.467 (6)C15—C161.395 (7)
CA3—CM11.380 (6)C15—H150.9500
CA3—CB31.444 (6)C16—H160.9500
CA4—CM2i1.395 (6)C21—C221.378 (7)
CA4—CB41.422 (6)C21—C261.398 (7)
CB1—CB21.344 (6)C22—C231.387 (7)
CB1—Br11.872 (4)C22—H220.9500
CB2—Br21.871 (4)C23—C241.361 (8)
CB3—CB41.344 (7)C23—H230.9500
CB3—HB30.9500C24—C251.375 (8)
CB4—HB40.9500C24—H240.9500
CM1—C111.500 (6)C25—C261.397 (7)
CM2—CA4i1.395 (6)C25—H250.9500
CM2—C211.505 (6)C26—H260.9500
CA2—N1—CA1107.4 (3)C16—C11—CM1121.2 (4)
CA3—N2—CA4110.4 (4)C12—C11—CM1119.8 (4)
CA3—N2—H2124.8C13—C12—C11121.5 (5)
CA4—N2—H2124.8C13—C12—H12119.2
N1—CA1—CM2123.5 (4)C11—C12—H12119.2
N1—CA1—CB1109.1 (4)C12—C13—C14118.3 (4)
CM2—CA1—CB1127.4 (4)C12—C13—H13120.8
N1—CA2—CM1124.5 (4)C14—C13—H13120.8
N1—CA2—CB2109.0 (4)C15—C14—C13120.6 (4)
CM1—CA2—CB2126.5 (4)C15—C14—H14119.7
N2—CA3—CM1129.2 (4)C13—C14—H14119.7
N2—CA3—CB3106.0 (4)C14—C15—C16120.9 (5)
CM1—CA3—CB3124.7 (4)C14—C15—H15119.6
N2—CA4—CM2i128.1 (4)C16—C15—H15119.6
N2—CA4—CB4106.2 (4)C15—C16—C11119.8 (4)
CM2i—CA4—CB4125.5 (4)C15—C16—H16120.1
CB2—CB1—CA1107.6 (4)C11—C16—H16120.1
CB2—CB1—Br1121.9 (4)C22—C21—C26119.8 (4)
CA1—CB1—Br1130.3 (3)C22—C21—CM2121.9 (5)
CB1—CB2—CA2106.9 (4)C26—C21—CM2118.1 (4)
CB1—CB2—Br2123.5 (3)C21—C22—C23119.2 (5)
CA2—CB2—Br2129.5 (3)C21—C22—H22120.4
CB4—CB3—CA3108.2 (4)C23—C22—H22120.4
CB4—CB3—HB3125.9C24—C23—C22121.7 (5)
CA3—CB3—HB3125.9C24—C23—H23119.1
CB3—CB4—CA4109.2 (4)C22—C23—H23119.1
CB3—CB4—HB4125.4C23—C24—C25119.5 (5)
CA4—CB4—HB4125.4C23—C24—H24120.3
CA3—CM1—CA2126.5 (4)C25—C24—H24120.3
CA3—CM1—C11114.1 (4)C24—C25—C26120.4 (5)
CA2—CM1—C11119.1 (4)C24—C25—H25119.8
CA4i—CM2—CA1126.1 (4)C26—C25—H25119.8
CA4i—CM2—C21114.2 (4)C25—C26—C21119.2 (5)
CA1—CM2—C21119.5 (4)C25—C26—H26120.4
C16—C11—C12118.9 (4)C21—C26—H26120.4
CA2—N1—CA1—CM2177.1 (4)N1—CA2—CM1—C11166.8 (4)
CA2—N1—CA1—CB10.4 (5)CB2—CA2—CM1—C1111.9 (6)
CA1—N1—CA2—CM1176.8 (4)N1—CA1—CM2—CA4i4.9 (7)
CA1—N1—CA2—CB22.2 (5)CB1—CA1—CM2—CA4i179.0 (4)
CA4—N2—CA3—CM1175.2 (5)N1—CA1—CM2—C21170.5 (4)
CA4—N2—CA3—CB30.7 (5)CB1—CA1—CM2—C215.6 (7)
CA3—N2—CA4—CM2i172.8 (5)CA3—CM1—C11—C1674.4 (6)
CA3—N2—CA4—CB41.4 (5)CA2—CM1—C11—C16110.5 (5)
N1—CA1—CB1—CB21.7 (5)CA3—CM1—C11—C12102.8 (5)
CM2—CA1—CB1—CB2174.9 (4)CA2—CM1—C11—C1272.3 (6)
N1—CA1—CB1—Br1173.1 (3)C16—C11—C12—C130.2 (7)
CM2—CA1—CB1—Br110.4 (7)CM1—C11—C12—C13177.4 (4)
CA1—CB1—CB2—CA22.9 (5)C11—C12—C13—C140.3 (7)
Br1—CB1—CB2—CA2172.4 (3)C12—C13—C14—C150.4 (8)
CA1—CB1—CB2—Br2172.8 (3)C13—C14—C15—C160.4 (8)
Br1—CB1—CB2—Br211.9 (6)C14—C15—C16—C110.3 (8)
N1—CA2—CB2—CB13.2 (5)C12—C11—C16—C150.1 (8)
CM1—CA2—CB2—CB1175.6 (4)CM1—C11—C16—C15177.3 (5)
N1—CA2—CB2—Br2172.1 (3)CA4i—CM2—C21—C2274.0 (6)
CM1—CA2—CB2—Br29.0 (7)CA1—CM2—C21—C22110.1 (5)
N2—CA3—CB3—CB40.3 (5)CA4i—CM2—C21—C26102.5 (5)
CM1—CA3—CB3—CB4176.5 (4)CA1—CM2—C21—C2673.5 (6)
CA3—CB3—CB4—CA41.2 (6)C26—C21—C22—C232.0 (8)
N2—CA4—CB4—CB31.6 (6)CM2—C21—C22—C23178.4 (5)
CM2i—CA4—CB4—CB3172.8 (5)C21—C22—C23—C240.7 (9)
N2—CA3—CM1—CA20.3 (8)C22—C23—C24—C251.8 (9)
CB3—CA3—CM1—CA2174.9 (4)C23—C24—C25—C260.2 (9)
N2—CA3—CM1—C11175.0 (4)C24—C25—C26—C212.5 (9)
CB3—CA3—CM1—C110.2 (6)C22—C21—C26—C253.5 (8)
N1—CA2—CM1—CA37.6 (7)CM2—C21—C26—C25179.9 (5)
CB2—CA2—CM1—CA3173.6 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.882.472.973 (5)117
N2—H2···N1i0.882.402.921 (5)118
Symmetry code: (i) x, y, z.
(II) 7,8,17,18-Tetrabromo-5,10,15,20-tetraphenylporphyrin(2+) bis(perchlorate) dichloromethane trisolvate top
Crystal data top
C44H28Br4N42+·2ClO4·3CH2Cl2F(000) = 1368
Mr = 1386.02Dx = 1.755 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 12.903 (3) ÅCell parameters from 250 reflections
b = 13.761 (3) Åθ = 1.1–20.5°
c = 14.876 (3) ŵ = 3.53 mm1
β = 96.67 (3)°T = 130 K
V = 2623.5 (10) Å3Prism, blue-green
Z = 20.33 × 0.17 × 0.06 mm
Data collection top
Enraf–Nonius fast area-detector
diffractometer
11251 measured reflections
Radiation source: ROTATING ANODE11251 independent reflections
Graphite monochromator8745 reflections with I > 2σ(I)
Detector resolution: 8.53 pixels mm-1θmax = 30.0°, θmin = 2.5°
ELLIPSOID–MASK FITTING scansh = 1616
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
k = 019
Tmin = 0.65, Tmax = 1.00l = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0886P)2 + 17.5195P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
11251 reflectionsΔρmax = 1.03 e Å3
640 parametersΔρmin = 1.05 e Å3
2 restraintsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.032 (14)
Special details top

Experimental. Diffraction data were measured with an Enraf-Nonius FAST area detector to 55.56 deg in 2 theta. With the hardware and software supplied for the diffractometer, the data collection process provides substantial redundancy but not necessarily completion up to the limiting resolution. At a resolution of 0.83 Å (52 deg in 2 theta) essentially full coverage of data were met. Successful and suitable refinement of the structure supports this.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.21338 (9)1.56160 (8)0.81718 (9)0.0297 (3)
Br20.02997 (9)1.55748 (8)0.89049 (9)0.0301 (3)
Br30.03558 (8)0.82412 (7)0.99749 (8)0.0252 (3)
Br40.28295 (8)0.82050 (7)0.92686 (8)0.0265 (3)
N10.1827 (7)1.3717 (6)1.0200 (7)0.0230 (19)
H10.20191.32211.05550.028*
N20.0484 (7)1.2123 (6)1.0839 (6)0.0204 (18)
H20.08861.20761.04020.024*
N30.2148 (7)1.0609 (6)1.0661 (6)0.0167 (16)
H30.22601.12031.08690.020*
N40.3381 (7)1.2157 (6)0.9795 (7)0.0222 (19)
H40.26971.20930.97240.027*
CA10.2450 (8)1.4179 (7)0.9635 (8)0.022 (2)
CA20.0851 (8)1.4144 (7)1.0124 (8)0.020 (2)
CA30.0030 (8)1.2964 (7)1.1094 (8)0.019 (2)
CA40.0213 (8)1.1366 (7)1.1364 (7)0.0183 (19)
CA50.1262 (8)1.0075 (7)1.0743 (8)0.0193 (19)
CA60.2834 (8)1.0081 (7)1.0211 (7)0.0178 (19)
CA70.4088 (8)1.1407 (7)0.9972 (8)0.022 (2)
CA80.3906 (8)1.3014 (7)0.9749 (8)0.021 (2)
CB10.1808 (9)1.4904 (8)0.9173 (8)0.025 (2)
CB20.0831 (8)1.4884 (7)0.9456 (9)0.023 (2)
C110.0765 (10)1.4564 (8)1.0813 (9)0.027 (2)
CB30.0511 (8)1.2742 (6)1.1835 (8)0.018 (2)
HB30.09021.31881.21470.021*
C120.0536 (10)1.5524 (8)1.1070 (9)0.029 (3)
H120.01711.57271.11750.035*
CB40.0378 (8)1.1765 (7)1.2033 (8)0.020 (2)
HB40.06301.14251.25180.024*
C130.1339 (12)1.6199 (9)1.1176 (11)0.038 (3)
H130.11731.68471.13580.045*
CB50.1381 (7)0.9188 (7)1.0280 (7)0.0163 (18)
C140.2362 (13)1.5906 (11)1.1012 (12)0.044 (4)
H140.29051.63561.10820.052*
CB60.2333 (9)0.9172 (7)0.9968 (8)0.022 (2)
C150.2605 (11)1.4969 (10)1.0750 (11)0.039 (3)
H150.33161.47781.06400.047*
CB70.5103 (8)1.1810 (7)1.0048 (8)0.019 (2)
HB70.57381.14591.01650.023*
C160.1826 (10)1.4296 (9)1.0642 (10)0.031 (3)
H160.20081.36531.04530.037*
CB80.5011 (8)1.2787 (8)0.9925 (8)0.023 (2)
HB80.55691.32400.99490.028*
CM10.0064 (9)1.3882 (7)1.0662 (8)0.021 (2)
CM20.0454 (8)1.0384 (7)1.1241 (7)0.0180 (19)
CM30.3822 (9)1.0421 (8)1.0052 (8)0.023 (2)
CM40.3474 (9)1.3949 (7)0.9573 (8)0.022 (2)
C210.0149 (9)0.9650 (7)1.1696 (8)0.023 (2)
C220.1224 (9)0.9712 (8)1.1722 (9)0.026 (2)
H220.16011.02301.14160.031*
C230.1751 (10)0.9040 (9)1.2179 (10)0.032 (3)
H230.24810.91031.22020.038*
C240.1207 (11)0.8276 (8)1.2602 (10)0.031 (3)
H240.15670.78001.29090.038*
C250.0156 (12)0.8192 (8)1.2585 (10)0.032 (3)
H250.02030.76611.28870.039*
C260.0404 (9)0.8866 (7)1.2135 (8)0.022 (2)
H260.11360.88001.21250.026*
C310.4696 (9)0.9730 (7)0.9965 (8)0.021 (2)
C320.5005 (9)0.9087 (7)1.0679 (9)0.026 (2)
H320.46190.90491.11840.031*
C330.5880 (9)0.8506 (8)1.0642 (9)0.026 (2)
H330.61030.80771.11260.031*
C340.6427 (8)0.8558 (8)0.9893 (10)0.028 (3)
H340.70270.81630.98710.033*
C350.6114 (9)0.9172 (8)0.9182 (10)0.028 (3)
H350.64850.91830.86660.034*
C360.5244 (9)0.9785 (7)0.9218 (9)0.024 (2)
H360.50371.02260.87400.029*
C410.4185 (9)1.4724 (7)0.9340 (9)0.025 (2)
C420.4811 (10)1.4640 (8)0.8651 (9)0.028 (3)
H420.47881.40620.82990.034*
C430.5470 (10)1.5388 (9)0.8468 (10)0.031 (3)
H430.59151.53090.80070.038*
C440.5490 (9)1.6256 (8)0.8951 (10)0.030 (3)
H440.59211.67780.88040.036*
C450.4872 (11)1.6347 (8)0.9650 (11)0.037 (3)
H450.48961.69300.99940.044*
C460.4211 (9)1.5588 (7)0.9858 (10)0.030 (3)
H460.37891.56541.03370.036*
Cl10.0799 (2)1.22478 (18)0.8343 (2)0.0237 (5)
O110.1277 (7)1.1716 (5)0.9135 (6)0.0240 (16)
O120.1604 (8)1.2791 (7)0.7995 (8)0.041 (2)
O130.0358 (9)1.1571 (7)0.7677 (7)0.045 (3)
O140.0026 (8)1.2868 (8)0.8638 (8)0.046 (3)
Cl20.2813 (2)1.26950 (19)1.2481 (2)0.0262 (6)
O210.2935 (8)1.2403 (7)1.1561 (7)0.036 (2)
O220.3723 (8)1.2469 (10)1.3065 (9)0.055 (3)
O230.1930 (9)1.2212 (9)1.2770 (8)0.050 (3)
O240.2607 (13)1.3723 (8)1.2457 (11)0.071 (4)
Cl210.2688 (4)1.3297 (5)0.6411 (4)0.0755 (15)
Cl220.2737 (5)1.3405 (5)0.8337 (4)0.0818 (17)
C200.201 (2)1.357 (3)0.7458 (17)0.110 (11)
H20A0.13771.31550.75550.132*
H20B0.17711.42560.74550.132*
Cl310.6956 (2)1.2315 (2)1.1840 (2)0.0347 (7)
Cl320.5739 (4)1.0744 (3)1.2483 (3)0.0546 (11)
C300.5833 (10)1.2005 (9)1.2365 (9)0.030 (3)
H30A0.58741.23151.29680.037*
H30B0.52011.22521.19940.037*
Cl410.1911 (3)1.0330 (4)0.7629 (3)0.0619 (12)
Cl420.1778 (4)1.1044 (4)0.9474 (4)0.0691 (13)
C400.1286 (14)1.0241 (13)0.8713 (14)0.056 (5)
H40A0.05341.03730.87020.068*
H40B0.13570.95670.89320.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0310 (6)0.0282 (5)0.0307 (7)0.0011 (4)0.0075 (5)0.0114 (5)
Br20.0270 (6)0.0289 (5)0.0346 (8)0.0086 (4)0.0039 (5)0.0105 (5)
Br30.0235 (5)0.0230 (5)0.0293 (7)0.0065 (4)0.0046 (5)0.0061 (4)
Br40.0252 (5)0.0233 (5)0.0317 (7)0.0004 (4)0.0056 (5)0.0104 (4)
N10.025 (4)0.016 (4)0.027 (6)0.000 (3)0.002 (4)0.004 (3)
N20.026 (4)0.020 (4)0.018 (5)0.004 (3)0.012 (4)0.002 (3)
N30.015 (4)0.017 (3)0.020 (5)0.000 (3)0.005 (3)0.000 (3)
N40.020 (4)0.021 (4)0.025 (6)0.000 (3)0.002 (4)0.004 (3)
CA10.016 (5)0.017 (4)0.033 (7)0.009 (3)0.006 (4)0.002 (4)
CA20.018 (5)0.019 (4)0.025 (6)0.001 (3)0.003 (4)0.000 (4)
CA30.018 (4)0.019 (4)0.020 (6)0.002 (3)0.006 (4)0.003 (4)
CA40.021 (5)0.019 (4)0.015 (6)0.002 (3)0.003 (4)0.002 (4)
CA50.020 (5)0.022 (4)0.016 (6)0.002 (4)0.001 (4)0.001 (4)
CA60.018 (4)0.020 (4)0.016 (6)0.004 (3)0.003 (4)0.004 (4)
CA70.020 (5)0.015 (4)0.031 (7)0.000 (3)0.006 (4)0.003 (4)
CA80.018 (5)0.017 (4)0.027 (7)0.006 (3)0.001 (4)0.004 (4)
CB10.032 (6)0.025 (5)0.019 (6)0.003 (4)0.005 (5)0.004 (4)
CB20.013 (4)0.020 (4)0.036 (7)0.003 (3)0.005 (4)0.008 (4)
C110.037 (6)0.019 (5)0.025 (7)0.001 (4)0.006 (5)0.004 (4)
CB30.018 (4)0.014 (4)0.022 (6)0.006 (3)0.002 (4)0.002 (3)
C120.029 (6)0.026 (5)0.032 (8)0.007 (4)0.005 (5)0.009 (5)
CB40.022 (5)0.019 (5)0.021 (6)0.003 (3)0.007 (4)0.003 (4)
C130.045 (7)0.024 (5)0.044 (9)0.012 (5)0.008 (6)0.013 (5)
CB50.015 (4)0.017 (4)0.017 (6)0.005 (3)0.001 (4)0.003 (3)
C140.046 (8)0.038 (7)0.048 (10)0.015 (6)0.010 (7)0.005 (6)
CB60.027 (5)0.014 (4)0.026 (6)0.004 (4)0.006 (4)0.006 (4)
C150.034 (7)0.041 (7)0.043 (9)0.008 (5)0.004 (6)0.002 (6)
CB70.017 (5)0.020 (4)0.019 (6)0.001 (3)0.002 (4)0.002 (4)
C160.027 (6)0.035 (6)0.029 (8)0.002 (5)0.001 (5)0.003 (5)
CB80.016 (5)0.027 (5)0.026 (7)0.003 (4)0.003 (4)0.005 (4)
CM10.028 (5)0.019 (4)0.016 (6)0.002 (4)0.004 (4)0.003 (4)
CM20.022 (5)0.022 (4)0.010 (5)0.001 (4)0.006 (4)0.001 (3)
CM30.023 (5)0.025 (5)0.022 (6)0.001 (4)0.005 (4)0.005 (4)
CM40.024 (5)0.019 (4)0.026 (7)0.001 (4)0.010 (4)0.004 (4)
C210.022 (5)0.023 (5)0.025 (7)0.006 (4)0.011 (4)0.005 (4)
C220.026 (6)0.029 (5)0.024 (7)0.007 (4)0.005 (5)0.004 (4)
C230.021 (5)0.042 (6)0.033 (8)0.016 (5)0.006 (5)0.007 (5)
C240.042 (7)0.029 (6)0.024 (7)0.013 (5)0.006 (5)0.002 (5)
C250.049 (8)0.024 (5)0.027 (8)0.014 (5)0.015 (6)0.001 (4)
C260.029 (5)0.018 (4)0.016 (6)0.003 (4)0.006 (4)0.002 (4)
C310.023 (5)0.017 (4)0.023 (6)0.005 (4)0.001 (4)0.005 (4)
C320.034 (6)0.013 (4)0.030 (7)0.000 (4)0.003 (5)0.006 (4)
C330.026 (5)0.019 (4)0.033 (7)0.002 (4)0.004 (5)0.003 (4)
C340.017 (5)0.020 (5)0.046 (8)0.001 (4)0.003 (5)0.006 (5)
C350.022 (5)0.024 (5)0.041 (8)0.006 (4)0.010 (5)0.009 (5)
C360.025 (5)0.020 (4)0.027 (7)0.006 (4)0.007 (4)0.004 (4)
C410.022 (5)0.020 (5)0.032 (7)0.004 (4)0.004 (5)0.006 (4)
C420.034 (6)0.023 (5)0.030 (7)0.001 (4)0.009 (5)0.004 (4)
C430.025 (6)0.038 (6)0.032 (8)0.001 (5)0.004 (5)0.005 (5)
C440.029 (6)0.023 (5)0.036 (8)0.007 (4)0.011 (5)0.013 (5)
C450.042 (7)0.019 (5)0.049 (9)0.012 (5)0.005 (6)0.001 (5)
C460.025 (5)0.018 (5)0.047 (8)0.003 (4)0.007 (5)0.002 (5)
Cl10.0233 (12)0.0263 (11)0.0214 (16)0.0024 (9)0.0024 (10)0.0023 (9)
O110.034 (4)0.022 (4)0.015 (4)0.001 (3)0.000 (3)0.002 (3)
O120.038 (5)0.040 (5)0.046 (7)0.005 (4)0.014 (5)0.014 (4)
O130.064 (7)0.038 (5)0.030 (6)0.007 (5)0.008 (5)0.012 (4)
O140.031 (5)0.069 (7)0.039 (7)0.027 (5)0.003 (4)0.006 (5)
Cl20.0264 (12)0.0276 (12)0.0252 (16)0.0027 (10)0.0049 (11)0.0046 (10)
O210.049 (6)0.033 (4)0.027 (6)0.001 (4)0.009 (4)0.001 (4)
O220.027 (5)0.092 (9)0.045 (8)0.010 (5)0.003 (5)0.003 (6)
O230.038 (6)0.067 (7)0.046 (7)0.016 (5)0.011 (5)0.006 (5)
O240.111 (12)0.032 (5)0.075 (10)0.011 (6)0.039 (9)0.009 (6)
Cl210.055 (3)0.124 (5)0.046 (3)0.012 (3)0.002 (2)0.004 (3)
Cl220.067 (3)0.131 (5)0.047 (3)0.025 (3)0.006 (2)0.015 (3)
C200.078 (17)0.21 (3)0.034 (15)0.017 (19)0.016 (11)0.014 (17)
Cl310.0267 (14)0.0446 (16)0.0337 (19)0.0082 (12)0.0071 (12)0.0090 (13)
Cl320.059 (2)0.0410 (18)0.068 (3)0.0209 (16)0.024 (2)0.0156 (18)
C300.030 (6)0.034 (6)0.028 (7)0.005 (5)0.009 (5)0.006 (5)
Cl410.036 (2)0.105 (4)0.044 (3)0.005 (2)0.0038 (17)0.008 (2)
Cl420.070 (3)0.087 (3)0.049 (3)0.023 (3)0.002 (2)0.008 (2)
C400.047 (9)0.054 (9)0.065 (13)0.004 (7)0.009 (8)0.012 (8)
Geometric parameters (Å, º) top
Br1—CB11.872 (11)CM4—C411.475 (14)
Br2—CB21.851 (11)C21—C221.395 (16)
Br3—CB51.874 (9)C21—C261.411 (16)
Br4—CB61.849 (11)C22—C231.373 (16)
N1—CA21.383 (13)C22—H220.9500
N1—CA11.383 (13)C23—C241.38 (2)
N1—H10.8807C23—H230.9500
N2—CA31.369 (12)C24—C251.36 (2)
N2—CA41.372 (13)C24—H240.9500
N2—H20.8799C25—C261.393 (15)
N3—CA51.377 (13)C25—H250.9500
N3—CA61.377 (12)C26—H260.9500
N3—H30.8800C31—C361.386 (16)
N4—CA81.365 (12)C31—C321.404 (16)
N4—CA71.382 (13)C32—C331.389 (15)
N4—H40.8810C32—H320.9500
CA1—CM41.371 (15)C33—C341.387 (18)
CA1—CB11.422 (16)C33—H330.9500
CA2—CM11.411 (15)C34—C351.378 (19)
CA2—CB21.421 (15)C34—H340.9500
CA3—CB31.405 (15)C35—C361.410 (14)
CA3—CM11.420 (14)C35—H350.9500
CA4—CM21.403 (14)C36—H360.9500
CA4—CB41.432 (14)C41—C421.382 (17)
CA5—CM21.413 (14)C41—C461.415 (16)
CA5—CB51.419 (13)C42—C431.382 (17)
CA6—CM31.403 (14)C42—H420.9500
CA6—CB61.435 (15)C43—C441.392 (19)
CA7—CM31.409 (14)C43—H430.9500
CA7—CB71.414 (14)C44—C451.39 (2)
CA8—CM41.414 (14)C44—H440.9500
CA8—CB81.453 (15)C45—C461.404 (15)
CB1—CB21.374 (15)C45—H450.9500
C11—C121.397 (15)C46—H460.9500
C11—C161.413 (18)Cl1—O141.420 (9)
C11—CM11.460 (15)Cl1—O121.425 (9)
CB3—CB41.382 (13)Cl1—O131.429 (10)
CB3—HB30.9500Cl1—O111.461 (9)
C12—C131.413 (17)Cl2—O221.411 (12)
C12—H120.9500Cl2—O231.428 (10)
CB4—HB40.9500Cl2—O241.439 (11)
C13—C141.37 (2)Cl2—O211.453 (10)
C13—H130.9500Cl21—C201.74 (3)
CB5—CB61.363 (14)Cl22—C201.71 (3)
C14—C151.37 (2)C20—H20A0.9900
C14—H140.9500C20—H20B0.9900
C15—C161.390 (18)Cl31—C301.776 (12)
C15—H150.9500Cl32—C301.749 (13)
CB7—CB81.361 (14)C30—H30A0.9900
CB7—HB70.9500C30—H30B0.9900
C16—H160.9500Cl41—C401.72 (2)
CB8—HB80.9500Cl42—C401.75 (2)
CM2—C211.485 (14)C40—H40A0.9900
CM3—C311.493 (15)C40—H40B0.9900
CA2—N1—CA1110.1 (9)CA1—CM4—CA8124.0 (9)
CA2—N1—H1124.6CA1—CM4—C41118.6 (9)
CA1—N1—H1125.2CA8—CM4—C41117.4 (9)
CA3—N2—CA4109.8 (8)C22—C21—C26119.0 (10)
CA3—N2—H2125.0C22—C21—CM2123.1 (11)
CA4—N2—H2125.1C26—C21—CM2117.9 (10)
CA5—N3—CA6110.4 (8)C23—C22—C21121.6 (12)
CA5—N3—H3124.7C23—C22—H22119.2
CA6—N3—H3124.9C21—C22—H22119.2
CA8—N4—CA7109.5 (9)C22—C23—C24119.0 (12)
CA8—N4—H4125.2C22—C23—H23120.5
CA7—N4—H4125.3C24—C23—H23120.5
CM4—CA1—N1124.5 (10)C25—C24—C23120.8 (11)
CM4—CA1—CB1129.9 (10)C25—C24—H24119.6
N1—CA1—CB1105.5 (9)C23—C24—H24119.6
N1—CA2—CM1123.6 (10)C24—C25—C26121.7 (13)
N1—CA2—CB2107.7 (9)C24—C25—H25119.2
CM1—CA2—CB2128.7 (10)C26—C25—H25119.2
N2—CA3—CB3107.5 (8)C25—C26—C21117.9 (11)
N2—CA3—CM1126.1 (9)C25—C26—H26121.0
CB3—CA3—CM1126.3 (9)C21—C26—H26121.0
N2—CA4—CM2125.7 (9)C36—C31—C32121.0 (10)
N2—CA4—CB4107.1 (8)C36—C31—CM3119.7 (10)
CM2—CA4—CB4127.2 (9)C32—C31—CM3119.2 (10)
N3—CA5—CM2123.9 (9)C33—C32—C31119.5 (11)
N3—CA5—CB5106.2 (8)C33—C32—H32120.2
CM2—CA5—CB5129.9 (10)C31—C32—H32120.2
N3—CA6—CM3123.6 (9)C34—C33—C32119.6 (11)
N3—CA6—CB6106.6 (8)C34—C33—H33120.2
CM3—CA6—CB6129.7 (9)C32—C33—H33120.2
N4—CA7—CM3125.0 (10)C35—C34—C33121.2 (10)
N4—CA7—CB7107.9 (8)C35—C34—H34119.4
CM3—CA7—CB7127.1 (10)C33—C34—H34119.4
N4—CA8—CM4127.4 (10)C34—C35—C36120.0 (11)
N4—CA8—CB8106.7 (9)C34—C35—H35120.0
CM4—CA8—CB8125.8 (9)C36—C35—H35120.0
CB2—CB1—CA1110.1 (9)C31—C36—C35118.7 (11)
CB2—CB1—Br1123.5 (9)C31—C36—H36120.6
CA1—CB1—Br1125.4 (8)C35—C36—H36120.6
CB1—CB2—CA2106.6 (9)C42—C41—C46119.7 (10)
CB1—CB2—Br2123.9 (8)C42—C41—CM4123.2 (10)
CA2—CB2—Br2128.8 (7)C46—C41—CM4117.1 (10)
C12—C11—C16117.7 (11)C41—C42—C43120.7 (12)
C12—C11—CM1121.0 (11)C41—C42—H42119.7
C16—C11—CM1121.1 (10)C43—C42—H42119.7
CB4—CB3—CA3108.5 (8)C42—C43—C44120.8 (12)
CB4—CB3—HB3125.7C42—C43—H43119.6
CA3—CB3—HB3125.7C44—C43—H43119.6
C11—C12—C13121.2 (12)C45—C44—C43119.1 (11)
C11—C12—H12119.4C45—C44—H44120.5
C13—C12—H12119.4C43—C44—H44120.5
CB3—CB4—CA4106.8 (9)C44—C45—C46120.9 (12)
CB3—CB4—HB4126.6C44—C45—H45119.5
CA4—CB4—HB4126.6C46—C45—H45119.5
C14—C13—C12119.3 (12)C45—C46—C41118.8 (12)
C14—C13—H13120.4C45—C46—H46120.6
C12—C13—H13120.4C41—C46—H46120.6
CB6—CB5—CA5109.4 (9)O14—Cl1—O12111.4 (7)
CB6—CB5—Br3123.0 (8)O14—Cl1—O13111.6 (7)
CA5—CB5—Br3127.1 (7)O12—Cl1—O13109.7 (7)
C15—C14—C13120.6 (13)O14—Cl1—O11107.3 (6)
C15—C14—H14119.7O12—Cl1—O11107.4 (6)
C13—C14—H14119.7O13—Cl1—O11109.3 (5)
CB5—CB6—CA6107.3 (9)O22—Cl2—O23110.4 (8)
CB5—CB6—Br4126.0 (8)O22—Cl2—O24111.7 (9)
CA6—CB6—Br4126.4 (8)O23—Cl2—O24108.3 (8)
C14—C15—C16120.9 (14)O22—Cl2—O21110.2 (7)
C14—C15—H15119.5O23—Cl2—O21109.3 (7)
C16—C15—H15119.5O24—Cl2—O21106.7 (7)
CB8—CB7—CA7108.1 (9)Cl22—C20—Cl21112.8 (16)
CB8—CB7—HB7126.0Cl22—C20—H20A109.0
CA7—CB7—HB7126.0Cl21—C20—H20A109.0
C15—C16—C11120.3 (12)Cl22—C20—H20B109.0
C15—C16—H16119.8Cl21—C20—H20B109.0
C11—C16—H16119.8H20A—C20—H20B107.8
CB7—CB8—CA8107.8 (9)Cl32—C30—Cl31110.6 (7)
CB7—CB8—HB8126.1Cl32—C30—H30A109.5
CA8—CB8—HB8126.1Cl31—C30—H30A109.5
CA2—CM1—CA3123.1 (9)Cl32—C30—H30B109.5
CA2—CM1—C11120.7 (9)Cl31—C30—H30B109.5
CA3—CM1—C11116.2 (9)H30A—C30—H30B108.1
CA4—CM2—CA5123.1 (9)Cl41—C40—Cl42113.2 (10)
CA4—CM2—C21117.4 (9)Cl41—C40—H40A108.9
CA5—CM2—C21119.5 (9)Cl42—C40—H40A108.9
CA6—CM3—CA7124.8 (10)Cl41—C40—H40B108.9
CA6—CM3—C31120.8 (9)Cl42—C40—H40B108.9
CA7—CM3—C31114.4 (9)H40A—C40—H40B107.7
CA2—N1—CA1—CM4177.8 (11)CB3—CA3—CM1—C1119.5 (17)
CA2—N1—CA1—CB11.8 (13)C12—C11—CM1—CA248.1 (18)
CA1—N1—CA2—CM1175.3 (11)C16—C11—CM1—CA2127.4 (14)
CA1—N1—CA2—CB22.5 (13)C12—C11—CM1—CA3131.2 (13)
CA4—N2—CA3—CB32.7 (13)C16—C11—CM1—CA353.3 (17)
CA4—N2—CA3—CM1174.8 (11)N2—CA4—CM2—CA519.9 (18)
CA3—N2—CA4—CM2173.8 (11)CB4—CA4—CM2—CA5162.0 (12)
CA3—N2—CA4—CB44.6 (13)N2—CA4—CM2—C21162.9 (11)
CA6—N3—CA5—CM2174.2 (10)CB4—CA4—CM2—C2115.1 (17)
CA6—N3—CA5—CB53.0 (12)N3—CA5—CM2—CA429.0 (17)
CA5—N3—CA6—CM3177.8 (10)CB5—CA5—CM2—CA4154.4 (12)
CA5—N3—CA6—CB62.1 (12)N3—CA5—CM2—C21148.1 (11)
CA8—N4—CA7—CM3179.1 (11)CB5—CA5—CM2—C2128.5 (18)
CA8—N4—CA7—CB70.5 (14)N3—CA6—CM3—CA727.5 (18)
CA7—N4—CA8—CM4179.4 (12)CB6—CA6—CM3—CA7152.6 (13)
CA7—N4—CA8—CB81.1 (14)N3—CA6—CM3—C31151.6 (11)
CM4—CA1—CB1—CB2179.2 (12)CB6—CA6—CM3—C3128.2 (19)
N1—CA1—CB1—CB20.4 (13)N4—CA7—CM3—CA618 (2)
CM4—CA1—CB1—Br112.1 (19)CB7—CA7—CM3—CA6162.1 (12)
N1—CA1—CB1—Br1168.4 (8)N4—CA7—CM3—C31162.4 (11)
CA1—CB1—CB2—CA21.1 (14)CB7—CA7—CM3—C3117.1 (18)
Br1—CB1—CB2—CA2170.1 (9)N1—CA1—CM4—CA828.0 (19)
CA1—CB1—CB2—Br2170.3 (9)CB1—CA1—CM4—CA8152.5 (13)
Br1—CB1—CB2—Br21.3 (15)N1—CA1—CM4—C41149.8 (11)
N1—CA2—CB2—CB12.2 (13)CB1—CA1—CM4—C4129.6 (19)
CM1—CA2—CB2—CB1175.5 (12)N4—CA8—CM4—CA117 (2)
N1—CA2—CB2—Br2168.6 (9)CB8—CA8—CM4—CA1162.9 (13)
CM1—CA2—CB2—Br213.7 (19)N4—CA8—CM4—C41165.5 (12)
N2—CA3—CB3—CB40.4 (13)CB8—CA8—CM4—C4115.0 (19)
CM1—CA3—CB3—CB4177.9 (11)CA4—CM2—C21—C2242.4 (16)
C16—C11—C12—C131 (2)CA5—CM2—C21—C22140.3 (12)
CM1—C11—C12—C13177.1 (13)CA4—CM2—C21—C26136.4 (11)
CA3—CB3—CB4—CA43.2 (13)CA5—CM2—C21—C2640.9 (16)
N2—CA4—CB4—CB34.8 (12)C26—C21—C22—C231.4 (18)
CM2—CA4—CB4—CB3173.6 (11)CM2—C21—C22—C23177.4 (11)
C11—C12—C13—C141 (2)C21—C22—C23—C241.7 (19)
N3—CA5—CB5—CB62.8 (12)C22—C23—C24—C251 (2)
CM2—CA5—CB5—CB6174.2 (11)C23—C24—C25—C261 (2)
N3—CA5—CB5—Br3168.8 (8)C24—C25—C26—C210.3 (19)
CM2—CA5—CB5—Br314.2 (18)C22—C21—C26—C250.7 (17)
C12—C13—C14—C150 (3)CM2—C21—C26—C25178.2 (11)
CA5—CB5—CB6—CA61.6 (13)CA6—CM3—C31—C36127.8 (12)
Br3—CB5—CB6—CA6170.4 (8)CA7—CM3—C31—C3653.0 (15)
CA5—CB5—CB6—Br4176.5 (8)CA6—CM3—C31—C3257.4 (16)
Br3—CB5—CB6—Br44.4 (14)CA7—CM3—C31—C32121.8 (12)
N3—CA6—CB6—CB50.3 (12)C36—C31—C32—C330.8 (17)
CM3—CA6—CB6—CB5179.6 (11)CM3—C31—C32—C33173.9 (10)
N3—CA6—CB6—Br4174.6 (8)C31—C32—C33—C341.1 (17)
CM3—CA6—CB6—Br45.5 (18)C32—C33—C34—C350.3 (17)
C13—C14—C15—C160 (3)C33—C34—C35—C362.0 (18)
N4—CA7—CB7—CB80.3 (14)C32—C31—C36—C350.8 (17)
CM3—CA7—CB7—CB8179.9 (12)CM3—C31—C36—C35175.5 (10)
C14—C15—C16—C111 (2)C34—C35—C36—C312.2 (17)
C12—C11—C16—C151 (2)CA1—CM4—C41—C42128.5 (13)
CM1—C11—C16—C15177.1 (13)CA8—CM4—C41—C4253.5 (18)
CA7—CB7—CB8—CA81.0 (14)CA1—CM4—C41—C4651.5 (17)
N4—CA8—CB8—CB71.3 (14)CA8—CM4—C41—C46126.5 (12)
CM4—CA8—CB8—CB7179.2 (11)C46—C41—C42—C431 (2)
N1—CA2—CM1—CA323.0 (18)CM4—C41—C42—C43179.4 (12)
CB2—CA2—CM1—CA3159.7 (12)C41—C42—C43—C442 (2)
N1—CA2—CM1—C11156.2 (11)C42—C43—C44—C453 (2)
CB2—CA2—CM1—C1121.1 (19)C43—C44—C45—C462 (2)
N2—CA3—CM1—CA223.3 (19)C44—C45—C46—C410 (2)
CB3—CA3—CM1—CA2159.7 (11)C42—C41—C46—C450.5 (19)
N2—CA3—CM1—C11157.5 (11)CM4—C41—C46—C45179.5 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.882.573.018 (12)113
N1—H1···O210.882.122.956 (14)158
N2—H2···N10.882.603.018 (12)110
N2—H2···N30.882.593.026 (12)111
N2—H2···O110.882.072.896 (12)157
N3—H3···O210.882.082.932 (13)162
N4—H4···N30.882.623.034 (12)110
N4—H4···O110.882.012.844 (13)159
Pyrrole periplanar angles (°) top
Angles with respect to the mean four atom meta-carbon plane. A `negative' angle represents an arbitrary orientation with the pyrrole N atom below the mean porphyrin plane.
Pyrrole Ring(I)(II)
N1—CA1—CB1—CB2—CA23.0 (3)31.0 (5)
N2—CA3—CB3—CB4—CA46.5 (3)-30.1 (5)
N3—CA5—CB5—CB6—CA633.6 (4)
N4—CA7—CB7—CB8—CA8-23.2 (3)
Deviations from pyrrole planes for (I) and (II) (Å) top
Atom(I)(II)
N1-0.008 (3)-0.012 (7)
CA1-0.004 (3)0.006 (7)
CA20.015 (3)0.013 (7)
CB10.014 (3)0.002 (7)
CB2-0.018 (3)-0.009 (7)
Br1-0.117 (8)-0.28 (2)
Br20.403 (7)-0.28 (2)
N20.006 (3)0.021 (7)
CA3-0.001 (3)-0.006 (7)
CA4-0.009 (3)-0.027 (7)
CB3-0.005 (3)-0.011 (7)
CB40.008 (3)0.023 (7)
N3-0.015 (6)
CA50.017 (6)
CA60.007 (7)
CB5-0.013 (7)
CB60.004 (7)
Br3-0.283 (18)
Br4-0.114 (19)
N40.005 (8)
CA70.000 (7)
CA8-0.007 (8)
CB7-0.004 (8)
CB80.006 (8)
Deviations of peripheral atoms from mean meta-carbon plane for (I) and (II) (Å) top
Atom(I)(II)
C11-0.240 (7)-0.038 (19)
C210.205 (8)0.194 (18)
C310.061 (18)
C410.232 (19)
 

References

First citationCallot, H. J. (1973). Tetrahedron Lett. 14, 4987–4990.  CrossRef Google Scholar
First citationCheng, B., Munro, O. Q., Marques, H. M. & Scheidt, W. R. (1997). J. Am. Chem. Soc. 119, 10732–10742.  CSD CrossRef CAS Web of Science Google Scholar
First citationCrossley, M. J., Burn, P. L., Chew, S. S., Cuttance, F. B. & Newsom, I. A. (1991). J. Chem. Soc. Chem. Commun. pp. 1564–1566.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarunanithi, K. & Bhyrappa, P. (2015). Inorg. Chim. Acta, 427, 41–51.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPflugrath, J. W. & Messerschmidt, A. (1989). MADNES. Delft Instruments, The Netherlands.  Google Scholar
First citationRayati, S., Zakavi, S., Motlagh, S. H., Noroozi, V., Razmjoo, M., Wojtczak, A. & Kozakiewicz, A. (2008). Polyhedron, pp. 2285–2290.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, J.-Z., Xu, Z., Li, M., You, X.-Z. & Wang, H.-Q. (1995). Acta Cryst. C51, 760–761.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds