research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second polymorph of sodium di­hydrogen citrate, NaH2C6H5O7: structure solution from powder diffraction data and DFT comparison

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu, HI, USA, and bIllinois Institute of Technology, Chicago, IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 May 2016; accepted 22 May 2016; online 27 May 2016)

The crystal structure of a second polymorph of sodium di­hydrogen citrate, Na+·H2C6H5O7, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The powder pattern of the commercial sample used in this study did not match that corresponding to the known crystal structure [Glusker et al. (1965). Acta Cryst. 19, 561–572; refcode NAHCIT]. In this polymorph, the [NaO7] coordination polyhedra form edge-sharing chains propagating along the a axis, while in NAHCIT the octa­hedral [NaO6] groups form edge-sharing pairs bridged by two hy­droxy groups. The most notable difference is that in this polymorph one of the terminal carboxyl groups is deprotonated, while in NAHCIT the central carboxyl­ate group is deprotonated, as is more typical.

1. Chemical context

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to better understand the anion's conformational flexibility, deprotonation mode, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.]). Three of the new structures – NaKHC6H5O7, NaK2C6H5O7, and Na3C6H5O7 – have been published recently (Rammohan & Kaduk, 2016b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170-173.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403-406.],d[Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 793-796.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The root-mean-square deviation of the non-hydrogen atoms in the Rietveld-refined and DFT-optimized structures is 0.148 Å. The maximum deviation is 0.318 Å, at the sodium ion. The good agreement between the two structures (Fig. 2[link]) is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). This discussion uses the DFT-optimized structure. All of the bond lengths, bond angles, and most torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). Only the C2—C3—C4—C5 torsion angle is flagged as unusual. It lies in the tail of a minority gauche population of similar torsion angles. The citrate anion occurs in the gauche,trans-conformation, which is one of the two low-energy conformations of an isolated citrate ion. The central carboxyl­ate group and the hy­droxy group occur in the normal planar arrangement. The citrate chelates to one Na19 ion through the central carboxyl O9 atom and the hy­droxy group O13, and to a second Na19 ion through the terminal carboxyl atom O12 and the hy­droxy group O13. The Na+ ion is seven-coordinate (penta­gonal–bipyramidal), and has a bond-valence sum of 1.12.

[Figure 1]
Figure 1
The asymmetric unit, showing the atom numbering. The atoms are represented by 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of sodium di­hydrogen citrate. The refined structure is in red, and the DFT-optimized structure is in blue.

3. Supra­molecular features

In this polymorph, the [NaO7] coordination polyhedra (Fig. 3[link]) form edge-sharing chains propagating along the a axis, while in NAHCIT (Glusker et al., 1965[Glusker, J. P., Van Der Helm, D., Love, W. E., Dornberg, M., Minkin, J. A., Johnson, C. K. & Patterson, A. L. (1965). Acta Cryst. 19, 561-572.]), the octa­hedral [NaO6] units form edge-sharing pairs bridged by two hy­droxy groups.

[Figure 3]
Figure 3
Crystal structure of NaH2C6H5O7, viewed down the a axis.

The conformations of the citrate ions in the two structures are similar. The root-mean-square displacement of the non-hydrogen atoms is 0.11 Å. The conformations of the hy­droxy groups differ, reflecting differences in coordination and hydrogen bonding. The most notable difference is that in this polymorph, one of the terminal carboxyl groups is deprotonated, while in NAHCIT the central carboxyl­ate group is deprotonated, as is more typical.

In this form, the hydrogen bonds occur in layers in the ab plane, while in NAHCIT the hydrogen bonds form double-ladder chains along the c axis. The hydrogen bonds in this form contribute about 4.3 kcal mol−1 more to the lattice energy than those in NAHCIT, and seem to include a C—H⋯O hydrogen bond (Table 1[link]). Comparison of the DFT energies of the two polymorphs shows that this polymorph is 3.24 kcal mol−1 higher in energy than NAHCIT. Presumably it was crystallized at a higher temperature than NAHCIT, which was crystallized at 343 K.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H20⋯O11 1.01 1.61 2.627 176
O10—H21⋯O12 1.04 1.46 2.498 175
O13—H16⋯O8 0.97 2.50 3.033 114
C2—H15⋯O8 1.09 2.50 3.166 119

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.]). The crystal structure of sodium di­hydrogen citrate is reported in Glusker et al. (1965[Glusker, J. P., Van Der Helm, D., Love, W. E., Dornberg, M., Minkin, J. A., Johnson, C. K. & Patterson, A. L. (1965). Acta Cryst. 19, 561-572.]), and the powder pattern calculated from this structure is PDF entry 02-063-5032. The observed powder pattern matched PDF entry 00-016-1182 (de Wolff et al., 1966[Wolff, P. de (1966). ICDD Grant-in-Aid, PFD entry 00-016-1182.]) A reduced cell search of the cell of the observed polymorph in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (increasing the default tolerance from 1.5 to 2.0%) yielded 223 hits, but limiting the chemistry to C, H, Na, and O only resulted in no hits. The powder pattern is now contained in the the Powder Diffraction File (ICDD, 2015[ICDD (2015). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by S. Kabekkodu. International Centre for Diffraction Data, Newtown Square, PA, USA.]) as entry 00-063-1340.

5. Synthesis and crystallization

The sample was purchased from Sigma–Aldrich (lot #BCBC0142). Before measuring the powder pattern, a portion of the sample was ground in a Spex 8000 mixer/mill and blended with a NIST SRM 640b silicon inter­nal standard.

6. Refinement details

The powder pattern was indexed using DICVOL06 (Louër & Boultif, 2007[Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 2007, 191-196.]). The background and Kα2 peaks were removed using Jade (MDI, 2012[MDI (2012). JADE. Materials Data Inc., Livermore, CA, USA.]), and Powder4 (Dragoe, 2001[Dragoe, N. (2001). J. Appl. Cryst. 34, 535.]) was used to convert the data into an XYE file. The 10–52.22° portion of the pattern was processed in DASH 3.2 (David et al., 2006[David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910-915.]), which suggested P212121 as the most probable space group. Citrate and Na fragments were used to solve the structure in this space group using DASH.

The powder pattern (Fig. 4[link]) was indexed using Jade 9.5 (MDI, 2012[MDI (2012). JADE. Materials Data Inc., Livermore, CA, USA.]). Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) with profile coefficients for Simpson's rule integration of the Pseudo-Voigt function according to Howard (1982[Howard, C. J. (1982). J. Appl. Cryst. 15, 615-620.]). The asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied and microstrain broadening by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]).

[Figure 4]
Figure 4
Rietveld plot for the refinement of NaH2C6H5O7. The vertical scale is not the raw counts but the counts multiplied by the least-squares weights. This plot emphasizes the fit of the weaker peaks. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The lower row of black tick marks indicates the reflection positions for the major phase and the upper row of red tick marks is for the silicon inter­nal standard.

The structure was refined by the Rietveld method using GSAS/EXPGUI (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]: Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]). All C—C and C—O bond lengths were restrained, as were all bond angles. The hydrogen atoms were included at fixed positions, which were recalculated during the course of the refinement using Materials Studio (Dassault Systemes, 2014[Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego, CA, USA.]). The Uiso values of the atoms in the central and outer portions of the citrate were constrained to be equal, and the Uiso values of the hydrogen atoms were constrained to be 1.3× those of the atoms to which they are attached.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) morphology suggests that we might expect a blocky morphology for this phase. A 4th-order spherical harmonic texture model was included in the refinement. The texture index was 1.374, indicating that preferred orientation was significant for this rotated-flat-plate specimen.

7. DFT calculations

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. After the Rietveld refinement, a density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Na was that of Dovesi et al. (1991[Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11-19.]). The calculation used 8 k-points and the B3LYP functional, and took about 60 h on a 2.4 GHz PC. The Uiso from the Rietveld were assigned to the optimized fractional coordinates.

Table 2
Experimental details

  Phase 1 Phase 2
Crystal data
Chemical formula Na+·C6H7O7 Si
Mr 214.10 28.09
Crystal system, space group Orthorhombic, P212121 Cubic, Fd[\overline{3}]m
Temperature (K) 300 300
a, b, c (Å) 7.4527 (3), 7.7032 (3), 13.4551 (4) 5.43105, 5.43105, 5.43105
α, β, γ (°) 90, 90, 90 90, 90, 90
V3) 772.45 (5) 160.20
Z 4 8
Radiation type Kα1, Kα2, λ = 1.540629, 1.544451 Å Kα1, Kα2, λ = 1.540629, 1.544451 Å
Specimen shape, size (mm) Flat sheet, 25 × 25 Flat sheet, 25 × 25
 
Data collection
Diffractometer Bruker D2 Phaser Bruker D2 Phaser
Specimen mounting Bruker PMMA holder Bruker PMMA holder
Data collection mode Reflection Reflection
Scan method Step Step
2θ values (°) 2θmin = 5.042 2θmax = 100.048 2θstep = 0.020 2θmin = 5.042 2θmax = 100.048 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 0.063, Rwp = 0.084, Rexp = 0.024, R(F2) = 0.0780, χ2 = 12.180 Rp = 0.063, Rwp = 0.084, Rexp = 0.024, R(F2) = 0.0780, χ2 = 12.180
No. of parameters 76 76
No. of restraints 29 29
The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: DIFFRAC.Measurement (Bruker, 2009[Bruker (2009). DIFFRAC. Measurement. Bruker AXS Inc., Madison, Wisconsin, USA.]), Powder4 (Dragoe, 2001[Dragoe, N. (2001). J. Appl. Cryst. 34, 535.]), DASH (David et al., 2006[David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910-915.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR, 86-784 Los Alamos National Laboratory, New Mexico, USA.]), EXPGUI (Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamond.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

(RAMM012A_phase_1) Sodium dihydrogen citrate top
Crystal data top
Na+·C6H7O7c = 13.4551 (4) Å
Mr = 214.10V = 772.45 (5) Å3
Orthorhombic, P212121Z = 4
Hall symbol: P 2ac 2abDx = 1.841 Mg m3
a = 7.4527 (3) ÅT = 300 K
b = 7.7032 (3) Å
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.8787 (12)0.2363 (10)0.0501 (5)0.035 (2)*
C20.870 (2)0.1658 (19)0.0733 (10)0.0258 (15)*
C30.769 (2)0.282 (2)0.1478 (9)0.019 (3)*
C40.804 (2)0.4793 (18)0.1383 (8)0.019 (3)*
C50.723 (2)0.564 (2)0.2299 (10)0.019 (3)*
C60.528 (3)0.509 (2)0.2460 (9)0.0258 (15)*
C71.006 (3)0.528 (2)0.1354 (9)0.0258 (15)*
O80.8117 (18)0.0107 (14)0.0697 (7)0.0258 (15)*
O91.0081 (19)0.2131 (15)0.0280 (6)0.0258 (15)*
O100.5110 (16)0.4578 (14)0.3329 (6)0.0258 (15)*
O110.418 (2)0.5412 (14)0.1838 (7)0.0258 (15)*
O121.062 (2)0.6521 (14)0.0763 (6)0.0258 (15)*
O131.081 (2)0.4474 (15)0.2023 (7)0.0258 (15)*
O140.7172 (16)0.5561 (13)0.0514 (6)0.0258 (15)*
H150.748180.243370.224550.025 (4)*
H160.614960.26870.133430.025 (4)*
H170.697160.466710.013450.034 (2)*
H180.706180.695110.230290.025 (4)*
H190.766280.534920.297020.025 (4)*
H200.70270.00470.09910.039*
H210.29040.57830.19150.039*
Geometric parameters (Å, º) top
Na1—O82.543 (12)C7—O121.314 (13)
Na1—O10i2.463 (13)C7—O131.227 (13)
Na1—O11ii2.363 (13)O8—Na12.543 (12)
Na1—O12iii2.344 (13)O8—C21.271 (14)
Na1—O12iv2.475 (16)O8—H200.912 (13)
Na1—O14iii2.423 (13)O9—C21.253 (14)
Na1—O14ii2.879 (13)O10—Na1v2.463 (13)
C2—C31.540 (10)O10—C61.240 (12)
C2—O81.271 (14)O11—Na1iv2.363 (13)
C2—O91.253 (14)O11—C61.198 (14)
C3—C21.540 (10)O11—H210.998 (15)
C3—C41.546 (10)O12—Na1vi2.344 (13)
C3—H151.087 (12)O12—Na1ii2.475 (16)
C3—H161.167 (18)O12—C71.314 (13)
C4—C31.546 (10)O13—C71.227 (13)
C4—C51.519 (10)O14—Na1vi2.423 (13)
C4—C71.549 (10)O14—Na1iv2.879 (13)
C4—O141.461 (9)O14—C41.461 (9)
C5—C41.519 (10)O14—H170.871 (10)
C5—C61.528 (10)H15—C31.087 (12)
C5—H181.022 (16)H16—C31.167 (18)
C5—H190.984 (15)H17—O140.871 (10)
C6—C51.528 (10)H18—C51.022 (16)
C6—O101.240 (12)H19—C50.984 (15)
C6—O111.198 (14)H20—O80.912 (13)
C7—C41.549 (10)H21—O110.998 (15)
O8—Na1—O10i171.5 (5)C3—C4—C7113.8 (12)
O8—Na1—O11ii91.8 (4)C3—C4—O14112.9 (11)
O8—Na1—O12iii85.9 (5)C5—C4—C7107.7 (13)
O8—Na1—O12iv73.0 (5)C5—C4—O14107.5 (12)
O8—Na1—O14iii92.2 (4)C7—C4—O14108.2 (12)
O8—Na1—H21ii94.0 (4)C4—C5—C6112.1 (16)
O10i—Na1—O11ii85.0 (4)C5—C6—O10108.5 (13)
O10i—Na1—O12iii90.9 (4)C5—C6—O11119.6 (15)
O10i—Na1—O12iv114.1 (4)O10—C6—O11131.0 (19)
O10i—Na1—O14iii94.0 (4)C4—C7—O12120.0 (15)
O11ii—Na1—O12iii135.6 (6)C4—C7—O13107.6 (13)
O11ii—Na1—O12iv81.0 (5)O12—C7—O13131.8 (17)
O11ii—Na1—O14iii155.6 (5)Na1—O8—C2131.4 (11)
O12iii—Na1—O12iv139.0 (5)Na1v—O10—C6142.0 (14)
O12iii—Na1—O14iii68.8 (4)Na1iv—O11—C6138.6 (12)
O12iv—Na1—O14iii77.2 (4)Na1vi—O12—Na1ii110.8 (4)
C3—C2—O8114.0 (13)Na1vi—O12—C7121.4 (12)
C3—C2—O9123.3 (15)Na1ii—O12—C7125.6 (12)
O8—C2—O9122.3 (15)Na1vi—O14—C4119.9 (10)
C2—C3—C4115.8 (13)Na1iv—H21—O1178.3 (6)
C3—C4—C5106.5 (13)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1/2, y+1/2, z; (iii) x, y1, z; (iv) x1/2, y+1/2, z; (v) x+3/2, y, z+1/2; (vi) x, y+1, z.
(RAMM012A_phase_2) top
Crystal data top
Sia = 5.43105 Å
Mr = 28.09V = 160.20 Å3
Cubic, Fd3mZ = 8
Hall symbol: -F 4vw 2vwT = 300 K
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.1250.1250.1250.0304 (5)*
Geometric parameters (Å, º) top
Si1—Si1i2.3517Si1—Si1iii2.3517
Si1—Si1ii2.3517Si1—Si1iv2.3517
Si1i—Si1—Si1ii109.4712Si1ii—Si1—Si1iii109.4712
Si1i—Si1—Si1iii109.4712Si1ii—Si1—Si1iv109.4712
Si1i—Si1—Si1iv109.4712Si1iii—Si1—Si1iv109.4712
Symmetry codes: (i) x+1/4, y+1/4, z; (ii) z, x+1/4, y+1/4; (iii) y+1/4, z, x+1/4; (iv) x, y, z.
(ramm012a_DFT) top
Crystal data top
C6H7NaO7c = 13.4551 Å
Mr = 214.10V = 772.45 Å3
Orthorhombic, P212121Z = 4
a = 7.4527 ÅNone; DFT calculation radiation
b = 7.7032 ÅT = 300 K
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.869300.186890.079760.02580*
C20.768640.310820.147180.01910*
C30.808870.504890.135260.01910*
C40.728700.603560.225350.01910*
C50.542760.542560.257250.02580*
C61.011210.545590.135790.02580*
O70.796900.029350.070810.02580*
O81.010650.222870.038770.02580*
O91.079830.648860.077290.02580*
O101.096980.469750.208910.02580*
O110.519970.493610.346170.02580*
O120.420470.548980.191380.02580*
O130.731530.572640.046230.02580*
H140.799340.272490.223510.02500*
H150.625040.293650.135480.02500*
H160.757070.490900.007120.02500*
H170.719730.740750.205460.02500*
H180.818900.591740.288620.03350*
Na190.913630.189300.038400.03460*
H200.675160.020540.104150.03900*
H210.233340.497180.204290.03900*
Bond lengths (Å) top
C1—C21.516C4—H171.092
C1—O71.334C4—H181.089
C1—O81.221C5—O111.266
C2—C31.533C5—O121.272
C2—H141.093C6—O91.230
C2—H151.090C6—O101.311
C3—C41.550O7—H201.014
C3—C61.540O10—H21i1.040
C3—O131.428O13—H160.974
C4—C51.525H21—O10ii1.040
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H20···O111.011.612.627176
O10—H21···O121.041.462.498175
O13—H16···O80.972.503.033114
C2—H15···O81.092.503.166119
 

References

First citationBravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2009). DIFFRAC. Measurement. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamondGoogle Scholar
First citationDassault Systemes (2014). Materials Studio. BIOVIA, San Diego, CA, USA.  Google Scholar
First citationDavid, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910–915.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.  Web of Science CrossRef CAS Google Scholar
First citationDovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19.  CrossRef CAS Web of Science Google Scholar
First citationDragoe, N. (2001). J. Appl. Cryst. 34, 535.  CrossRef IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGlusker, J. P., Van Der Helm, D., Love, W. E., Dornberg, M., Minkin, J. A., Johnson, C. K. & Patterson, A. L. (1965). Acta Cryst. 19, 561–572.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoward, C. J. (1982). J. Appl. Cryst. 15, 615–620.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationICDD (2015). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by S. Kabekkodu. International Centre for Diffraction Data, Newtown Square, PA, USA.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR, 86–784 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLouër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 2007, 191–196.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMDI (2012). JADE. Materials Data Inc., Livermore, CA, USA.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170–173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403–406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 793–796.  CSD CrossRef IUCr Journals Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, P. de (1966). ICDD Grant-in-Aid, PFD entry 00-016-1182.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds