research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A kryptoracemic salt: 2-{[2,8-bis­­(tri­fluoro­meth­yl)quinolin-4-yl](hy­dr­oxy)meth­yl}piperidin-1-ium (+)-3,3,3-tri­fluoro-2-meth­­oxy-2-phenyl­propanoate

CROSSMARK_Color_square_no_text.svg

aFundaçaö Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and cResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 May 2016; accepted 25 May 2016; online 27 May 2016)

The asymmetric unit of the title salt, C17H17F6N2O+·C10H8F3O3, comprises two piperidin-1-ium cations and two carboxyl­ate anions. The cations, each having an L-shaped conformation owing to the near orthogonal relationship between the quinolinyl and piperidin-1-ium residues, are pseudo-enanti­omeric. The anions have the same absolute configuration but differ in the relative orientations of the carboxyl­ate, meth­oxy and benzene groups. Arguably, the most prominent difference between the anions occurs about the Cq—Om bond as seen in the Cc—Cq—Om—Cm torsion angles of −176.1 (3) and −67.1 (4)°, respectively (q = quaternary, m = meth­oxy and c = carboxyl­ate). The presence of Oh—H⋯Oc and Np—H⋯Oc hydrogen bonds leads to the formation of a supra­molecular chain along the a axis (h = hy­droxy and p = piperidin-1-ium); weak intra­molecular Np—H⋯Oh hydrogen bonds are also noted. Chains are connected into a three-dimensional architecture by C—H⋯F inter­actions. Based on a literature survey, related mol­ecules/cations adopt a uniform conformation in the solid state based on the letter L.

1. Chemical context

Biological considerations remain as the primary reason for the study of mefloquine, Scheme 1, and derivatives thereof. For example, when the racemic compound is protonated (employing HCl as the acid) at the piperdinyl-N atom, the resulting [(R*,S*)-(2-{[2,8-bis­(tri­fluoro­meth­yl)quinolin-4-yl](hy­droxy­meth­yl)piperidin-1-ium chloride salt, usually referred to as racemic erythro-mefloquine hydro­chloride, is an anti-malarial drug (Maguire et al., 2006[Maguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067-1072.]). Other biological activities have been described for these compounds, namely anti-bacterial (Mao et al., 2007[Mao, J., Wang, Y., Wan, B., Kozikowski, A. P. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624-1630.]), anti-mycobacterial (Gonçalves et al., 2012[Gonçalves, R. S. B., Kaiser, C. R., Lourenço, M. C. S., Bezerra, F. A. F. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V., Henriques, M., das, G. M. de O. & Costa, T. (2012). Bioorg. Med. Chem. 20, 243-248.]) and anti-cancer (Rodrigues et al., 2014[Rodrigues, F. A. R., Bomfim, I. da S., Cavalcanti, B. C., Pessoa, C., Goncalves, R. S. B., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2014). Chem. Biol. Drug Des. 83, 126-131.]).

[Scheme 1]
[Scheme 2]

It was in this context that the title salt was isolated from the attempted chiral resolution of mefloquine with the carb­oxy­lic acid, (+)-PhC(CF3)(OMe)CO2H. Resolution of racemic bases into the individual enanti­omers has been traditionally achieved via salt formation with a chiral acid, since usually such salts of the different enanti­omeric bases will have different properties, especially solubilities arising from differences in their crystal structures. Hence, fractional crystallization of such salts is frequently a convenient way to separate the enanti­omers. Crystallography showed the triclinic P1 crystals to comprise the [(+)-erythro-mefloquinium] and [(−)-erythro-mefloquinium] cations with two independent (+)-3,3,3-tri­fluoro-2-meth­oxy-2-phenyl­propanoate anions providing the charge balance, Scheme 2. There is a non-crystallographic enanti­omeric relationship between the cations so the sample is classified as a kryptoracemate. Surveys of this phenomenon have appeared in recent times for both organic (Fábián & Brock, 2010[Fábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94-103.]) and metal-organic (Bernal & Watkins, 2015[Bernal, I. & Watkins, S. (2015). Acta Cryst. C71, 216-221.]) systems. Herein, the crystal and mol­ecular structures of the title salt, (I)[link], are described.

2. Structural commentary

In the present study, the reaction of racemic (±)-erythro-mefloquine with the chiral carb­oxy­lic acid, (+)-PhC(CF3)(OMe)CO2H, was carried out. However, as revealed by the X-ray crystal structure determination described herein, the isolated crystalline salt contained both mefloquinium enanti­omers and two independent carboxyl­ate anions. It is noticeable that in the 1H NMR spectrum in DMSO solution of the isolated crystals, the proton signals, H5, H6 and H7, of the quinolinyl ring are doubled, e.g. at δ 7.80 and 7.85 (H6), 8.36 and 8.37 (H5) and 8.85 and 8.89 (H7) p.p.m., suggesting that the quinolinyl fragments in the complex salt are experiencing two slightly different magnetic environments. This doubling is not found for racemic mefloquinium salts of non-chiral acids, such as acetic and nitro­benzoic acids.

The crystallographic asymmetric unit of (I)[link] comprises two independent mefloquinium cations, Fig. 1[link], and two independent carboxyl­ate anions, Fig. 2[link]. Confirmation of protonation and the formation of a piperidin-1-ium cation is found in the pattern of hydrogen-bonding inter­actions, as discussed in Supra­molecular features below. On the other hand, confirmation of deprotonation of the carb­oxy­lic acid during crystallization is seen in the virtual equivalence of the C35—O3,O4 [1.231 (5) and 1.255 (5) Å] and C45—O6,O7 [1.239 (5) and 1.257 (6) Å] pairs of bond lengths.

[Figure 1]
Figure 1
The mol­ecular structures of the (a) first and (b) second independent cations in (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. (c) An overlap diagram highlighting the similarity of the conformations of the first (red) and inverted second (blue) independent cations. The cations have been overlapped so the the quinolinyl rings are coincident.
[Figure 2]
Figure 2
The mol­ecular structures of the (a) first and (b) second independent anions in (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. (c) An overlap diagram highlighting the differences in the conformations of the first (red) and second (blue) independent anions. The anions are overlapped so the α-atoms about the chiral centre are coincident.

The N1-containing cation, Fig. 1[link]a, with R- and S-configurations at the C12 and C13 chiral centres, respectively, is assigned as [(+)-erythro-mefloquinium], while with inverted configurations at the C29 and C30 centres, respectively, Fig. 1[link]b, the N3-containing cation is [(−)-erythro-mefloquinium]. The cations are related by a pseudo centre of inversion and indeed the N1-containing mol­ecule is virtually superimposable upon the mirror image of the N3-mol­ecule, Fig. 1[link]c, with the r.m.s. difference for bond distances and angles being 0.0082 Å and 0.550°, respectively (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Differences relate to the relative orientation of the piperidin-1-ium residue. The hydroxyl-O and ammonium-N atoms lie to the same side of the cation being gauche across the methine-C—C(methine) bond with N⋯O = 2.677 (3) Å and O1—C12—C13—N2 = −57.5 (4)° for the N1-cation, with the equivalent values for the N3-cation being 2.734 (3) Å and 59.2 (3)°. Despite the close separation, the O and N atoms are connected by only a weak intra­molecular hydrogen bond as the relevant H atom forms a strong inter­molecular hydrogen bond in each case (see below). The piperidin-1-ium residue lies almost orthogonal to the quinolinyl residue with the C2—C3—C12—C13 and C19—C20—C29—C30 torsion angles being 100.5 (4) and −105.1 (4)°, respectively. Overall, the shape of each cation is based on the letter, L.

The non-crystallographic enanti­omeric relationship between the cations is an example of kryptoracemic behaviour, a phenomenon known in both organic (Fábián & Brock, 2010[Fábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94-103.]) and metal-organic (Bernal & Watkins, 2015[Bernal, I. & Watkins, S. (2015). Acta Cryst. C71, 216-221.]) crystals. While known, this is rare occurring in 0.1% of all possible organic structures. This is consistent with the fact that racemic compounds, achiral mol­ecules and those with meso symmetry prefer to crystallize about a centre of inversion.

The anions in (I)[link] have the same absolute structure but differ in terms of the relative orientations of most of the substituents, Fig. 2[link]a, b. As illustrated in the overlap diagram, Fig. 2[link]c, while the C*C3O tetra­hedron is, as expected, virtually superimposable, except for the trifluromethyl groups, the remaining substituents are orientated differently. The differences are qu­anti­fied in the following terms. While to a first approximation the carboxyl­ate and meth­oxy groups lie on a plane in the first anion, Fig. 2[link]a, [the O3,O4—C35—C36—O5 torsion angles are −18.6 (5) and 162.9 (3)°, respectively, and C35—C36—O5—C38 is −176.1 (3)°], in the second anion, Fig. 2[link]b, these groups do not lie in a plane [the O6,O7—C45—C46—O8 torsion angles are −112.9 (4) and 65.1 (4)°, respectively, and C45—C46—O8—C48 is −67.1 (4)°]. In addition, the benzene rings occupy different relative positions to the carboxyl­ate groups as indicated in the C6/CO2 dihedral angles of 89.1 (2) and 77.91 (17)° respectively.

3. Supra­molecular features

As expected from the chemical composition, the mol­ecular packing is dominated by O—H⋯O and N—H⋯O hydrogen bonding, Table 1[link]. Each hydroxyl group forms a charge-assisted O—H⋯O hydrogen bond with a carboxyl­ate-O atom; the O1-hydroxyl group also forms a weaker O—H⋯O inter­action with the second carboxyl­ate group. Each of the H1N, H2N and H3N protons of the piperidin-1-ium residues is bifurcated. Two of these inter­actions are intra­molecular N—H⋯Oh (h = hydrox­yl) while the remaining N—H⋯O inter­actions, including that formed by the H4N atom, have a carboxyl­ate-O atom as the acceptor. The result of the hydrogen bonding is the formation of a supra­molecular chain along the a axis, Fig. 3[link]a. The chains associate via C—H⋯F contacts to form the three-dimensional crystal structure, Fig. 3[link]b; see Table 1[link] for parameters describing the closest C—H⋯F contact.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.84 1.84 2.615 (3) 153
O1—H1O⋯O5 0.84 2.49 3.146 (3) 135
O2—H2O⋯O6i 0.84 1.92 2.738 (3) 165
N2—H1N⋯O1 0.92 2.24 2.677 (3) 108
N2—H1N⋯O7ii 0.92 2.10 2.817 (3) 134
N2—H2N⋯O3i 0.92 2.38 3.028 (3) 127
N2—H2N⋯O4i 0.92 2.03 2.938 (3) 169
N4—H3N⋯O2 0.92 2.33 2.734 (3) 106
N4—H3N⋯O4iii 0.92 2.12 2.849 (3) 136
N4—H4N⋯O7 0.92 1.84 2.756 (3) 171
C13—H13⋯F5i 1.00 2.38 3.192 (4) 137
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y, z-1.
[Figure 3]
Figure 3
The mol­ecular packing in (I)[link], showing (a) a view of a supra­molecular chain aligned along the a axis and (b) a view in projection down the a axis of the unit-cell contents showing the stacking of supra­molecular chains; one chain has been highlighted in space-filling mode. The O—H⋯O and N—H⋯O hydrogen bonds are shown as orange and blue dashed lines, respectively. Colour code: F, cyan; O, red; N, blue; C, grey; and H, green.

4. Database survey

The crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains at least 16 species related to (I)[link] and a summary of some key geometric descriptors is given in Table 2[link]. Owing to multiple mol­ecules in several of the structures, i.e. two in (II) and (V), three in (VI) and (XV), four in (IV) and five in (III), a reasonable sample of structures is available for comment. The data confirm the proximity of the hy­droxy-O and ammonium-N atoms in these species, and the L-shaped conformation owing to the orthogonal relationship between the quinolinyl and piperidin-1-ium residues. Despite varying compositions in (I)–(XVII), it is apparent that the mol­ecular structures found for mefloquine/mefloquinium cations are robust. Finally, as mentioned above, the phenomenon of kryptoracemates is rare, occurring in just 0.1% of organic crystal structures (Fábián & Brock, 2010[Fábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94-103.]). In this context it might be notable that the structure of (I)[link] is the second example of such behaviour in the structural chemistry of mefloquinium cations, complementing the recent report of (±)-[Mef+][O3OSC6H4F-4]Cl (Jotani et al., 2016[Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 247-255.]).

Table 2
Geometric data (Å, °) for mefloquine (Mef) and mefloquinium cations (Mef+)

  Formulation N⋯O O—C(H)—C(H)—N (H)C—C—C(OH)—C(H) REFCODEa Ref.
(I) (±)-[Mef+][(+)-PhC(CF3)(OMe)CO2H] 2.677 (3)–2.734 (3) −57.5 (4), 59.2 (3) 100.5 (4), −105.1 (4) This work
(II) (±)-Mef 2.782 (5)–2.846 (5) −61.2 (4), 66.5 (4) 98.9 (4), −107.2 (4) LEBYAT Skórska et al. (2006[Skórska, A., Śliwiński, J. & Oleksyn, B. J. (2006). Bioorg. Med. Chem. Lett. 16, 850-853.])
(III) (−)-Mef 2.754 (4)–2.930 (5) −58.6 (4) to −71.8 (4) 93.6 (4)–103.8 (4) QIYREX Dassonville-Klimpt et al. (2013[Dassonville-Klimpt, A., Cezard, C., Mullie, C., Agnamey, P., Jonet, A., Da Nascimento, S., Marchivie, M., Guillon, J. & Sonnet, P. (2013). ChemPlusChem, 78, 642-646.])
(IV) (−)-[Mef+]Cl·0.25H2O 2.722 (15)–2.965 (14) −54.31 (12) to −71.53 (12) 92.66 (16)–103.52 (14) BIGTIV Karle & Karle (2002[Karle, J. M. & Karle, I. L. (2002). Antimicrob. Agents Chemother. 46, 1529-1534.])
(V) (−)-[Mef+]Cl·CH3OH 2.7052 (18)–2.7792 (16) 54.54 (14), −61.37 (14) −98.86 (17), 97.92 (17) SOJPOW01 Pitaluga et al. (2010[Pitaluga, A., Prado, L. D., Seiceira, R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Int. J. Pharm. 398, 50-60.])
(VI) (±)-[Mef+]Cl·H2O 2.720 (3)–2.963 (3) −56.1 (2), 73.6 (2) −93.7 (3), 110.86 (24) HAJSAO Pitaluga et al. (2010[Pitaluga, A., Prado, L. D., Seiceira, R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Int. J. Pharm. 398, 50-60.])
(VII) (±)-[Mef+]BPh4·CH3CH2OH 2.701 (3) −53.0 (2) 98.9 (3) WAVCED Wardell et al. (2011a[Wardell, J. L., de Souza, M. V. N., Wardell, S. M. S. V. & Lourenço, M. C. S. (2011a). J. Mol. Struct. 990, 67-74.])
(VIII) (±)-[Mef+][2-NO2–C6H4CO2] 2.914 (2) −72.8 (2) 97.3 (3) OMELOI Wardell et al. (2011b[Wardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011b). Z. Kristallogr. 226, 68-77.])
(IX) (±)-[Mef+][3-NO2–C6H4CO2] 2.7590 (19) −59.34 (18) 101.00 (21) OMELUO Wardell et al. (2011b[Wardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011b). Z. Kristallogr. 226, 68-77.])
(XI) (±)-[Mef+][4-NO2–C6H4CO2] 2.756 (4) −54.1 (4) 100.5 (4) OMEMAV Wardell et al. (2011b[Wardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011b). Z. Kristallogr. 226, 68-77.])
(XI) (±)-[Mef+][3-NH2-5-NO2–C6H4CO2]·1.5H2O 2.867 (3) 66.0 (3) −102.9 (3) YAHFIY de Souza et al. (2011[Souza, M. V. N. de, Wardell, J. L., Wardell, S. M. S. V., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3019-o3020.])
(XII) (±)-[Mef+]2[CuCl4]2·4H2O 2.886 (5) −67.4 (4) 103.2 (4) IHOTAB Obaleye et al. (2009[Obaleye, J. A., Caira, M. R. & Tella, A. C. (2009). Struct. Chem. 20, 859-868.])
(XIII) (±)-[Mef+]2[CdBr4]2·2CH3OH 2.727 (5) 58.6 (5) −99.6 (6) IHOTEF Obaleye et al. (2009[Obaleye, J. A., Caira, M. R. & Tella, A. C. (2009). Struct. Chem. 20, 859-868.])
(XIV) (±)-[Mef+]3[CoCl4]2Cl·H2O·CH3CH2OH 2.710 (4)–3.062 (4) 59.3 (3)–75.2 (3) −98.9 (4) to −104.3 (3) LEBYIB Skórska et al. (2006[Skórska, A., Śliwiński, J. & Oleksyn, B. J. (2006). Bioorg. Med. Chem. Lett. 16, 850-853.])
(XV) (±)-[Mef+]2[Ph2SnCl4]2− 2.789 (8) −65.2 (7) 101.0 (8) PUHVAQ Wardell et al. (2010[Wardell, J. L., Wardell, S. M. S. V., Tiekink, E. R. T. & Lima, G. M. de (2010). Acta Cryst. E66, m336-m337.])
(XVI) (±)-[Mef+][O3OSC6H4F-4]Cl 2.802 (2)–2.815 (2) −64.57 (15), 66.50 (14) −96.69 (17), 94.43 (17) ELAMAH Jotani et al. (2016[Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 247-255.])
Notes: (a) Groom et al. (2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

5. Synthesis and crystallization

Solutions of (±)-erythro-mefloquine base (1 mmol) in EtOH (10 ml) and (+)-PhC(CF3)(OMe)CO2H (1 mmol) in EtOH (10 ml) were mixed. The reaction mixture was maintained at room temperature and crystals slowly formed over a period of days. Crystals were collected in four batches, at suitable time inter­vals. Only the second batch had crystals suitable for the crystallographic study. The melting points of samples from each batch were similar, in the range 431–436 K. Those used in the X-ray study had m.p. 435–436 K. 1H NMR (400 MHz, DMSO-d6]: δ 1.22–1.25 (4H, m), 1.64–1.69 (8H, m), 2.95 (4H, t, J = 11.0 Hz), 3.26 (2H, brd, J = 11 Hz), 3.48 (2H, brd, J = 11 Hz), 3.55 (6H, s, OMe), 6.05 (2H, s), 7.27–7.34 (6H, m), 7.74 (4H, d, J = 7 Hz), 7.80 (1H, t, J = 8.0 Hz), 7.85 (1H, t, J = 8.0 Hz), 8.13 (2H, s), 8.36 (1H, d, J = 6.5 Hz), 8.37 (1H, d, J = 6.8 Hz), 8.85 (1H, d, J = 8.6 Hz), 8.89 (1H, d, J = 8.6 Hz). 13C NMR (100 MHz, DMSO-d6]: δ: 21.08, 21.33, 21.72, 44.27,44.33, 54.35, 58.83, 58.87, 67.82, 84.53 (q, JCF = 23.67 Hz), 115.43, 121.23 (q, JCF = 273.5 Hz), 123.70 (q, JCF = 271.7 Hz), 125.03 (q, JCF = 286.1 Hz), 127.57, 127.60, 128.07, 128.13, 129.11, 129.86 (q, JCF = 5 Hz), 136.02, 142.82, 146.73 (q, JCF = 34.6 Hz), 151.43, 168.18. 19F NMR (377 MHz, DMSO-d6]: δ −58.90 (cation), −66.75 (cation), −69.79 (anion).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were geometrically placed (O—H = 0.84 Å, N—H = 0.92 Å, and C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C) and 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula C17H17F6N2O+·C10H8F3O3
Mr 612.49
Crystal system, space group Triclinic, P1
Temperature (K) 120
a, b, c (Å) 7.5210 (1), 13.3056 (3), 14.8445 (4)
α, β, γ (°) 69.283 (1), 76.336 (2), 85.759 (2)
V3) 1350.06 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.32 × 0.18 × 0.08
 
Data collection
Diffractometer Enraf–Nonius KappaCCD area-detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.883, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28452, 11611, 10550
Rint 0.037
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.108, 1.04
No. of reflections 11611
No. of parameters 761
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.30
Absolute structure Flack x determined using 4390 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (3)
Computer programs: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-{[2,8-Bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidin-1-ium (+)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate top
Crystal data top
C17H17F6N2O+·C10H8F3O3Z = 2
Mr = 612.49F(000) = 628
Triclinic, P1Dx = 1.507 Mg m3
a = 7.5210 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.3056 (3) ÅCell parameters from 32656 reflections
c = 14.8445 (4) Åθ = 2.9–27.5°
α = 69.283 (1)°µ = 0.14 mm1
β = 76.336 (2)°T = 120 K
γ = 85.759 (2)°Prism, colourless
V = 1350.06 (5) Å30.32 × 0.18 × 0.08 mm
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
11611 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode10550 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.037
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1717
Tmin = 0.883, Tmax = 1.000l = 1919
28452 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.2631P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.28 e Å3
11611 reflectionsΔρmin = 0.30 e Å3
761 parametersAbsolute structure: Flack x determined using 4390 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.2 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.8444 (4)0.1170 (3)0.5300 (2)0.0497 (8)
F20.5631 (4)0.1485 (2)0.5833 (2)0.0429 (7)
F30.6947 (4)0.0119 (2)0.66921 (19)0.0347 (6)
F40.1398 (4)0.0877 (2)0.8274 (2)0.0398 (6)
F50.0908 (3)0.1205 (2)0.9628 (2)0.0407 (7)
F60.2499 (3)0.0157 (2)0.94808 (19)0.0312 (6)
O10.4889 (4)0.3672 (2)0.9949 (2)0.0259 (6)
H1O0.41700.40420.96080.039*
N10.4983 (5)0.1398 (3)0.7841 (2)0.0225 (7)
N20.8065 (4)0.3602 (3)1.0487 (2)0.0209 (7)
H1N0.69670.38311.07560.025*
H2N0.86800.41851.00100.025*
C10.3912 (5)0.1540 (3)0.8621 (3)0.0221 (8)
C20.4296 (5)0.2180 (3)0.9126 (3)0.0224 (8)
H20.34350.22430.96860.027*
C30.5949 (5)0.2716 (3)0.8793 (3)0.0206 (8)
C40.7182 (6)0.2603 (3)0.7942 (3)0.0226 (8)
C50.8905 (6)0.3123 (3)0.7521 (3)0.0283 (9)
H50.93070.35620.78200.034*
C61.0004 (7)0.3003 (4)0.6688 (3)0.0344 (10)
H61.11610.33570.64160.041*
C70.9433 (7)0.2360 (4)0.6233 (3)0.0342 (10)
H71.02020.22910.56500.041*
C80.7797 (6)0.1838 (3)0.6615 (3)0.0255 (8)
C90.6618 (6)0.1942 (3)0.7480 (3)0.0234 (8)
C100.7198 (6)0.1147 (4)0.6118 (3)0.0291 (9)
C110.2171 (6)0.0878 (4)0.8987 (3)0.0275 (9)
C120.6438 (5)0.3415 (3)0.9326 (3)0.0202 (7)
H120.70440.40930.88260.024*
C130.7726 (5)0.2830 (3)1.0011 (3)0.0205 (8)
H130.89100.26850.96020.025*
C140.9133 (5)0.3145 (3)1.1276 (3)0.0242 (8)
H14A0.92630.36901.15700.029*
H14B1.03730.29471.09840.029*
C150.8136 (5)0.2153 (4)1.2075 (3)0.0250 (8)
H15A0.88280.18521.26010.030*
H15B0.69080.23551.23770.030*
C160.7948 (6)0.1313 (3)1.1626 (3)0.0261 (9)
H16A0.72740.06791.21440.031*
H16B0.91780.10771.13640.031*
C170.6924 (5)0.1771 (3)1.0791 (3)0.0233 (8)
H17A0.69420.12351.04660.028*
H17B0.56310.18841.10810.028*
F70.8231 (4)0.9969 (2)0.3955 (2)0.0395 (7)
F80.9419 (5)0.8584 (3)0.4868 (2)0.0489 (8)
F90.6569 (4)0.8912 (3)0.5290 (2)0.0497 (8)
F101.3944 (4)0.9275 (2)0.2510 (2)0.0390 (6)
F111.3021 (3)1.0328 (2)0.1238 (2)0.0348 (6)
F121.4637 (3)0.8949 (2)0.1148 (2)0.0387 (6)
O21.0924 (4)0.6563 (2)0.0590 (2)0.0223 (6)
H2O1.16780.62510.09330.033*
N31.0378 (5)0.8743 (3)0.2826 (2)0.0223 (7)
N40.7693 (4)0.6547 (2)0.0053 (2)0.0171 (6)
H3N0.87990.63690.02580.020*
H4N0.71690.59370.05330.020*
C181.1552 (5)0.8637 (3)0.2051 (3)0.0220 (8)
C191.1274 (5)0.8010 (3)0.1509 (3)0.0204 (7)
H191.21980.79630.09650.025*
C200.9646 (5)0.7468 (3)0.1778 (3)0.0201 (7)
C210.8330 (6)0.7544 (3)0.2612 (3)0.0209 (8)
C220.6619 (6)0.6970 (3)0.2991 (3)0.0262 (9)
H220.63140.65230.26710.031*
C230.5429 (6)0.7059 (4)0.3806 (3)0.0325 (10)
H230.43010.66730.40480.039*
C240.5843 (6)0.7714 (4)0.4295 (3)0.0308 (9)
H240.49930.77680.48610.037*
C250.7464 (6)0.8271 (3)0.3960 (3)0.0268 (9)
C260.8764 (5)0.8192 (3)0.3114 (3)0.0213 (8)
C270.7921 (7)0.8934 (4)0.4511 (3)0.0315 (9)
C281.3288 (6)0.9288 (3)0.1746 (3)0.0275 (9)
C290.9309 (5)0.6777 (3)0.1210 (3)0.0177 (7)
H290.87510.60780.16940.021*
C300.7994 (5)0.7324 (3)0.0531 (3)0.0191 (7)
H300.68000.74480.09450.023*
C310.6510 (5)0.6972 (3)0.0679 (3)0.0232 (8)
H31A0.52740.71270.03430.028*
H31B0.63840.64270.09740.028*
C320.7361 (6)0.7986 (3)0.1480 (3)0.0243 (8)
H32A0.65790.82690.19650.029*
H32B0.85760.78230.18320.029*
C330.7570 (5)0.8833 (3)0.1033 (3)0.0254 (8)
H33A0.63460.90330.07230.030*
H33B0.81630.94860.15620.030*
C340.8727 (5)0.8399 (3)0.0256 (3)0.0233 (8)
H34A1.00020.83060.05880.028*
H34B0.87440.89310.00700.028*
F130.3672 (4)0.5765 (2)0.60704 (18)0.0363 (6)
F140.0856 (3)0.5380 (2)0.68169 (18)0.0297 (5)
F150.2970 (4)0.4249 (2)0.7246 (2)0.0393 (6)
O30.1897 (4)0.4383 (3)0.9334 (2)0.0442 (9)
O40.0273 (4)0.5472 (2)0.8791 (2)0.0262 (6)
O50.4526 (3)0.5488 (2)0.7955 (2)0.0242 (6)
C350.1349 (5)0.5153 (3)0.8714 (3)0.0212 (8)
C360.2780 (5)0.5775 (3)0.7733 (3)0.0209 (7)
C370.2558 (5)0.5295 (3)0.6963 (3)0.0259 (8)
C380.6112 (6)0.6000 (4)0.7201 (3)0.0315 (9)
H38A0.64170.56350.67150.047*
H38B0.71500.59570.75060.047*
H38C0.58440.67560.68700.047*
C390.2475 (5)0.6981 (3)0.7428 (3)0.0198 (7)
C400.1796 (6)0.7609 (3)0.6613 (3)0.0258 (8)
H400.14430.72830.62050.031*
C410.1635 (6)0.8714 (3)0.6393 (3)0.0312 (9)
H410.11580.91360.58400.037*
C420.2157 (6)0.9205 (3)0.6970 (3)0.0295 (9)
H420.20720.99630.68050.035*
C430.2807 (6)0.8583 (3)0.7790 (3)0.0280 (9)
H430.31600.89120.81940.034*
C440.2942 (5)0.7479 (3)0.8021 (3)0.0252 (8)
H440.33600.70570.85950.030*
F160.0661 (3)0.4909 (2)0.28770 (18)0.0298 (5)
F170.2010 (3)0.5936 (2)0.33665 (19)0.0315 (6)
F180.1071 (3)0.4363 (2)0.43606 (17)0.0359 (6)
O60.3771 (4)0.5882 (2)0.1512 (2)0.0281 (6)
O70.6151 (4)0.4788 (2)0.1645 (2)0.0225 (6)
O80.4715 (4)0.4555 (2)0.3726 (2)0.0237 (6)
C450.4594 (5)0.5098 (3)0.1971 (3)0.0187 (7)
C460.3690 (5)0.4435 (3)0.3076 (3)0.0180 (7)
C470.1852 (5)0.4921 (3)0.3418 (3)0.0233 (8)
C480.6521 (5)0.4112 (3)0.3692 (3)0.0287 (9)
H48A0.64820.33640.37290.043*
H48B0.69680.41410.42520.043*
H48C0.73460.45300.30720.043*
C490.3369 (5)0.3262 (3)0.3213 (3)0.0198 (7)
C500.3397 (5)0.2466 (3)0.4118 (3)0.0249 (8)
H500.36360.26500.46410.030*
C510.3074 (6)0.1395 (4)0.4259 (3)0.0337 (10)
H510.31210.08500.48740.040*
C520.2689 (6)0.1130 (4)0.3511 (4)0.0347 (10)
H520.24600.04020.36090.042*
C530.2636 (5)0.1926 (3)0.2613 (3)0.0286 (9)
H530.23520.17430.20990.034*
C540.2994 (5)0.2989 (3)0.2460 (3)0.0233 (8)
H540.29830.35300.18380.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0631 (19)0.060 (2)0.0295 (14)0.0243 (15)0.0129 (13)0.0303 (14)
F20.0589 (19)0.0427 (17)0.0374 (15)0.0072 (13)0.0276 (14)0.0170 (13)
F30.0508 (16)0.0244 (13)0.0304 (14)0.0034 (11)0.0084 (11)0.0109 (11)
F40.0317 (14)0.0498 (17)0.0427 (15)0.0023 (12)0.0147 (12)0.0171 (13)
F50.0255 (13)0.0466 (17)0.0549 (18)0.0005 (11)0.0042 (12)0.0319 (14)
F60.0330 (13)0.0245 (13)0.0332 (13)0.0046 (10)0.0015 (11)0.0095 (11)
O10.0275 (15)0.0279 (15)0.0245 (14)0.0096 (12)0.0075 (11)0.0125 (12)
N10.0262 (17)0.0194 (17)0.0207 (16)0.0009 (13)0.0049 (13)0.0059 (13)
N20.0208 (16)0.0209 (16)0.0202 (16)0.0011 (12)0.0016 (12)0.0081 (13)
C10.0209 (18)0.0196 (19)0.0230 (19)0.0046 (15)0.0048 (15)0.0049 (16)
C20.028 (2)0.0185 (19)0.0189 (18)0.0018 (15)0.0024 (15)0.0068 (15)
C30.028 (2)0.0154 (18)0.0167 (17)0.0025 (15)0.0049 (15)0.0040 (14)
C40.029 (2)0.0205 (19)0.0156 (17)0.0002 (16)0.0027 (15)0.0049 (15)
C50.041 (2)0.024 (2)0.0193 (19)0.0124 (18)0.0000 (17)0.0089 (17)
C60.040 (2)0.034 (2)0.024 (2)0.016 (2)0.0081 (18)0.0111 (19)
C70.044 (3)0.034 (2)0.021 (2)0.009 (2)0.0060 (18)0.0122 (18)
C80.037 (2)0.020 (2)0.0177 (18)0.0026 (16)0.0030 (16)0.0056 (16)
C90.031 (2)0.0189 (19)0.0178 (18)0.0025 (15)0.0052 (15)0.0028 (15)
C100.039 (2)0.030 (2)0.0189 (19)0.0019 (18)0.0024 (16)0.0118 (17)
C110.0216 (19)0.032 (2)0.030 (2)0.0035 (16)0.0051 (16)0.0132 (18)
C120.0243 (19)0.0206 (19)0.0167 (17)0.0028 (14)0.0037 (14)0.0086 (15)
C130.0235 (19)0.0157 (18)0.0216 (18)0.0025 (14)0.0021 (15)0.0079 (15)
C140.0209 (18)0.027 (2)0.0226 (19)0.0002 (15)0.0042 (15)0.0057 (16)
C150.0210 (19)0.031 (2)0.0189 (19)0.0018 (16)0.0040 (15)0.0031 (17)
C160.029 (2)0.022 (2)0.022 (2)0.0024 (16)0.0057 (16)0.0011 (16)
C170.026 (2)0.0181 (19)0.0214 (19)0.0001 (15)0.0039 (15)0.0025 (15)
F70.0598 (18)0.0283 (14)0.0327 (14)0.0084 (12)0.0043 (12)0.0156 (12)
F80.066 (2)0.0526 (19)0.0418 (17)0.0007 (15)0.0319 (15)0.0207 (15)
F90.0633 (19)0.059 (2)0.0316 (15)0.0221 (15)0.0105 (13)0.0306 (14)
F100.0332 (14)0.0489 (17)0.0464 (16)0.0057 (12)0.0172 (12)0.0237 (14)
F110.0332 (14)0.0248 (13)0.0459 (16)0.0073 (10)0.0053 (11)0.0125 (12)
F120.0227 (12)0.0434 (16)0.0578 (18)0.0033 (11)0.0000 (11)0.0321 (14)
O20.0219 (13)0.0269 (14)0.0220 (13)0.0088 (11)0.0088 (11)0.0124 (11)
N30.0274 (17)0.0194 (17)0.0217 (16)0.0006 (13)0.0075 (13)0.0078 (13)
N40.0180 (14)0.0178 (15)0.0141 (14)0.0018 (11)0.0026 (11)0.0042 (12)
C180.0221 (19)0.0191 (19)0.027 (2)0.0016 (15)0.0084 (15)0.0084 (16)
C190.0223 (18)0.0192 (18)0.0188 (17)0.0016 (14)0.0061 (14)0.0048 (15)
C200.0256 (19)0.0169 (18)0.0192 (18)0.0005 (14)0.0095 (15)0.0053 (15)
C210.030 (2)0.0148 (18)0.0160 (17)0.0031 (15)0.0058 (15)0.0023 (14)
C220.031 (2)0.025 (2)0.023 (2)0.0087 (16)0.0051 (16)0.0082 (17)
C230.035 (2)0.036 (2)0.024 (2)0.0168 (19)0.0047 (17)0.0120 (19)
C240.038 (2)0.033 (2)0.021 (2)0.0094 (19)0.0012 (17)0.0108 (18)
C250.037 (2)0.026 (2)0.0181 (19)0.0039 (17)0.0057 (16)0.0079 (16)
C260.0267 (19)0.0197 (19)0.0176 (18)0.0021 (15)0.0066 (14)0.0050 (15)
C270.042 (2)0.029 (2)0.022 (2)0.0085 (18)0.0026 (18)0.0087 (17)
C280.028 (2)0.024 (2)0.037 (2)0.0018 (16)0.0083 (17)0.0176 (18)
C290.0212 (18)0.0144 (17)0.0184 (17)0.0000 (14)0.0062 (14)0.0055 (14)
C300.0190 (18)0.0209 (19)0.0195 (17)0.0020 (14)0.0057 (14)0.0092 (15)
C310.0212 (19)0.031 (2)0.0175 (18)0.0010 (16)0.0081 (15)0.0063 (16)
C320.0236 (19)0.028 (2)0.0178 (18)0.0015 (16)0.0054 (15)0.0028 (16)
C330.0240 (19)0.024 (2)0.0215 (19)0.0012 (16)0.0058 (15)0.0002 (16)
C340.0237 (19)0.020 (2)0.027 (2)0.0011 (15)0.0075 (15)0.0076 (16)
F130.0380 (14)0.0484 (16)0.0237 (12)0.0084 (12)0.0015 (10)0.0176 (11)
F140.0332 (13)0.0310 (13)0.0282 (12)0.0065 (10)0.0116 (10)0.0097 (10)
F150.0560 (17)0.0280 (14)0.0418 (15)0.0100 (12)0.0183 (13)0.0188 (12)
O30.0226 (15)0.046 (2)0.0366 (18)0.0038 (14)0.0019 (13)0.0131 (15)
O40.0175 (13)0.0333 (16)0.0263 (14)0.0003 (11)0.0037 (11)0.0090 (12)
O50.0162 (12)0.0272 (14)0.0226 (13)0.0004 (10)0.0016 (10)0.0024 (11)
C350.0208 (18)0.0204 (18)0.0208 (18)0.0023 (14)0.0025 (14)0.0060 (15)
C360.0176 (17)0.0231 (18)0.0213 (18)0.0012 (14)0.0057 (14)0.0057 (15)
C370.028 (2)0.025 (2)0.0231 (19)0.0034 (16)0.0025 (15)0.0083 (16)
C380.0215 (19)0.037 (2)0.028 (2)0.0034 (17)0.0017 (16)0.0065 (18)
C390.0180 (17)0.0206 (18)0.0185 (17)0.0015 (14)0.0004 (13)0.0063 (14)
C400.031 (2)0.025 (2)0.0228 (19)0.0068 (16)0.0083 (16)0.0071 (16)
C410.040 (2)0.026 (2)0.025 (2)0.0070 (18)0.0129 (18)0.0009 (17)
C420.035 (2)0.021 (2)0.031 (2)0.0054 (17)0.0048 (17)0.0072 (17)
C430.027 (2)0.031 (2)0.032 (2)0.0022 (17)0.0064 (17)0.0185 (18)
C440.0236 (19)0.033 (2)0.0211 (18)0.0030 (16)0.0083 (15)0.0103 (16)
F160.0173 (11)0.0350 (14)0.0323 (13)0.0005 (9)0.0058 (9)0.0057 (11)
F170.0366 (13)0.0262 (13)0.0322 (13)0.0084 (10)0.0066 (11)0.0130 (11)
F180.0326 (13)0.0398 (15)0.0226 (12)0.0048 (11)0.0052 (10)0.0037 (11)
O60.0230 (14)0.0281 (15)0.0228 (14)0.0025 (11)0.0030 (11)0.0017 (12)
O70.0203 (13)0.0222 (13)0.0209 (13)0.0011 (10)0.0006 (10)0.0053 (11)
O80.0248 (14)0.0253 (14)0.0221 (14)0.0017 (11)0.0094 (11)0.0067 (11)
C450.0172 (17)0.0194 (18)0.0187 (17)0.0039 (14)0.0025 (13)0.0059 (14)
C460.0171 (16)0.0201 (17)0.0160 (16)0.0037 (13)0.0022 (13)0.0056 (13)
C470.0229 (19)0.0233 (19)0.0216 (18)0.0007 (15)0.0013 (14)0.0078 (15)
C480.0215 (19)0.035 (2)0.028 (2)0.0048 (16)0.0109 (16)0.0046 (17)
C490.0129 (16)0.0214 (18)0.0220 (18)0.0045 (14)0.0005 (14)0.0056 (15)
C500.025 (2)0.026 (2)0.0219 (19)0.0046 (16)0.0067 (15)0.0053 (16)
C510.041 (2)0.023 (2)0.030 (2)0.0042 (18)0.0041 (18)0.0015 (17)
C520.031 (2)0.028 (2)0.043 (3)0.0096 (18)0.0013 (19)0.014 (2)
C530.0204 (19)0.031 (2)0.037 (2)0.0031 (16)0.0038 (16)0.0173 (19)
C540.0208 (18)0.027 (2)0.0198 (18)0.0033 (15)0.0024 (14)0.0067 (16)
Geometric parameters (Å, º) top
F1—C101.339 (5)C23—C241.406 (6)
F2—C101.339 (5)C23—H230.9500
F3—C101.330 (5)C24—C251.368 (6)
F4—C111.323 (5)C24—H240.9500
F5—C111.343 (5)C25—C261.429 (6)
F6—C111.346 (5)C25—C271.502 (6)
O1—C121.410 (4)C29—C301.539 (5)
O1—H1O0.8400C29—H291.0000
N1—C11.310 (5)C30—C341.531 (5)
N1—C91.367 (5)C30—H301.0000
N2—C131.502 (5)C31—C321.509 (6)
N2—C141.502 (5)C31—H31A0.9900
N2—H1N0.9100C31—H31B0.9900
N2—H2N0.9100C32—C331.530 (6)
C1—C21.401 (6)C32—H32A0.9900
C1—C111.510 (6)C32—H32B0.9900
C2—C31.374 (6)C33—C341.534 (5)
C2—H20.9500C33—H33A0.9900
C3—C41.427 (5)C33—H33B0.9900
C3—C121.528 (5)C34—H34A0.9900
C4—C51.411 (6)C34—H34B0.9900
C4—C91.429 (5)F13—C371.347 (5)
C5—C61.369 (6)F14—C371.339 (5)
C5—H50.9500F15—C371.339 (5)
C6—C71.405 (6)O3—C351.231 (5)
C6—H60.9500O4—C351.255 (5)
C7—C81.356 (6)O5—C361.420 (4)
C7—H70.9500O5—C381.446 (5)
C8—C91.423 (5)C35—C361.582 (5)
C8—C101.514 (6)C36—C391.521 (5)
C12—C131.540 (5)C36—C371.537 (5)
C12—H121.0000C38—H38A0.9800
C13—C171.527 (5)C38—H38B0.9800
C13—H131.0000C38—H38C0.9800
C14—C151.527 (6)C39—C401.392 (6)
C14—H14A0.9900C39—C441.389 (5)
C14—H14B0.9900C40—C411.391 (6)
C15—C161.518 (6)C40—H400.9500
C15—H15A0.9900C41—C421.381 (6)
C15—H15B0.9900C41—H410.9500
C16—C171.532 (5)C42—C431.383 (6)
C16—H16A0.9900C42—H420.9500
C16—H16B0.9900C43—C441.387 (6)
C17—H17A0.9900C43—H430.9500
C17—H17B0.9900C44—H440.9500
F7—C271.335 (5)F16—C471.341 (4)
F8—C271.340 (6)F17—C471.338 (5)
F9—C271.340 (5)F18—C471.340 (4)
F10—C281.332 (5)O6—C451.239 (5)
F11—C281.347 (5)O7—C451.257 (4)
F12—C281.346 (5)O8—C461.425 (4)
O2—C291.417 (4)O8—C481.437 (5)
O2—H2O0.8400C45—C461.571 (5)
N3—C181.318 (5)C46—C491.531 (5)
N3—C261.363 (5)C46—C471.535 (5)
N4—C311.498 (5)C48—H48A0.9800
N4—C301.500 (5)C48—H48B0.9800
N4—H3N0.9100C48—H48C0.9800
N4—H4N0.9100C49—C541.383 (5)
C18—C191.403 (5)C49—C501.389 (5)
C18—C281.507 (6)C50—C511.395 (6)
C19—C201.370 (5)C50—H500.9500
C19—H190.9500C51—C521.374 (7)
C20—C211.421 (5)C51—H510.9500
C20—C291.518 (5)C52—C531.386 (7)
C21—C261.420 (5)C52—H520.9500
C21—C221.433 (5)C53—C541.388 (6)
C22—C231.361 (6)C53—H530.9500
C22—H220.9500C54—H540.9500
C12—O1—H1O109.5F9—C27—C25111.9 (4)
C1—N1—C9116.6 (3)F10—C28—F11106.5 (3)
C13—N2—C14114.5 (3)F10—C28—F12106.9 (4)
C13—N2—H1N108.6F11—C28—F12106.1 (4)
C14—N2—H1N108.6F10—C28—C18113.3 (4)
C13—N2—H2N108.6F11—C28—C18111.2 (3)
C14—N2—H2N108.6F12—C28—C18112.4 (3)
H1N—N2—H2N107.6O2—C29—C20113.2 (3)
N1—C1—C2126.2 (4)O2—C29—C30106.1 (3)
N1—C1—C11112.8 (4)C20—C29—C30111.4 (3)
C2—C1—C11120.9 (3)O2—C29—H29108.7
C3—C2—C1118.3 (4)C20—C29—H29108.7
C3—C2—H2120.8C30—C29—H29108.7
C1—C2—H2120.8N4—C30—C34110.5 (3)
C2—C3—C4118.5 (4)N4—C30—C29106.5 (3)
C2—C3—C12120.3 (3)C34—C30—C29113.2 (3)
C4—C3—C12121.2 (3)N4—C30—H30108.9
C5—C4—C9118.3 (3)C34—C30—H30108.9
C5—C4—C3123.8 (4)C29—C30—H30108.9
C9—C4—C3117.9 (4)N4—C31—C32109.5 (3)
C6—C5—C4120.9 (4)N4—C31—H31A109.8
C6—C5—H5119.6C32—C31—H31A109.8
C4—C5—H5119.6N4—C31—H31B109.8
C5—C6—C7120.5 (4)C32—C31—H31B109.8
C5—C6—H6119.7H31A—C31—H31B108.2
C7—C6—H6119.7C31—C32—C33110.3 (3)
C8—C7—C6120.7 (4)C31—C32—H32A109.6
C8—C7—H7119.6C33—C32—H32A109.6
C6—C7—H7119.6C31—C32—H32B109.6
C7—C8—C9120.4 (4)C33—C32—H32B109.6
C7—C8—C10120.2 (4)H32A—C32—H32B108.1
C9—C8—C10119.4 (4)C32—C33—C34110.5 (3)
N1—C9—C8118.4 (4)C32—C33—H33A109.5
N1—C9—C4122.4 (3)C34—C33—H33A109.5
C8—C9—C4119.2 (4)C32—C33—H33B109.5
F3—C10—F1106.6 (4)C34—C33—H33B109.5
F3—C10—F2107.0 (4)H33A—C33—H33B108.1
F1—C10—F2106.3 (4)C30—C34—C33112.3 (3)
F3—C10—C8113.2 (3)C30—C34—H34A109.1
F1—C10—C8111.2 (4)C33—C34—H34A109.1
F2—C10—C8112.2 (4)C30—C34—H34B109.1
F4—C11—F5107.4 (3)C33—C34—H34B109.1
F4—C11—F6106.5 (4)H34A—C34—H34B107.9
F5—C11—F6105.7 (4)C36—O5—C38117.4 (3)
F4—C11—C1113.8 (4)O3—C35—O4125.0 (4)
F5—C11—C1112.3 (4)O3—C35—C36117.9 (3)
F6—C11—C1110.7 (3)O4—C35—C36117.1 (3)
O1—C12—C3112.2 (3)O5—C36—C39112.1 (3)
O1—C12—C13105.0 (3)O5—C36—C37108.6 (3)
C3—C12—C13111.7 (3)C39—C36—C37113.8 (3)
O1—C12—H12109.3O5—C36—C35105.3 (3)
C3—C12—H12109.3C39—C36—C35110.9 (3)
C13—C12—H12109.3C37—C36—C35105.7 (3)
N2—C13—C17110.9 (3)F14—C37—F15107.1 (3)
N2—C13—C12105.6 (3)F14—C37—F13106.4 (3)
C17—C13—C12113.0 (3)F15—C37—F13106.3 (3)
N2—C13—H13109.1F14—C37—C36113.1 (3)
C17—C13—H13109.1F15—C37—C36110.7 (3)
C12—C13—H13109.1F13—C37—C36112.8 (3)
N2—C14—C15109.3 (3)O5—C38—H38A109.5
N2—C14—H14A109.8O5—C38—H38B109.5
C15—C14—H14A109.8H38A—C38—H38B109.5
N2—C14—H14B109.8O5—C38—H38C109.5
C15—C14—H14B109.8H38A—C38—H38C109.5
H14A—C14—H14B108.3H38B—C38—H38C109.5
C16—C15—C14109.8 (3)C40—C39—C44118.6 (4)
C16—C15—H15A109.7C40—C39—C36125.5 (3)
C14—C15—H15A109.7C44—C39—C36115.9 (3)
C16—C15—H15B109.7C41—C40—C39120.0 (4)
C14—C15—H15B109.7C41—C40—H40120.0
H15A—C15—H15B108.2C39—C40—H40120.0
C15—C16—C17110.7 (3)C40—C41—C42120.9 (4)
C15—C16—H16A109.5C40—C41—H41119.5
C17—C16—H16A109.5C42—C41—H41119.5
C15—C16—H16B109.5C43—C42—C41119.3 (4)
C17—C16—H16B109.5C43—C42—H42120.4
H16A—C16—H16B108.1C41—C42—H42120.4
C13—C17—C16113.8 (3)C42—C43—C44120.1 (4)
C13—C17—H17A108.8C42—C43—H43120.0
C16—C17—H17A108.8C44—C43—H43120.0
C13—C17—H17B108.8C43—C44—C39121.1 (4)
C16—C17—H17B108.8C43—C44—H44119.4
H17A—C17—H17B107.7C39—C44—H44119.4
C29—O2—H2O109.5C46—O8—C48118.7 (3)
C18—N3—C26116.5 (3)O6—C45—O7125.9 (3)
C31—N4—C30113.9 (3)O6—C45—C46118.9 (3)
C31—N4—H3N108.8O7—C45—C46115.1 (3)
C30—N4—H3N108.8O8—C46—C49113.5 (3)
C31—N4—H4N108.8O8—C46—C47101.2 (3)
C30—N4—H4N108.8C49—C46—C47108.7 (3)
H3N—N4—H4N107.7O8—C46—C45110.8 (3)
N3—C18—C19125.5 (4)C49—C46—C45111.4 (3)
N3—C18—C28114.2 (3)C47—C46—C45110.9 (3)
C19—C18—C28120.2 (4)F16—C47—F17107.7 (3)
C20—C19—C18118.7 (4)F16—C47—F18106.7 (3)
C20—C19—H19120.6F17—C47—F18106.4 (3)
C18—C19—H19120.6F16—C47—C46111.2 (3)
C19—C20—C21118.3 (3)F17—C47—C46113.0 (3)
C19—C20—C29120.0 (3)F18—C47—C46111.4 (3)
C21—C20—C29121.6 (3)O8—C48—H48A109.5
C20—C21—C26118.2 (3)O8—C48—H48B109.5
C20—C21—C22123.3 (3)H48A—C48—H48B109.5
C26—C21—C22118.6 (3)O8—C48—H48C109.5
C23—C22—C21120.5 (4)H48A—C48—H48C109.5
C23—C22—H22119.7H48B—C48—H48C109.5
C21—C22—H22119.7C54—C49—C50119.7 (4)
C22—C23—C24121.1 (4)C54—C49—C46120.8 (3)
C22—C23—H23119.5C50—C49—C46119.5 (3)
C24—C23—H23119.5C49—C50—C51120.1 (4)
C25—C24—C23120.3 (4)C49—C50—H50119.9
C25—C24—H24119.9C51—C50—H50119.9
C23—C24—H24119.9C52—C51—C50120.0 (4)
C24—C25—C26120.6 (4)C52—C51—H51120.0
C24—C25—C27119.7 (4)C50—C51—H51120.0
C26—C25—C27119.5 (4)C51—C52—C53119.9 (4)
N3—C26—C21122.8 (3)C51—C52—H52120.1
N3—C26—C25118.3 (3)C53—C52—H52120.1
C21—C26—C25119.0 (4)C52—C53—C54120.4 (4)
F7—C27—F8106.4 (4)C52—C53—H53119.8
F7—C27—F9106.4 (4)C54—C53—H53119.8
F8—C27—F9106.3 (4)C49—C54—C53119.9 (4)
F7—C27—C25113.1 (4)C49—C54—H54120.0
F8—C27—C25112.3 (4)C53—C54—H54120.0
C9—N1—C1—C21.2 (6)N3—C18—C28—F1041.5 (5)
C9—N1—C1—C11178.0 (3)C19—C18—C28—F10140.0 (4)
N1—C1—C2—C30.3 (6)N3—C18—C28—F1178.4 (5)
C11—C1—C2—C3176.2 (4)C19—C18—C28—F11100.1 (4)
C1—C2—C3—C40.7 (6)N3—C18—C28—F12162.9 (4)
C1—C2—C3—C12179.4 (3)C19—C18—C28—F1218.7 (6)
C2—C3—C4—C5179.1 (4)C19—C20—C29—O214.4 (5)
C12—C3—C4—C50.9 (6)C21—C20—C29—O2163.5 (3)
C2—C3—C4—C90.5 (6)C19—C20—C29—C30105.1 (4)
C12—C3—C4—C9179.5 (4)C21—C20—C29—C3077.0 (4)
C9—C4—C5—C60.3 (7)C31—N4—C30—C3453.8 (4)
C3—C4—C5—C6178.2 (4)C31—N4—C30—C29177.1 (3)
C4—C5—C6—C70.2 (8)O2—C29—C30—N459.2 (3)
C5—C6—C7—C80.8 (8)C20—C29—C30—N4177.2 (3)
C6—C7—C8—C90.7 (7)O2—C29—C30—C3462.4 (4)
C6—C7—C8—C10180.0 (4)C20—C29—C30—C3461.3 (4)
C1—N1—C9—C8178.0 (4)C30—N4—C31—C3258.5 (4)
C1—N1—C9—C42.4 (6)N4—C31—C32—C3359.2 (4)
C7—C8—C9—N1179.8 (4)C31—C32—C33—C3457.5 (4)
C10—C8—C9—N10.9 (6)N4—C30—C34—C3350.6 (4)
C7—C8—C9—C40.2 (6)C29—C30—C34—C33169.9 (3)
C10—C8—C9—C4179.5 (4)C32—C33—C34—C3053.4 (4)
C5—C4—C9—N1179.2 (4)C38—O5—C36—C3955.4 (4)
C3—C4—C9—N12.1 (6)C38—O5—C36—C3771.1 (4)
C5—C4—C9—C80.4 (6)C38—O5—C36—C35176.1 (3)
C3—C4—C9—C8178.3 (4)O3—C35—C36—O518.6 (5)
C7—C8—C10—F3118.6 (5)O4—C35—C36—O5162.9 (3)
C9—C8—C10—F362.1 (5)O3—C35—C36—C39140.0 (4)
C7—C8—C10—F11.4 (6)O4—C35—C36—C3941.4 (5)
C9—C8—C10—F1177.9 (4)O3—C35—C36—C3796.2 (4)
C7—C8—C10—F2120.2 (5)O4—C35—C36—C3782.3 (4)
C9—C8—C10—F259.1 (5)O5—C36—C37—F14170.4 (3)
N1—C1—C11—F443.3 (5)C39—C36—C37—F1464.1 (4)
C2—C1—C11—F4139.7 (4)C35—C36—C37—F1457.8 (4)
N1—C1—C11—F5165.5 (4)O5—C36—C37—F1550.1 (4)
C2—C1—C11—F517.5 (5)C39—C36—C37—F15175.7 (3)
N1—C1—C11—F676.6 (4)C35—C36—C37—F1562.4 (4)
C2—C1—C11—F6100.4 (4)O5—C36—C37—F1368.8 (4)
C2—C3—C12—O117.1 (5)C39—C36—C37—F1356.7 (4)
C4—C3—C12—O1162.9 (3)C35—C36—C37—F13178.6 (3)
C2—C3—C12—C13100.5 (4)O5—C36—C39—C40132.9 (4)
C4—C3—C12—C1379.6 (4)C37—C36—C39—C409.2 (5)
C14—N2—C13—C1750.8 (4)C35—C36—C39—C40109.8 (4)
C14—N2—C13—C12173.6 (3)O5—C36—C39—C4446.5 (4)
O1—C12—C13—N257.5 (4)C37—C36—C39—C44170.1 (3)
C3—C12—C13—N2179.4 (3)C35—C36—C39—C4470.9 (4)
O1—C12—C13—C1763.8 (4)C44—C39—C40—C411.4 (6)
C3—C12—C13—C1758.0 (4)C36—C39—C40—C41177.9 (4)
C13—N2—C14—C1557.5 (4)C39—C40—C41—C420.7 (6)
N2—C14—C15—C1659.8 (4)C40—C41—C42—C431.6 (7)
C14—C15—C16—C1757.8 (4)C41—C42—C43—C440.5 (6)
N2—C13—C17—C1647.7 (4)C42—C43—C44—C391.6 (6)
C12—C13—C17—C16166.0 (3)C40—C39—C44—C432.5 (6)
C15—C16—C17—C1352.4 (4)C36—C39—C44—C43176.9 (4)
C26—N3—C18—C190.1 (6)C48—O8—C46—C4959.0 (4)
C26—N3—C18—C28178.3 (4)C48—O8—C46—C47175.3 (3)
N3—C18—C19—C201.3 (6)C48—O8—C46—C4567.1 (4)
C28—C18—C19—C20177.0 (4)O6—C45—C46—O8112.9 (4)
C18—C19—C20—C211.6 (6)O7—C45—C46—O865.1 (4)
C18—C19—C20—C29179.6 (3)O6—C45—C46—C49119.8 (4)
C19—C20—C21—C261.0 (5)O7—C45—C46—C4962.2 (4)
C29—C20—C21—C26178.9 (3)O6—C45—C46—C471.4 (5)
C19—C20—C21—C22176.8 (4)O7—C45—C46—C47176.5 (3)
C29—C20—C21—C221.1 (6)O8—C46—C47—F16178.8 (3)
C20—C21—C22—C23178.7 (4)C49—C46—C47—F1661.5 (4)
C26—C21—C22—C231.0 (6)C45—C46—C47—F1661.3 (4)
C21—C22—C23—C240.0 (7)O8—C46—C47—F1757.4 (4)
C22—C23—C24—C250.3 (8)C49—C46—C47—F17177.2 (3)
C23—C24—C25—C260.4 (7)C45—C46—C47—F1760.1 (4)
C23—C24—C25—C27177.7 (4)O8—C46—C47—F1862.3 (4)
C18—N3—C26—C210.7 (6)C49—C46—C47—F1857.4 (4)
C18—N3—C26—C25179.0 (4)C45—C46—C47—F18179.8 (3)
C20—C21—C26—N30.2 (6)O8—C46—C49—C54157.3 (3)
C22—C21—C26—N3178.1 (4)C47—C46—C49—C5491.0 (4)
C20—C21—C26—C25179.5 (4)C45—C46—C49—C5431.4 (5)
C22—C21—C26—C251.6 (6)O8—C46—C49—C5024.8 (5)
C24—C25—C26—N3178.3 (4)C47—C46—C49—C5086.9 (4)
C27—C25—C26—N31.1 (6)C45—C46—C49—C50150.6 (3)
C24—C25—C26—C211.4 (6)C54—C49—C50—C510.9 (6)
C27—C25—C26—C21178.6 (4)C46—C49—C50—C51178.8 (4)
C24—C25—C27—F7122.0 (5)C49—C50—C51—C521.4 (7)
C26—C25—C27—F760.7 (6)C50—C51—C52—C530.5 (7)
C24—C25—C27—F8117.5 (5)C51—C52—C53—C540.9 (6)
C26—C25—C27—F859.8 (5)C50—C49—C54—C530.5 (6)
C24—C25—C27—F91.9 (6)C46—C49—C54—C53177.4 (3)
C26—C25—C27—F9179.2 (4)C52—C53—C54—C491.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.841.842.615 (3)153
O1—H1O···O50.842.493.146 (3)135
O2—H2O···O6i0.841.922.738 (3)165
N2—H1N···O10.922.242.677 (3)108
N2—H1N···O7ii0.922.102.817 (3)134
N2—H2N···O3i0.922.383.028 (3)127
N2—H2N···O4i0.922.032.938 (3)169
N4—H3N···O20.922.332.734 (3)106
N4—H3N···O4iii0.922.122.849 (3)136
N4—H4N···O70.921.842.756 (3)171
C13—H13···F5i1.002.383.192 (4)137
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y, z1.
Geometric data (Å, °) for mefloquine (Mef) and mefloquinium cations (Mef+) top
StructureFormulationN···OO—C(H)—C(H)—N(H)C—C—C(OH)—C(H)REFCODEaRef.
(I)(±)-[Mef+][(+)-PhC(CF3)(OMe)CO2H]2.677 (3)–2.734 (3)-57.5 (4), 59.2 (3)100.5 (4), -105.1 (4)This work
(II)(±)-Mef2.782 (5)–2.846 (5)-61.2 (4), 66.5 (4)98.9 (4), -107.2 (4)LEBYATSkórska et al. (2006)
(III)(-)-Mef2.754 (4)–2.930 (5)-58.6 (4)– -71.8 (4)93.6 (4)–103.8 (4)QIYREXDassonville-Klimpt et al. (2013)
(IV)(-)-[Mef+]Cl-·0.25H2O2.722 (15)–2.965 (14)-54.31 (12)– -71.53 (12)92.66 (16)–103.52 (14)BIGTIVKarle & Karle (2002)
(V)(-)-[Mef+]Cl-·CH3OH2.7052 (18)–2.7792 (16)54.54 (14), -61.37 (14)-98.86 (17), 97.92 (17)SOJPOW01Pitaluga et al. (2010)
(VI)(±)-[Mef+]Cl-·H2O2.720 (3)–2.963 (3)-56.1 (2), 73.6 (2)-93.7 (3), 110.86 (24)HAJSAOPitaluga et al. (2010)
(VII)(±)-[Mef+]BPh4-·CH3CH2OH2.701 (3)-53.0 (2)98.9 (3)WAVCEDWardell et al. (2011a)
(VIII)(±)-[Mef+][2-NO2-C6H4CO2]-2.914 (2)-72.8 (2)97.3 (3)OMELOIWardell et al. (2011b)
(IX)(±)-[Mef+][3-NO2-C6H4CO2]-2.7590 (19)-59.34 (18)101.00 (21)OMELUOWardell et al. (2011b)
(XI)(±)-[Mef+][4-NO2-C6H4CO2]-2.756 (4)-54.1 (4)100.5 (4)OMEMAVWardell et al. (2011b)
(XI)(±)-[Mef+][3-NH2-5-NO2-C6H4CO2]-·1.5H2O2.867 (3)66.0 (3)-102.9 (3)YAHFIYde Souza et al. (2011)
(XII)(±)-[Mef+]2[CuCl4]2-·4H2O2.886 (5)-67.4 (4)103.2 (4)IHOTABObaleye et al. (2009)
(XIII)(±)-[Mef+]2[CdBr4]2-·2CH3OH2.727 (5)58.6 (5)-99.6 (6)IHOTEFObaleye et al. (2009)
(XIV)(±)-[Mef+]3[CoCl4]2-Cl-·H2O·CH3CH2OH2.710 (4)–3.062 (4)59.3 (3)–75.2 (3)-98.9 (4)– -104.3 (3)LEBYIBSkórska et al. (2006)
(XV)(±)-[Mef+]2[Ph2SnCl4]2-2.789 (8)-65.2 (7)101.0 (8)PUHVAQWardell et al. (2010)
(XVI)(±)-[Mef+][O3OSC6H4F-4]Cl2.802 (2)–2.815 (2)-64.57 (15), 66.50 (14)-96.69 (17), 94.43 (17)ELAMAHJotani et al. (2016)
Notes: (a) Groom et al. (2016).
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CNPq (Brazil).

References

First citationBernal, I. & Watkins, S. (2015). Acta Cryst. C71, 216–221.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDassonville-Klimpt, A., Cezard, C., Mullie, C., Agnamey, P., Jonet, A., Da Nascimento, S., Marchivie, M., Guillon, J. & Sonnet, P. (2013). ChemPlusChem, 78, 642–646.  CAS Google Scholar
First citationFábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94–103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGonçalves, R. S. B., Kaiser, C. R., Lourenço, M. C. S., Bezerra, F. A. F. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V., Henriques, M., das, G. M. de O. & Costa, T. (2012). Bioorg. Med. Chem. 20, 243–248.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 247–255.  CAS Google Scholar
First citationKarle, J. M. & Karle, I. L. (2002). Antimicrob. Agents Chemother. 46, 1529–1534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067–1072.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, J., Wang, Y., Wan, B., Kozikowski, A. P. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624–1630.  Web of Science CrossRef PubMed CAS Google Scholar
First citationObaleye, J. A., Caira, M. R. & Tella, A. C. (2009). Struct. Chem. 20, 859–868.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPitaluga, A., Prado, L. D., Seiceira, R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Int. J. Pharm. 398, 50–60.  CrossRef CAS PubMed Google Scholar
First citationRodrigues, F. A. R., Bomfim, I. da S., Cavalcanti, B. C., Pessoa, C., Goncalves, R. S. B., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2014). Chem. Biol. Drug Des. 83, 126–131.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkórska, A., Śliwiński, J. & Oleksyn, B. J. (2006). Bioorg. Med. Chem. Lett. 16, 850–853.  PubMed Google Scholar
First citationSouza, M. V. N. de, Wardell, J. L., Wardell, S. M. S. V., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3019–o3020.  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., de Souza, M. V. N., Wardell, S. M. S. V. & Lourenço, M. C. S. (2011a). J. Mol. Struct. 990, 67–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationWardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011b). Z. Kristallogr. 226, 68–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationWardell, J. L., Wardell, S. M. S. V., Tiekink, E. R. T. & Lima, G. M. de (2010). Acta Cryst. E66, m336–m337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds