research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Supra­molecular architecture in a co-crystal of the N(7)—H tautomeric form of N6-benzoyl­adenine with adipic acid (1/0.5)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by P. C. Healy, Griffith University, Australia (Received 22 April 2016; accepted 6 May 2016; online 13 May 2016)

The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol­ecule of N6-benzoyl­adenine (BA) and one half-mol­ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N6-benzoyl­adenine mol­ecule crystallizes in the N(7)—H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra­molecular N—H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)—H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter­act with the Watson–Crick face of the BA mol­ecules through O—H⋯N and N—H⋯O hydrogen bonds, generating an R22(8) ring motif. The latter units are linked by N—H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C—H⋯O hydrogen bond is also present, linking adipic acid mol­ecules in neighbouring layers, enclosing R22(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C—H⋯π inter­actions are also present in the structure.

1. Chemical context

Adipic acid has been widely used in controlled-release formulations of many drugs and food additives (Roew et al., 2009[Roew, R., Sheskey, P. & Quinn, M. (2009). Adipic Acid, Handbook of Pharmaceutical Excipients, pp. 11-12.]). N6-benzoyl­adenine is a synthetic analogue of a group of naturally occurring N6-substituted adenines having plant-growth-stimulating activity (cytokinins) (McHugh & Erxleben, 2011[McHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096-5104.]). A number of co-crystals involving adipic acid have been reported in the literature (Lemmerer et al., 2012[Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2012). Acta Cryst. E68, o190.]; Lin et al., 2012[Lin, S., Jia, R., Gao, F. & Zhou, X. (2012). Acta Cryst. E68, o3457.]; Matulková et al., 2014[Matulková, I., Císařová, I., Němec, I. & Fábry, J. (2014). Acta Cryst. C70, 927-933.]; Thanigaimani et al., 2012[Thanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012). Acta Cryst. E68, o2938-o2939.]). This paper deals with a co-crystal formed between N6-benzoyl­adenine and adipic acid (I).

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] contains one N6-benzoyl­­adenine (BA) mol­ecule and a half-mol­ecule of adipic acid (AA). As evident from the angles at N7 [C8—N7—C5 = 106.82 (11)°] and N9 [C8—N9—C4 = 103.90 (11)°], the N6-benzoyl­adenine moiety exists in the N(7)—H tautomeric form with non-protonated N1, N3 and N9 atoms. In addition, the C8—N7 bond [1.3415 (17) Å)] is longer than C8—N9 [1.3175 (19) Å]. These values are similar to those in neutral N6-benzoyl­adenine (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]). An intra­molecular hydrogen bond in the Hoogsteen face between N7—H7 and the benzoyl oxygen atom O1 forms a S(7) ring motif. The dihedral angle between the adenine and phenyl ring plane is 26.71 (7)° and the C6—N6—C10—C11 torsion angle is 173.08 (14)°. The bond lengths and bond angles of AA are in the range of values reported (Srinivasa Gopalan et al., 1999[Srinivasa Gopalan, R., Kumaradhas, P. & Kulkarni, G. U. (1999). J. Solid State Chem. 148, 129-134.]; 2000[Srinivasa Gopalan, R., Kumaradhas, P., Kulkarni, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97-106.]). The values for the torsion angles C18—C19—C19a—C18a [180.00 (13)°] and C17—C18—C19—C19a [–176.09 (14)°] indicate that the carbon chain of AA is fully extended.

In the crystal structures of N6-benzyl­adenine (Raghunathan & Pattabhi, 1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]), N6-furfuryladenine (Soriano-Garcia & Parthasarathy, 1977[Soriano-Garcia, M. & Parthasarathy, R. (1977). Acta Cryst. B33, 2674-2677.]), N6-benzyl­adenine hydro­bromide (Umadevi et al., 2001[Umadevi, B., Stanley, N., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2001). Acta Cryst. E57, o881-o883.]), N6-furfuryladenine hydro­chloride (Stanley et al., 2003[Stanley, N., Muthiah, P. T. & Geib, S. J. (2003). Acta Cryst. C59, o27-o29.]), N6-benzyl­adeninium p-toluene­sulfonate (Tamilselvi & Mu­thiah, 2011[Tamilselvi, D. & Muthiah, P. T. (2011). Acta Cryst. C67, o192-o194.]), N6-benzyl­adeninium nitrate, N6-benzyl­adeninium 3-hy­droxy picolinate (Nirmalram et al., 2011[Nirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864-867.]) and the hydrate adduct of N6-benzyl­adenine-5-sulfo­sali­cylic acid (Xia et al., 2010[Xia, M., Ma, K. & Zhu, Y. (2010). J. Chem. Crystallogr. 40, 634-638.]), the N6-substituent is distal to the N7 position, whereas in the crystal structures of N6-benzoyl­adenine (Raghunathan et al., 1983[Raghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545-1547.]), N6-benzoyl­adenine-3-hy­droxy­pyridinium-2-carboxyl­ate (1:1), N6-benz­oyl­adenine-DL-tartaric acid (1:1) (Karthikeyan et al., 2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]), N6-benzoyl­adeninium nitrate (Karthikeyan et al., 2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]) and the title compound, the N6-substituent is distal to N1 and syn to adenine nitrogen atom N7. In the present structure, this may be attributed to the presence of the N7—H7⋯O1A intra­molecular hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.82 1.92 2.7327 (19) 175
N6—H6⋯O3Aii 0.86 2.09 2.904 (11) 157
N7—H7⋯O1A 0.86 2.04 2.616 (16) 124
N7—H7⋯N9iii 0.86 2.17 2.9271 (17) 146
C19—H19B⋯O3Aiv 0.97 2.54 3.481 (11) 164
C2—H2⋯Cg3v 0.93 2.94 3.4611 (16) 117
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z; (v) x, y-1, z.

3. Supra­molecular features

Each of the two carboxyl groups of adipic acid inter­acts with the Watson–Crick face (atoms N1 and N6) of the corres­ponding BA through O—H⋯N and N—H⋯O hydrogen bonds, generating an R22(8) ring motif (Fig. 1[link]). Thus each adipic acid mol­ecule bridges two BA mol­ecules. The latter units are linked by N7—H7⋯N9iii hydrogen bonds (Table 1[link]) forming layers parallel to plane (10[\overline{5}]). A weak C—H⋯O hydrogen bond (C19—H19B⋯O3Aiv) is also present (Table 1[link] and Fig. 2[link]), linking adipic acid mol­ecules in neighbouring layers, enclosing R22(10) ring motifs and forming a three-dimensional structure. Thus atom O3A functions as a bifurcated hydrogen-bond acceptor whereas N7—H is a bifurcated hydrogen-bond donor.

[Figure 1]
Figure 1
A Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) view of the title compound (I)[link], showing the atom-numbering scheme. Disordered oxygen atoms are omitted for clarity. H atoms not involved in hydrogen bonding have been omitted for clarity. Unlabelled atoms are related by the symmetry operation 1 − x, 1 − y, −z.
[Figure 2]
Figure 2
A view of the sheet-like supra­molecular architecture generated via C19—H19B⋯O3A hydrogen bonds (black dotted lines). Phenyl rings are indicated as yellow balls. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes are as given in Table 1[link].

The crystal structure also features C2—H2⋯π inter­actions between purine and phenyl rings (Fig. 3[link]a) and C10=O1Bπ inter­actions between the carbonyl oxygen O1B and the centroid of the (N1/C2/N3/C4/C5/C6) pyrimidine ring [O⋯centroid = 3.407 (10) Å; symmetry code: 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; Fig. 3[link]b] (Safaei-Ghomi et al., 2009[Safaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). Acta Cryst. E65, m2-m3.]).

[Figure 3]
Figure 3
(a) A view of the C—H⋯π inter­action in compound (I)[link]. Cg3 is the centroid of the phenyl ring of the BA mol­ecule (symmetry code: x, −1 + y, z). (b) A view of the C=O⋯π inter­action. Cg2 is the centroid of the pyrimidine ring of the BA mol­ecule (symmetry code: 1 − x, [{1\over 2}] + y, [{1\over 2}] − z).

4. Database survey

The neutral mol­ecule N6-benzoyl­adenine was reported by Raghunathan & Pattabhi (1981[Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670-1673.]). Co-crystals have also been reported: N6-benzoyl­adenine-3-hy­droxy­pyridinium-2-carb­oxyl­ate (1:1), N6-benzoyl­adenine-DL-tartaric acid (1:1) (Karthikeyan et al., 2015[Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985-990.]) and N6-benzoyl­adeninium nitrate (Karthikeyan et al., 2016[Karthikeyan, A., Jeeva Jasmine, N., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 140-143.]). Similarly, co-crystals of adipic acid with pyrimidine derivatives [adenine (Byres et al., 2009[Byres, M., Cox, P. J., Kay, G. & Nixon, E. (2009). CrystEngComm, 11, 135-142.]), caffeine (Bučar et al., 2007[Bučar, D. K., Henry, R. F., Lou, X., Borchardt, T. & Zhang, G. G. Z. (2007). Chem. Commun. pp. 525-527.]), cytosine (Das & Baruah, 2011[Das, B. & Baruah, J. B. (2011). J. Mol. Struct. 1001, 134-138.]), bis-pyrimidine-amine-linked xylene spacer (Goswami et al., 2010[Goswami, S., Hazra, A. & Fun, H.-K. (2010). J. Incl Phenom. Macrocycl Chem. 68, 461-466.])] have also been reported.

5. Synthesis and crystallization

The title co-crystal was synthesized by mixing a DMF solution of N6-benzoyl­adenine (30 mg) and adipic acid (19 mg) (total volume = 10 mL). The mixture was warmed in a water bath for 20 min. After cooling to room temperature, colourless plate-like crystals were collected from the mother liquor after a few days (m.p. 438 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms O1 and O3 are disordered over two positions with refined occupancy ratios of 0.57 (3):0.43 (3) and 0.63 (3):0.37 (3), respectively. Hydrogen atoms were readily located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 (aromatic) or 0.97 (methyl­ene), N—H = 0.86, and O—H = 0.82 Å, and with Uiso(H) = kUeq(C,N,O), where k = 1.5 for hy­droxy and 1.2 for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C12H9N5O·0.5C6H10O4
Mr 312.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 6.1776 (4), 9.2296 (4), 25.7480 (15)
β (°) 97.117 (6)
V3) 1456.76 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.60 × 0.60 × 0.40
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.])
Tmin, Tmax 0.756, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9480, 3325, 2755
Rint 0.020
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.05
No. of reflections 3325
No. of parameters 230
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.22
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

N6-Benzoyladenine–adipic acid (1/0.5) top
Crystal data top
C12H9N5O·0.5C6H10O4F(000) = 652
Mr = 312.31Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.1776 (4) ÅCell parameters from 4139 reflections
b = 9.2296 (4) Åθ = 3.3–30.1°
c = 25.7480 (15) ŵ = 0.10 mm1
β = 97.117 (6)°T = 293 K
V = 1456.76 (14) Å3Prism, colorless
Z = 40.60 × 0.60 × 0.40 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3325 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2755 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4933 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1111
Tmin = 0.756, Tmax = 1.000l = 3331
9480 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3295P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.25 e Å3
3325 reflectionsΔρmin = 0.22 e Å3
230 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0130 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.7104 (15)0.6427 (14)0.1669 (8)0.094 (4)0.57 (3)
O1B0.6582 (19)0.6621 (6)0.1877 (4)0.054 (2)0.43 (3)
N10.3308 (2)0.27081 (12)0.16588 (5)0.0415 (3)
N30.5648 (2)0.09828 (13)0.21438 (5)0.0477 (3)
N60.39990 (19)0.51100 (12)0.15270 (5)0.0391 (3)
H60.27020.51090.13610.047*
N70.85319 (19)0.42515 (12)0.22672 (5)0.0402 (3)
H70.87900.51570.22260.048*
N90.9054 (2)0.19667 (13)0.25397 (5)0.0470 (3)
C20.3848 (3)0.13827 (15)0.18545 (6)0.0468 (4)
H20.28110.06600.17740.056*
C40.7054 (2)0.20808 (14)0.22480 (5)0.0389 (3)
C50.6683 (2)0.35149 (13)0.20707 (5)0.0352 (3)
C60.4717 (2)0.38085 (13)0.17619 (5)0.0347 (3)
C80.9855 (3)0.32896 (15)0.25376 (6)0.0451 (4)
H81.12190.35350.27090.054*
C100.5100 (3)0.63803 (16)0.15283 (7)0.0493 (4)
C110.4104 (2)0.75951 (14)0.11985 (6)0.0412 (3)
C120.5550 (3)0.86137 (17)0.10534 (7)0.0544 (4)
H120.70280.85270.11730.065*
C130.4831 (3)0.97575 (19)0.07333 (8)0.0627 (5)
H130.58251.04230.06300.075*
C140.2660 (3)0.99109 (19)0.05686 (7)0.0628 (5)
H140.21681.06810.03530.075*
C150.1208 (3)0.8931 (2)0.07213 (8)0.0655 (5)
H150.02740.90470.06110.079*
C160.1909 (3)0.77622 (18)0.10389 (7)0.0538 (4)
H160.09080.71020.11420.065*
O20.9399 (2)0.25032 (13)0.10377 (6)0.0694 (4)
H2A1.05650.26200.12230.104*
O3A1.0228 (15)0.4644 (11)0.0753 (5)0.072 (2)0.63 (3)
O3B0.951 (3)0.4828 (6)0.0985 (9)0.070 (5)0.37 (3)
C170.8870 (3)0.36824 (17)0.07825 (6)0.0494 (4)
C180.6762 (3)0.36172 (16)0.04285 (6)0.0491 (4)
H18A0.56190.33120.06310.059*
H18B0.68820.28880.01620.059*
C190.6100 (3)0.50345 (16)0.01626 (6)0.0494 (4)
H19A0.60690.57810.04270.059*
H19B0.71880.53080.00600.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.047 (3)0.085 (4)0.138 (8)0.023 (2)0.033 (4)0.071 (4)
O1B0.052 (3)0.028 (2)0.073 (4)0.0097 (15)0.024 (2)0.011 (2)
N10.0423 (6)0.0333 (6)0.0467 (7)0.0045 (5)0.0037 (5)0.0046 (5)
N30.0559 (8)0.0299 (6)0.0536 (7)0.0047 (5)0.0074 (6)0.0067 (5)
N60.0365 (6)0.0308 (6)0.0470 (6)0.0002 (4)0.0071 (5)0.0062 (5)
N70.0399 (6)0.0269 (5)0.0503 (7)0.0015 (5)0.0079 (5)0.0000 (5)
N90.0495 (7)0.0310 (6)0.0561 (7)0.0051 (5)0.0108 (6)0.0036 (5)
C20.0519 (9)0.0325 (7)0.0528 (8)0.0091 (6)0.0060 (7)0.0062 (6)
C40.0444 (8)0.0292 (6)0.0412 (7)0.0023 (5)0.0023 (6)0.0017 (5)
C50.0381 (7)0.0280 (6)0.0383 (7)0.0015 (5)0.0002 (6)0.0008 (5)
C60.0380 (7)0.0290 (6)0.0362 (6)0.0006 (5)0.0007 (6)0.0015 (5)
C80.0423 (8)0.0341 (7)0.0550 (8)0.0045 (6)0.0101 (7)0.0007 (6)
C100.0461 (8)0.0357 (7)0.0611 (9)0.0047 (6)0.0131 (7)0.0124 (7)
C110.0472 (8)0.0303 (6)0.0441 (7)0.0017 (6)0.0019 (6)0.0044 (5)
C120.0510 (9)0.0398 (8)0.0710 (11)0.0011 (7)0.0017 (8)0.0131 (7)
C130.0716 (12)0.0437 (9)0.0746 (12)0.0012 (8)0.0155 (10)0.0202 (8)
C140.0809 (13)0.0479 (9)0.0590 (10)0.0163 (9)0.0061 (9)0.0205 (8)
C150.0542 (10)0.0617 (11)0.0771 (12)0.0142 (9)0.0059 (9)0.0204 (9)
C160.0464 (9)0.0455 (8)0.0672 (10)0.0021 (7)0.0019 (8)0.0146 (7)
O20.0568 (7)0.0461 (6)0.0963 (10)0.0026 (5)0.0264 (7)0.0128 (6)
O3A0.061 (3)0.072 (2)0.076 (4)0.026 (2)0.024 (3)0.027 (2)
O3B0.069 (5)0.037 (2)0.092 (8)0.006 (2)0.035 (5)0.002 (2)
C170.0477 (9)0.0428 (8)0.0544 (9)0.0017 (7)0.0073 (7)0.0029 (7)
C180.0472 (8)0.0408 (8)0.0558 (9)0.0017 (6)0.0071 (7)0.0016 (7)
C190.0481 (9)0.0411 (8)0.0554 (9)0.0023 (6)0.0070 (7)0.0023 (7)
Geometric parameters (Å, º) top
O1A—C101.247 (6)C12—C131.378 (2)
O1B—C101.221 (6)C12—H120.9300
N1—C61.3424 (17)C13—C141.363 (3)
N1—C21.3489 (17)C13—H130.9300
N3—C21.3125 (19)C14—C151.365 (3)
N3—C41.3401 (18)C14—H140.9300
N6—C101.3551 (18)C15—C161.390 (2)
N6—C61.3926 (16)C15—H150.9300
N6—H60.8600C16—H160.9300
N7—C81.3415 (17)O2—C171.2923 (18)
N7—C51.3712 (17)O2—H2A0.8200
N7—H70.8601O3A—C171.230 (4)
N9—C81.3175 (19)O3B—C171.223 (6)
N9—C41.3684 (18)C17—C181.495 (2)
C2—H20.9300C18—C191.509 (2)
C4—C51.4096 (17)C18—H18A0.9700
C5—C61.3931 (18)C18—H18B0.9700
C8—H80.9300C19—C19i1.506 (3)
C10—C111.4924 (18)C19—H19A0.9700
C11—C161.376 (2)C19—H19B0.9700
C11—C121.380 (2)
C6—N1—C2119.23 (11)C13—C12—H12119.6
C2—N3—C4112.56 (12)C11—C12—H12119.6
C10—N6—C6127.77 (11)C14—C13—C12119.81 (17)
C10—N6—H6116.0C14—C13—H13120.1
C6—N6—H6116.2C12—C13—H13120.1
C8—N7—C5106.82 (11)C13—C14—C15119.86 (15)
C8—N7—H7126.7C13—C14—H14120.1
C5—N7—H7126.5C15—C14—H14120.1
C8—N9—C4103.90 (11)C14—C15—C16121.01 (16)
N3—C2—N1128.29 (13)C14—C15—H15119.5
N3—C2—H2115.9C16—C15—H15119.5
N1—C2—H2115.9C11—C16—C15119.12 (16)
N3—C4—N9124.79 (12)C11—C16—H16120.4
N3—C4—C5124.74 (12)C15—C16—H16120.4
N9—C4—C5110.47 (12)C17—O2—H2A109.5
N7—C5—C6137.86 (12)O3B—C17—O2117.6 (6)
N7—C5—C4104.56 (11)O3A—C17—O2120.5 (3)
C6—C5—C4117.57 (12)O3B—C17—C18120.5 (3)
N1—C6—N6113.77 (11)O3A—C17—C18122.7 (2)
N1—C6—C5117.61 (11)O2—C17—C18114.98 (13)
N6—C6—C5128.60 (12)C17—C18—C19114.09 (13)
N9—C8—N7114.25 (12)C17—C18—H18A108.7
N9—C8—H8122.9C19—C18—H18A108.7
N7—C8—H8122.9C17—C18—H18B108.7
O1B—C10—N6119.4 (5)C19—C18—H18B108.7
O1A—C10—N6120.7 (5)H18A—C18—H18B107.6
O1B—C10—C11120.0 (3)C19i—C19—C18112.99 (16)
O1A—C10—C11117.6 (3)C19i—C19—H19A109.0
N6—C10—C11118.50 (12)C18—C19—H19A109.0
C16—C11—C12119.33 (13)C19i—C19—H19B109.0
C16—C11—C10125.15 (14)C18—C19—H19B109.0
C12—C11—C10115.52 (13)H19A—C19—H19B107.8
C13—C12—C11120.82 (16)
C4—N3—C2—N10.6 (3)C6—N6—C10—O1B23.5 (8)
C6—N1—C2—N30.5 (3)C6—N6—C10—O1A13.7 (14)
C2—N3—C4—N9179.85 (15)C6—N6—C10—C11173.08 (14)
C2—N3—C4—C50.1 (2)O1B—C10—C11—C16138.8 (8)
C8—N9—C4—N3179.82 (16)O1A—C10—C11—C16175.5 (14)
C8—N9—C4—C50.06 (18)N6—C10—C11—C1624.5 (3)
C8—N7—C5—C6179.15 (18)O1B—C10—C11—C1240.7 (9)
C8—N7—C5—C40.01 (16)O1A—C10—C11—C124.0 (14)
N3—C4—C5—N7179.79 (15)N6—C10—C11—C12156.02 (16)
N9—C4—C5—N70.03 (17)C16—C11—C12—C132.8 (3)
N3—C4—C5—C60.4 (2)C10—C11—C12—C13177.68 (17)
N9—C4—C5—C6179.31 (13)C11—C12—C13—C141.8 (3)
C2—N1—C6—N6178.40 (13)C12—C13—C14—C150.0 (3)
C2—N1—C6—C50.2 (2)C13—C14—C15—C160.7 (3)
C10—N6—C6—N1175.34 (15)C12—C11—C16—C152.0 (3)
C10—N6—C6—C53.0 (3)C10—C11—C16—C15178.52 (16)
N7—C5—C6—N1179.62 (16)C14—C15—C16—C110.3 (3)
C4—C5—C6—N10.6 (2)O3B—C17—C18—C1926.0 (16)
N7—C5—C6—N61.3 (3)O3A—C17—C18—C1919.2 (10)
C4—C5—C6—N6177.74 (14)O2—C17—C18—C19176.05 (16)
C4—N9—C8—N70.08 (19)C17—C18—C19—C19i176.11 (18)
C5—N7—C8—N90.06 (19)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1ii0.821.922.7327 (19)175
N6—H6···O3Aiii0.862.092.904 (11)157
N7—H7···O1A0.862.042.616 (16)124
N7—H7···N9iv0.862.172.9271 (17)146
C19—H19B···O3Av0.972.543.481 (11)164
C2—H2···Cg3vi0.932.943.4611 (16)117
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z; (iv) x+2, y+1/2, z+1/2; (v) x+2, y+1, z; (vi) x, y1, z.
 

Acknowledgements

RSD thanks the UGC–BSR India for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. FP thanks the Slovenian Research Agency for financial support (P1–0230-0175), as well as the EN–FIST Centre of Excellence, Ljubljana, Slovenia, for the use of the SuperNova diffractometer.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBučar, D. K., Henry, R. F., Lou, X., Borchardt, T. & Zhang, G. G. Z. (2007). Chem. Commun. pp. 525–527.  Google Scholar
First citationByres, M., Cox, P. J., Kay, G. & Nixon, E. (2009). CrystEngComm, 11, 135–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, B. & Baruah, J. B. (2011). J. Mol. Struct. 1001, 134–138.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoswami, S., Hazra, A. & Fun, H.-K. (2010). J. Incl Phenom. Macrocycl Chem. 68, 461–466.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarthikeyan, A., Jeeva Jasmine, N., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 140–143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985–990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLemmerer, A., Bernstein, J. & Kahlenberg, V. (2012). Acta Cryst. E68, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, S., Jia, R., Gao, F. & Zhou, X. (2012). Acta Cryst. E68, o3457.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatulková, I., Císařová, I., Němec, I. & Fábry, J. (2014). Acta Cryst. C70, 927–933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096–5104.  Web of Science CSD CrossRef CAS Google Scholar
First citationNirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670–1673.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545–1547.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRoew, R., Sheskey, P. & Quinn, M. (2009). Adipic Acid, Handbook of Pharmaceutical Excipients, pp. 11–12.  Google Scholar
First citationSafaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). Acta Cryst. E65, m2–m3.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoriano-Garcia, M. & Parthasarathy, R. (1977). Acta Cryst. B33, 2674–2677.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasa Gopalan, R., Kumaradhas, P. & Kulkarni, G. U. (1999). J. Solid State Chem. 148, 129–134.  CSD CrossRef CAS Google Scholar
First citationSrinivasa Gopalan, R., Kumaradhas, P., Kulkarni, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106.  CSD CrossRef CAS Google Scholar
First citationStanley, N., Muthiah, P. T. & Geib, S. J. (2003). Acta Cryst. C59, o27–o29.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTamilselvi, D. & Muthiah, P. T. (2011). Acta Cryst. C67, o192–o194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012). Acta Cryst. E68, o2938–o2939.  CSD CrossRef IUCr Journals Google Scholar
First citationUmadevi, B., Stanley, N., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2001). Acta Cryst. E57, o881–o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, M., Ma, K. & Zhu, Y. (2010). J. Chem. Crystallogr. 40, 634–638.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds