research communications
Supramolecular architecture in a N6-benzoyladenine with adipic acid (1/0.5)
of the N(7)—H tautomeric form ofaSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: tommtrichy@yahoo.co.in
The 12H9N5O·0.5C6H10O4, consists of one molecule of N6-benzoyladenine (BA) and one half-molecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N6-benzoyladenine molecule crystallizes in the N(7)—H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intramolecular N—H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)—H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid interact with the Watson–Crick face of the BA molecules through O—H⋯N and N—H⋯O hydrogen bonds, generating an R22(8) ring motif. The latter units are linked by N—H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C—H⋯O hydrogen bond is also present, linking adipic acid molecules in neighbouring layers, enclosing R22(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C—H⋯π interactions are also present in the structure.
of the title CKeywords: crystal structure; N6-benzoyladenine; adipic acid; hydrogen bond; supramolecular sheet; π–π stacking; co-crystal.
CCDC reference: 1478504
1. Chemical context
Adipic acid has been widely used in controlled-release formulations of many drugs and food additives (Roew et al., 2009). N6-benzoyladenine is a synthetic analogue of a group of naturally occurring N6-substituted adenines having plant-growth-stimulating activity (cytokinins) (McHugh & Erxleben, 2011). A number of co-crystals involving adipic acid have been reported in the literature (Lemmerer et al., 2012; Lin et al., 2012; Matulková et al., 2014; Thanigaimani et al., 2012). This paper deals with a formed between N6-benzoyladenine and adipic acid (I).
2. Structural commentary
The contains one N6-benzoyladenine (BA) molecule and a half-molecule of adipic acid (AA). As evident from the angles at N7 [C8—N7—C5 = 106.82 (11)°] and N9 [C8—N9—C4 = 103.90 (11)°], the N6-benzoyladenine moiety exists in the N(7)—H tautomeric form with non-protonated N1, N3 and N9 atoms. In addition, the C8—N7 bond [1.3415 (17) Å)] is longer than C8—N9 [1.3175 (19) Å]. These values are similar to those in neutral N6-benzoyladenine (Raghunathan & Pattabhi, 1981). An intramolecular hydrogen bond in the Hoogsteen face between N7—H7 and the benzoyl oxygen atom O1 forms a S(7) ring motif. The dihedral angle between the adenine and phenyl ring plane is 26.71 (7)° and the C6—N6—C10—C11 torsion angle is 173.08 (14)°. The bond lengths and bond angles of AA are in the range of values reported (Srinivasa Gopalan et al., 1999; 2000). The values for the torsion angles C18—C19—C19a—C18a [180.00 (13)°] and C17—C18—C19—C19a [–176.09 (14)°] indicate that the carbon chain of AA is fully extended.
of (I)In the crystal structures of N6-benzyladenine (Raghunathan & Pattabhi, 1981), N6-furfuryladenine (Soriano-Garcia & Parthasarathy, 1977), N6-benzyladenine hydrobromide (Umadevi et al., 2001), N6-furfuryladenine hydrochloride (Stanley et al., 2003), N6-benzyladeninium p-toluenesulfonate (Tamilselvi & Muthiah, 2011), N6-benzyladeninium nitrate, N6-benzyladeninium 3-hydroxy picolinate (Nirmalram et al., 2011) and the hydrate adduct of N6-benzyladenine-5-sulfosalicylic acid (Xia et al., 2010), the N6-substituent is distal to the N7 position, whereas in the crystal structures of N6-benzoyladenine (Raghunathan et al., 1983), N6-benzoyladenine-3-hydroxypyridinium-2-carboxylate (1:1), N6-benzoyladenine-DL-tartaric acid (1:1) (Karthikeyan et al., 2015), N6-benzoyladeninium nitrate (Karthikeyan et al., 2015) and the title compound, the N6-substituent is distal to N1 and syn to adenine nitrogen atom N7. In the present structure, this may be attributed to the presence of the N7—H7⋯O1A intramolecular hydrogen bond (Table 1).
3. Supramolecular features
Each of the two carboxyl groups of adipic acid interacts with the Watson–Crick face (atoms N1 and N6) of the corresponding BA through O—H⋯N and N—H⋯O hydrogen bonds, generating an R22(8) ring motif (Fig. 1). Thus each adipic acid molecule bridges two BA molecules. The latter units are linked by N7—H7⋯N9iii hydrogen bonds (Table 1) forming layers parallel to plane (10). A weak C—H⋯O hydrogen bond (C19—H19B⋯O3Aiv) is also present (Table 1 and Fig. 2), linking adipic acid molecules in neighbouring layers, enclosing R22(10) ring motifs and forming a three-dimensional structure. Thus atom O3A functions as a bifurcated hydrogen-bond acceptor whereas N7—H is a bifurcated hydrogen-bond donor.
The π interactions between purine and phenyl rings (Fig. 3a) and C10=O1B⋯π interactions between the carbonyl oxygen O1B and the centroid of the (N1/C2/N3/C4/C5/C6) pyrimidine ring [O⋯centroid = 3.407 (10) Å; symmetry code: 1 − x, + y, − z; Fig. 3b] (Safaei-Ghomi et al., 2009).
also features C2—H2⋯4. Database survey
The neutral molecule N6-benzoyladenine was reported by Raghunathan & Pattabhi (1981). Co-crystals have also been reported: N6-benzoyladenine-3-hydroxypyridinium-2-carboxylate (1:1), N6-benzoyladenine-DL-tartaric acid (1:1) (Karthikeyan et al., 2015) and N6-benzoyladeninium nitrate (Karthikeyan et al., 2016). Similarly, co-crystals of adipic acid with pyrimidine derivatives [adenine (Byres et al., 2009), caffeine (Bučar et al., 2007), cytosine (Das & Baruah, 2011), bis-pyrimidine-amine-linked xylene spacer (Goswami et al., 2010)] have also been reported.
5. Synthesis and crystallization
The title N6-benzoyladenine (30 mg) and adipic acid (19 mg) (total volume = 10 mL). The mixture was warmed in a water bath for 20 min. After cooling to room temperature, colourless plate-like crystals were collected from the mother liquor after a few days (m.p. 438 K).
was synthesized by mixing a DMF solution of6. Refinement
Crystal data, data collection and structure . Atoms O1 and O3 are disordered over two positions with refined occupancy ratios of 0.57 (3):0.43 (3) and 0.63 (3):0.37 (3), respectively. Hydrogen atoms were readily located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 (aromatic) or 0.97 (methylene), N—H = 0.86, and O—H = 0.82 Å, and with Uiso(H) = kUeq(C,N,O), where k = 1.5 for hydroxy and 1.2 for all other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1478504
https://doi.org/10.1107/S2056989016007581/hg5474sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016007581/hg5474Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016007581/hg5474Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).C12H9N5O·0.5C6H10O4 | F(000) = 652 |
Mr = 312.31 | Dx = 1.424 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1776 (4) Å | Cell parameters from 4139 reflections |
b = 9.2296 (4) Å | θ = 3.3–30.1° |
c = 25.7480 (15) Å | µ = 0.10 mm−1 |
β = 97.117 (6)° | T = 293 K |
V = 1456.76 (14) Å3 | Prism, colorless |
Z = 4 | 0.60 × 0.60 × 0.40 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 3325 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2755 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.020 |
Detector resolution: 10.4933 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ω scans | h = −8→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −11→11 |
Tmin = 0.756, Tmax = 1.000 | l = −33→31 |
9480 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3295P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.122 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.25 e Å−3 |
3325 reflections | Δρmin = −0.22 e Å−3 |
230 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0130 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1A | 0.7104 (15) | 0.6427 (14) | 0.1669 (8) | 0.094 (4) | 0.57 (3) |
O1B | 0.6582 (19) | 0.6621 (6) | 0.1877 (4) | 0.054 (2) | 0.43 (3) |
N1 | 0.3308 (2) | 0.27081 (12) | 0.16588 (5) | 0.0415 (3) | |
N3 | 0.5648 (2) | 0.09828 (13) | 0.21438 (5) | 0.0477 (3) | |
N6 | 0.39990 (19) | 0.51100 (12) | 0.15270 (5) | 0.0391 (3) | |
H6 | 0.2702 | 0.5109 | 0.1361 | 0.047* | |
N7 | 0.85319 (19) | 0.42515 (12) | 0.22672 (5) | 0.0402 (3) | |
H7 | 0.8790 | 0.5157 | 0.2226 | 0.048* | |
N9 | 0.9054 (2) | 0.19667 (13) | 0.25397 (5) | 0.0470 (3) | |
C2 | 0.3848 (3) | 0.13827 (15) | 0.18545 (6) | 0.0468 (4) | |
H2 | 0.2811 | 0.0660 | 0.1774 | 0.056* | |
C4 | 0.7054 (2) | 0.20808 (14) | 0.22480 (5) | 0.0389 (3) | |
C5 | 0.6683 (2) | 0.35149 (13) | 0.20707 (5) | 0.0352 (3) | |
C6 | 0.4717 (2) | 0.38085 (13) | 0.17619 (5) | 0.0347 (3) | |
C8 | 0.9855 (3) | 0.32896 (15) | 0.25376 (6) | 0.0451 (4) | |
H8 | 1.1219 | 0.3535 | 0.2709 | 0.054* | |
C10 | 0.5100 (3) | 0.63803 (16) | 0.15283 (7) | 0.0493 (4) | |
C11 | 0.4104 (2) | 0.75951 (14) | 0.11985 (6) | 0.0412 (3) | |
C12 | 0.5550 (3) | 0.86137 (17) | 0.10534 (7) | 0.0544 (4) | |
H12 | 0.7028 | 0.8527 | 0.1173 | 0.065* | |
C13 | 0.4831 (3) | 0.97575 (19) | 0.07333 (8) | 0.0627 (5) | |
H13 | 0.5825 | 1.0423 | 0.0630 | 0.075* | |
C14 | 0.2660 (3) | 0.99109 (19) | 0.05686 (7) | 0.0628 (5) | |
H14 | 0.2168 | 1.0681 | 0.0353 | 0.075* | |
C15 | 0.1208 (3) | 0.8931 (2) | 0.07213 (8) | 0.0655 (5) | |
H15 | −0.0274 | 0.9047 | 0.0611 | 0.079* | |
C16 | 0.1909 (3) | 0.77622 (18) | 0.10389 (7) | 0.0538 (4) | |
H16 | 0.0908 | 0.7102 | 0.1142 | 0.065* | |
O2 | 0.9399 (2) | 0.25032 (13) | 0.10377 (6) | 0.0694 (4) | |
H2A | 1.0565 | 0.2620 | 0.1223 | 0.104* | |
O3A | 1.0228 (15) | 0.4644 (11) | 0.0753 (5) | 0.072 (2) | 0.63 (3) |
O3B | 0.951 (3) | 0.4828 (6) | 0.0985 (9) | 0.070 (5) | 0.37 (3) |
C17 | 0.8870 (3) | 0.36824 (17) | 0.07825 (6) | 0.0494 (4) | |
C18 | 0.6762 (3) | 0.36172 (16) | 0.04285 (6) | 0.0491 (4) | |
H18A | 0.5619 | 0.3312 | 0.0631 | 0.059* | |
H18B | 0.6882 | 0.2888 | 0.0162 | 0.059* | |
C19 | 0.6100 (3) | 0.50345 (16) | 0.01626 (6) | 0.0494 (4) | |
H19A | 0.6069 | 0.5781 | 0.0427 | 0.059* | |
H19B | 0.7188 | 0.5308 | −0.0060 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.047 (3) | 0.085 (4) | 0.138 (8) | −0.023 (2) | −0.033 (4) | 0.071 (4) |
O1B | 0.052 (3) | 0.028 (2) | 0.073 (4) | −0.0097 (15) | −0.024 (2) | 0.011 (2) |
N1 | 0.0423 (6) | 0.0333 (6) | 0.0467 (7) | −0.0045 (5) | −0.0037 (5) | 0.0046 (5) |
N3 | 0.0559 (8) | 0.0299 (6) | 0.0536 (7) | −0.0047 (5) | −0.0074 (6) | 0.0067 (5) |
N6 | 0.0365 (6) | 0.0308 (6) | 0.0470 (6) | 0.0002 (4) | −0.0071 (5) | 0.0062 (5) |
N7 | 0.0399 (6) | 0.0269 (5) | 0.0503 (7) | 0.0015 (5) | −0.0079 (5) | 0.0000 (5) |
N9 | 0.0495 (7) | 0.0310 (6) | 0.0561 (7) | 0.0051 (5) | −0.0108 (6) | 0.0036 (5) |
C2 | 0.0519 (9) | 0.0325 (7) | 0.0528 (8) | −0.0091 (6) | −0.0060 (7) | 0.0062 (6) |
C4 | 0.0444 (8) | 0.0292 (6) | 0.0412 (7) | 0.0023 (5) | −0.0023 (6) | 0.0017 (5) |
C5 | 0.0381 (7) | 0.0280 (6) | 0.0383 (7) | 0.0015 (5) | −0.0002 (6) | −0.0008 (5) |
C6 | 0.0380 (7) | 0.0290 (6) | 0.0362 (6) | 0.0006 (5) | 0.0007 (6) | 0.0015 (5) |
C8 | 0.0423 (8) | 0.0341 (7) | 0.0550 (8) | 0.0045 (6) | −0.0101 (7) | −0.0007 (6) |
C10 | 0.0461 (8) | 0.0357 (7) | 0.0611 (9) | −0.0047 (6) | −0.0131 (7) | 0.0124 (7) |
C11 | 0.0472 (8) | 0.0303 (6) | 0.0441 (7) | 0.0017 (6) | −0.0019 (6) | 0.0044 (5) |
C12 | 0.0510 (9) | 0.0398 (8) | 0.0710 (11) | −0.0011 (7) | 0.0017 (8) | 0.0131 (7) |
C13 | 0.0716 (12) | 0.0437 (9) | 0.0746 (12) | 0.0012 (8) | 0.0155 (10) | 0.0202 (8) |
C14 | 0.0809 (13) | 0.0479 (9) | 0.0590 (10) | 0.0163 (9) | 0.0061 (9) | 0.0205 (8) |
C15 | 0.0542 (10) | 0.0617 (11) | 0.0771 (12) | 0.0142 (9) | −0.0059 (9) | 0.0204 (9) |
C16 | 0.0464 (9) | 0.0455 (8) | 0.0672 (10) | 0.0021 (7) | −0.0019 (8) | 0.0146 (7) |
O2 | 0.0568 (7) | 0.0461 (6) | 0.0963 (10) | −0.0026 (5) | −0.0264 (7) | 0.0128 (6) |
O3A | 0.061 (3) | 0.072 (2) | 0.076 (4) | −0.026 (2) | −0.024 (3) | 0.027 (2) |
O3B | 0.069 (5) | 0.037 (2) | 0.092 (8) | −0.006 (2) | −0.035 (5) | 0.002 (2) |
C17 | 0.0477 (9) | 0.0428 (8) | 0.0544 (9) | −0.0017 (7) | −0.0073 (7) | 0.0029 (7) |
C18 | 0.0472 (8) | 0.0408 (8) | 0.0558 (9) | −0.0017 (6) | −0.0071 (7) | −0.0016 (7) |
C19 | 0.0481 (9) | 0.0411 (8) | 0.0554 (9) | −0.0023 (6) | −0.0070 (7) | 0.0023 (7) |
O1A—C10 | 1.247 (6) | C12—C13 | 1.378 (2) |
O1B—C10 | 1.221 (6) | C12—H12 | 0.9300 |
N1—C6 | 1.3424 (17) | C13—C14 | 1.363 (3) |
N1—C2 | 1.3489 (17) | C13—H13 | 0.9300 |
N3—C2 | 1.3125 (19) | C14—C15 | 1.365 (3) |
N3—C4 | 1.3401 (18) | C14—H14 | 0.9300 |
N6—C10 | 1.3551 (18) | C15—C16 | 1.390 (2) |
N6—C6 | 1.3926 (16) | C15—H15 | 0.9300 |
N6—H6 | 0.8600 | C16—H16 | 0.9300 |
N7—C8 | 1.3415 (17) | O2—C17 | 1.2923 (18) |
N7—C5 | 1.3712 (17) | O2—H2A | 0.8200 |
N7—H7 | 0.8601 | O3A—C17 | 1.230 (4) |
N9—C8 | 1.3175 (19) | O3B—C17 | 1.223 (6) |
N9—C4 | 1.3684 (18) | C17—C18 | 1.495 (2) |
C2—H2 | 0.9300 | C18—C19 | 1.509 (2) |
C4—C5 | 1.4096 (17) | C18—H18A | 0.9700 |
C5—C6 | 1.3931 (18) | C18—H18B | 0.9700 |
C8—H8 | 0.9300 | C19—C19i | 1.506 (3) |
C10—C11 | 1.4924 (18) | C19—H19A | 0.9700 |
C11—C16 | 1.376 (2) | C19—H19B | 0.9700 |
C11—C12 | 1.380 (2) | ||
C6—N1—C2 | 119.23 (11) | C13—C12—H12 | 119.6 |
C2—N3—C4 | 112.56 (12) | C11—C12—H12 | 119.6 |
C10—N6—C6 | 127.77 (11) | C14—C13—C12 | 119.81 (17) |
C10—N6—H6 | 116.0 | C14—C13—H13 | 120.1 |
C6—N6—H6 | 116.2 | C12—C13—H13 | 120.1 |
C8—N7—C5 | 106.82 (11) | C13—C14—C15 | 119.86 (15) |
C8—N7—H7 | 126.7 | C13—C14—H14 | 120.1 |
C5—N7—H7 | 126.5 | C15—C14—H14 | 120.1 |
C8—N9—C4 | 103.90 (11) | C14—C15—C16 | 121.01 (16) |
N3—C2—N1 | 128.29 (13) | C14—C15—H15 | 119.5 |
N3—C2—H2 | 115.9 | C16—C15—H15 | 119.5 |
N1—C2—H2 | 115.9 | C11—C16—C15 | 119.12 (16) |
N3—C4—N9 | 124.79 (12) | C11—C16—H16 | 120.4 |
N3—C4—C5 | 124.74 (12) | C15—C16—H16 | 120.4 |
N9—C4—C5 | 110.47 (12) | C17—O2—H2A | 109.5 |
N7—C5—C6 | 137.86 (12) | O3B—C17—O2 | 117.6 (6) |
N7—C5—C4 | 104.56 (11) | O3A—C17—O2 | 120.5 (3) |
C6—C5—C4 | 117.57 (12) | O3B—C17—C18 | 120.5 (3) |
N1—C6—N6 | 113.77 (11) | O3A—C17—C18 | 122.7 (2) |
N1—C6—C5 | 117.61 (11) | O2—C17—C18 | 114.98 (13) |
N6—C6—C5 | 128.60 (12) | C17—C18—C19 | 114.09 (13) |
N9—C8—N7 | 114.25 (12) | C17—C18—H18A | 108.7 |
N9—C8—H8 | 122.9 | C19—C18—H18A | 108.7 |
N7—C8—H8 | 122.9 | C17—C18—H18B | 108.7 |
O1B—C10—N6 | 119.4 (5) | C19—C18—H18B | 108.7 |
O1A—C10—N6 | 120.7 (5) | H18A—C18—H18B | 107.6 |
O1B—C10—C11 | 120.0 (3) | C19i—C19—C18 | 112.99 (16) |
O1A—C10—C11 | 117.6 (3) | C19i—C19—H19A | 109.0 |
N6—C10—C11 | 118.50 (12) | C18—C19—H19A | 109.0 |
C16—C11—C12 | 119.33 (13) | C19i—C19—H19B | 109.0 |
C16—C11—C10 | 125.15 (14) | C18—C19—H19B | 109.0 |
C12—C11—C10 | 115.52 (13) | H19A—C19—H19B | 107.8 |
C13—C12—C11 | 120.82 (16) | ||
C4—N3—C2—N1 | 0.6 (3) | C6—N6—C10—O1B | −23.5 (8) |
C6—N1—C2—N3 | −0.5 (3) | C6—N6—C10—O1A | 13.7 (14) |
C2—N3—C4—N9 | −179.85 (15) | C6—N6—C10—C11 | 173.08 (14) |
C2—N3—C4—C5 | −0.1 (2) | O1B—C10—C11—C16 | −138.8 (8) |
C8—N9—C4—N3 | 179.82 (16) | O1A—C10—C11—C16 | −175.5 (14) |
C8—N9—C4—C5 | 0.06 (18) | N6—C10—C11—C16 | 24.5 (3) |
C8—N7—C5—C6 | −179.15 (18) | O1B—C10—C11—C12 | 40.7 (9) |
C8—N7—C5—C4 | −0.01 (16) | O1A—C10—C11—C12 | 4.0 (14) |
N3—C4—C5—N7 | −179.79 (15) | N6—C10—C11—C12 | −156.02 (16) |
N9—C4—C5—N7 | −0.03 (17) | C16—C11—C12—C13 | −2.8 (3) |
N3—C4—C5—C6 | −0.4 (2) | C10—C11—C12—C13 | 177.68 (17) |
N9—C4—C5—C6 | 179.31 (13) | C11—C12—C13—C14 | 1.8 (3) |
C2—N1—C6—N6 | 178.40 (13) | C12—C13—C14—C15 | 0.0 (3) |
C2—N1—C6—C5 | −0.2 (2) | C13—C14—C15—C16 | −0.7 (3) |
C10—N6—C6—N1 | −175.34 (15) | C12—C11—C16—C15 | 2.0 (3) |
C10—N6—C6—C5 | 3.0 (3) | C10—C11—C16—C15 | −178.52 (16) |
N7—C5—C6—N1 | 179.62 (16) | C14—C15—C16—C11 | −0.3 (3) |
C4—C5—C6—N1 | 0.6 (2) | O3B—C17—C18—C19 | 26.0 (16) |
N7—C5—C6—N6 | 1.3 (3) | O3A—C17—C18—C19 | −19.2 (10) |
C4—C5—C6—N6 | −177.74 (14) | O2—C17—C18—C19 | 176.05 (16) |
C4—N9—C8—N7 | −0.08 (19) | C17—C18—C19—C19i | −176.11 (18) |
C5—N7—C8—N9 | 0.06 (19) |
Symmetry code: (i) −x+1, −y+1, −z. |
Cg is the centroid of the C11–C16 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···N1ii | 0.82 | 1.92 | 2.7327 (19) | 175 |
N6—H6···O3Aiii | 0.86 | 2.09 | 2.904 (11) | 157 |
N7—H7···O1A | 0.86 | 2.04 | 2.616 (16) | 124 |
N7—H7···N9iv | 0.86 | 2.17 | 2.9271 (17) | 146 |
C19—H19B···O3Av | 0.97 | 2.54 | 3.481 (11) | 164 |
C2—H2···Cg3vi | 0.93 | 2.94 | 3.4611 (16) | 117 |
Symmetry codes: (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x+2, y+1/2, −z+1/2; (v) −x+2, −y+1, −z; (vi) x, y−1, z. |
Acknowledgements
RSD thanks the UGC–BSR India for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. FP thanks the Slovenian Research Agency for financial support (P1–0230-0175), as well as the EN–FIST Centre of Excellence, Ljubljana, Slovenia, for the use of the SuperNova diffractometer.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Bučar, D. K., Henry, R. F., Lou, X., Borchardt, T. & Zhang, G. G. Z. (2007). Chem. Commun. pp. 525–527. Google Scholar
Byres, M., Cox, P. J., Kay, G. & Nixon, E. (2009). CrystEngComm, 11, 135–142. Web of Science CSD CrossRef CAS Google Scholar
Das, B. & Baruah, J. B. (2011). J. Mol. Struct. 1001, 134–138. Web of Science CSD CrossRef CAS Google Scholar
Goswami, S., Hazra, A. & Fun, H.-K. (2010). J. Incl Phenom. Macrocycl Chem. 68, 461–466. Web of Science CSD CrossRef CAS Google Scholar
Karthikeyan, A., Jeeva Jasmine, N., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 140–143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985–990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2012). Acta Cryst. E68, o190. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lin, S., Jia, R., Gao, F. & Zhou, X. (2012). Acta Cryst. E68, o3457. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matulková, I., Císařová, I., Němec, I. & Fábry, J. (2014). Acta Cryst. C70, 927–933. Web of Science CSD CrossRef IUCr Journals Google Scholar
McHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096–5104. Web of Science CSD CrossRef CAS Google Scholar
Nirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864–867. Web of Science CSD CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670–1673. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Raghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545–1547. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Roew, R., Sheskey, P. & Quinn, M. (2009). Adipic Acid, Handbook of Pharmaceutical Excipients, pp. 11–12. Google Scholar
Safaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). Acta Cryst. E65, m2–m3. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soriano-Garcia, M. & Parthasarathy, R. (1977). Acta Cryst. B33, 2674–2677. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srinivasa Gopalan, R., Kumaradhas, P. & Kulkarni, G. U. (1999). J. Solid State Chem. 148, 129–134. CSD CrossRef CAS Google Scholar
Srinivasa Gopalan, R., Kumaradhas, P., Kulkarni, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106. CSD CrossRef CAS Google Scholar
Stanley, N., Muthiah, P. T. & Geib, S. J. (2003). Acta Cryst. C59, o27–o29. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Tamilselvi, D. & Muthiah, P. T. (2011). Acta Cryst. C67, o192–o194. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012). Acta Cryst. E68, o2938–o2939. CSD CrossRef IUCr Journals Google Scholar
Umadevi, B., Stanley, N., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2001). Acta Cryst. E57, o881–o883. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xia, M., Ma, K. & Zhu, Y. (2010). J. Chem. Crystallogr. 40, 634–638. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.