research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonded network in the salt 4-methyl-1H-imidazol-3-ium picrate

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: xingman_xu@126.com

Edited by A. J. Lough, University of Toronto, Canada (Received 28 March 2016; accepted 27 April 2016; online 4 May 2016)

In the title molecular salt, C4H7N2+·C6H2N3O7, the phenolic proton of the starting picric acid has been transferred to the imidazole N atom. The nitro groups are twisted away from the benzene ring plane, making dihedral angles of 12.8 (2), 9.2 (4) and 29.3 (2)°. In the crystal, the component ions are linked into chains along [010] via N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds. These chains are further linked by weak C—H⋯O hydrogen bonds into a three-dimensional network. The complex three-dimensional network can be topologically simplified into a 4-connected uninodal net with the point symbol {4.85}.

1. Chemical context

Co-crystallization, the crystallization of more than one solid component into a new compound, forming a new co-crystal or molecular salt, is a well known research field involving, for example, active pharmaceutical ingredients (Aitipamula et al., 2015[Aitipamula, S., Mapp, L. K., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2015). CrystEngComm, 17, 9323-9335.]; Weyna et al., 2012[Weyna, D. R., Cheney, M. L., Shan, N., Hanna, M., Wojtas, Ł. & Zaworotko, M. J. (2012). CrystEngComm, 14, 2377-2380.]; Robinson, 2010[Robinson, D. I. (2010). Org. Process Res. Dev. 14, 946-959.]; Arenas-García et al., 2010[Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732-3742.]) and crystal engineering (Manoj et al., 2014[Manoj, K., Tamura, R., Takahashi, H. & Tsue, H. (2014). CrystEngComm, 16, 5811-5819.]). 4-Methyl­imidazole is an often used pharmaceutical inter­mediate (Shimpi et al., 2014[Shimpi, M. R. , Childs, S. L., Boström, D., & Velaga, S. P. (2014). CrystEngComm, 16, 8984-8993.]). The study of its crystallization can facilitate its related organic synthesis and theoretical optimization calculations. Picric acid, as a strong organic proton-donating reagent, is often adopted 2as an organic acid in the synthesis of co-crystallized complexes. Herein, we report the crystal structure of the molecular salt, 4-methyl­imidazolium picrate, (I)[link]. Future work will concentrate on how the crystallization behavior is affected by the solvent and temperature.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] consists of one 4-methyl­imidazolium cation and one picrate anion (Fig. 1[link]). The phenolic proton in the original picric acid starting material was transferred from the picric acid OH group to the imidazole nitro­gen atom, forming a molecular salt. In the picrate anion, the C—Ophenol bond distance is shorter than in an earlier reported un-deprotonated compound [1.33 (2) Å; Bertolasi et al., 2011[Bertolasi, V., Gilli, P. & Gilli, G. (2011). Cryst. Growth Des. 11, 2724-2735.]] with a value of 1.244 (2) Å in (I)[link]. The adjacent C1—C2 [1.453 (2) Å] and C1—C6 [1.457 (3) Å] bonds are also lengthened from the values expected in a completely delocalized benzene ring. The C2—C1—C6 angle [111.0 (2)°] is smaller by ca 10° than the average value of the other five phenyl inner angles [121.8 (1)°]. This is mainly due to the electron-withdrawing effect of the three nitro groups attached to the aromatic π system, delocalizing electron density on the phenolate oxygen atom over the π system. The three nitro groups, N1/O2/O3, N2/O4/O5 and N3/O6/O6, are twisted away from the benzene ring plane, making dihedral angles of 12.8 (2), 9.2 (4) and 29.3 (2)°, respectively. In the 4-methyl­imidazolium cation, the C9—N4 [1.321 (3) Å] and C9—N5 [1.304 (3) Å] bond lengths are similar to each other due to the delocalizing effect; this is in contrast to the un-protonated 4-methylimidazole mol­ecule in the co-crystal of 8-hydroxyquinoline and 5-methyl-1H-imidazole [C—N = 1.305 (4) and 1.340 4 Å; Liu & Meng, 2006[Liu, Z.-X. & Meng, X.-G. (2006). Acta Cryst. E62, o1286-o1288.]].

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal structure of (I)[link], the component ions are linked into chains along [010] by N—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]), one of which is bifurcated, N—H⋯(O,O). The chains are linked by C—H⋯O inter­actions, forming a three-dimensional framework. In the cation, all H atoms except for the methyl group H atoms act as hydrogen-bond donors. Each cation is bonded to four adjacent picrate anions. In turn, each picrate anion utilizes the one phenolic and four nitro oxygen atoms, acting as hydrogen-bond acceptors, linked to four 4-methyl­imidazolium cations. No other inter­actions such as ππ and C—H⋯π are observed (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2 0.84 (2) 2.46 (2) 3.013 (3) 124 (2)
N4—H4A⋯O1 0.84 (2) 1.88 (2) 2.687 (2) 160 (2)
N5—H5A⋯O3i 0.87 (2) 2.07 (3) 2.898 (3) 160 (2)
C8—H8⋯O4ii 0.93 2.50 3.302 (3) 145
C9—H9⋯O5iii 0.93 2.39 3.242 (3) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y+1, z; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of the three-dimensional network. N—H⋯O Hydrogen bonds and C—H⋯O inter­actions are shown as green dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted.

In order to better understand the three-dimensional structure, we can regard both the cation and anion as 4-connected nodes (Fig. 3[link]), i.e. each one 4-methyl­imidazolium ion links with four other picrate ions, and vice versa. Thus, the whole network is simplified into a uninodal 4-connected net with the point symbol {4.85} (Baburin & Blatov, 2007[Baburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791-802.]; Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]) (Fig. 4[link]).

[Figure 3]
Figure 3
Part of the crystal structure of (I)[link], showing the topologically connected relationship between 4-methyl­imidazolium and picrate ions (shown as gray and pink balls, respectively).
[Figure 4]
Figure 4
A schematic view of the formation of the 4-connected topological network in (I)[link] when the cations and anions are regarded as four-connected nodes. The gray and pink spheres represent the 4-methyl­imidazolium cations and picrate anions, respectively.

4. Database survey

A CSD search (CSD Version 5.37 plus one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found some analogs of the title compound, viz. BEZGEU (2-methylimidazolium picrate 2-methylimidazole; Dhanabal et al., 2013[Dhanabal, T., Sethuram, M., Amirthaganesan, G. & Das, S. K. (2013). J. Mol. Struct. 1045, 112-123.]) and QAKYOS (2-methyl-1H-imidazol-3-ium 2,4,6-trinitrophenolate; Dutkiewicz et al., 2011[Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o235.]). A structural comparison indicates that the two nitro­gen atoms are preferably hydrogen-bonded to the picrate anions, of which one is bifurcated and the other is linear.

5. Synthesis and crystallization

Equivalent molar amounts of 4-methyl imidazole (1.0 mmol, 80.0 mg) and picric acid (1 mmol, 230.0mg) were dissolved in 95% methanol (40.0 ml). The mixture was stirred for half an hour at room temperature and then filtered. The resulting yellow solution was kept in air for two weeks. Needle-shaped yellow crystals of (I)[link] suitable for single-crystal X-ray diffraction analysis were grown at the bottom of the vessel by slow evaporation of the solution. The crystals were separated by filtration (yield, 75%, ca 0.23 g).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were positioned geometrically with C—H = 0.93 Å (aromatic) or 0.96 Å (meth­yl) and refined using a riding model [Uiso(H) = 1.2Ueq(Caromatic) or 1.5Ueq(Cmeth­yl)]. H atoms bonded to N atoms were found in Fourier difference maps; N—H distances were refined freely with Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C4H7N2+·C6H2N3O7
Mr 311.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 9.3079 (17), 9.4339 (17), 15.195 (3)
β (°) 107.835 (2)
V3) 1270.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.30 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.936, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 12952, 2489, 1539
Rint 0.142
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.110, 1.04
No. of reflections 2489
No. of parameters 206
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.22
Computer programs: SMART and SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-Methyl-1H-imidazol-3-ium 2,4,6-trinitrophenolate top
Crystal data top
C4H7N2+·C6H2N3O7F(000) = 640
Mr = 311.22Dx = 1.628 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3079 (17) ÅCell parameters from 1754 reflections
b = 9.4339 (17) Åθ = 2.3–22.1°
c = 15.195 (3) ŵ = 0.14 mm1
β = 107.835 (2)°T = 298 K
V = 1270.2 (4) Å3Needle, yellow
Z = 40.30 × 0.05 × 0.02 mm
Data collection top
Bruker SMART CCD
diffractometer
1539 reflections with I > 2σ(I)
φ and ω scansRint = 0.142
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
θmax = 26.0°, θmin = 2.3°
Tmin = 0.936, Tmax = 0.992h = 1111
12952 measured reflectionsk = 1111
2489 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0154P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2489 reflectionsΔρmax = 0.25 e Å3
206 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1017 (2)0.4075 (2)0.43900 (15)0.0339 (6)
C20.0815 (2)0.3083 (2)0.50742 (14)0.0340 (6)
C30.0320 (2)0.2096 (2)0.49046 (15)0.0350 (6)
H30.03860.14860.53710.042*
C40.1356 (2)0.2015 (2)0.40413 (15)0.0318 (5)
C50.1265 (2)0.2912 (2)0.33388 (15)0.0344 (6)
H50.19830.28600.27590.041*
C60.0126 (2)0.3863 (2)0.34989 (14)0.0326 (6)
C70.4896 (2)0.7421 (2)0.51495 (15)0.0367 (6)
C80.6087 (3)0.8040 (3)0.57572 (16)0.0420 (6)
H80.66330.88080.56460.050*
C90.5366 (3)0.6298 (3)0.64773 (16)0.0438 (7)
H90.53140.56580.69320.053*
C100.4074 (3)0.7745 (3)0.41634 (16)0.0552 (7)
H10A0.30940.81190.41160.083*
H10B0.39660.68940.38030.083*
H10C0.46340.84320.39360.083*
N10.1822 (2)0.3139 (2)0.60151 (13)0.0421 (5)
N20.2537 (2)0.0971 (2)0.38594 (15)0.0414 (5)
N30.0051 (3)0.4734 (2)0.27120 (13)0.0438 (5)
N40.4464 (2)0.6333 (2)0.56162 (13)0.0390 (5)
H4A0.369 (3)0.584 (3)0.5399 (16)0.047*
N50.6343 (2)0.7322 (2)0.65746 (14)0.0450 (6)
H5A0.706 (3)0.757 (3)0.7063 (18)0.054*
O10.19859 (18)0.50281 (17)0.45332 (11)0.0487 (5)
O20.2988 (2)0.3814 (2)0.62018 (11)0.0623 (6)
O30.1436 (2)0.2490 (2)0.66125 (12)0.0682 (6)
O40.2498 (2)0.00651 (19)0.44540 (13)0.0600 (5)
O50.35582 (18)0.10262 (18)0.31206 (12)0.0520 (5)
O60.1232 (2)0.4962 (2)0.21012 (13)0.0744 (6)
O70.1172 (2)0.5136 (2)0.26798 (12)0.0673 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (14)0.0300 (14)0.0336 (13)0.0044 (11)0.0044 (11)0.0040 (11)
C20.0361 (13)0.0374 (14)0.0223 (12)0.0054 (11)0.0001 (10)0.0027 (10)
C30.0416 (14)0.0332 (13)0.0295 (14)0.0067 (11)0.0100 (11)0.0010 (11)
C40.0311 (13)0.0310 (13)0.0318 (13)0.0012 (11)0.0074 (11)0.0043 (11)
C50.0373 (13)0.0358 (13)0.0245 (12)0.0039 (11)0.0010 (10)0.0043 (11)
C60.0389 (14)0.0296 (13)0.0262 (12)0.0024 (11)0.0055 (10)0.0018 (10)
C70.0410 (15)0.0341 (14)0.0313 (14)0.0045 (11)0.0056 (11)0.0018 (11)
C80.0456 (15)0.0401 (15)0.0371 (15)0.0006 (12)0.0080 (12)0.0018 (12)
C90.0514 (17)0.0405 (15)0.0329 (15)0.0040 (13)0.0030 (13)0.0019 (11)
C100.0690 (18)0.0555 (18)0.0323 (15)0.0077 (15)0.0023 (13)0.0037 (13)
N10.0473 (13)0.0444 (14)0.0281 (12)0.0037 (11)0.0020 (10)0.0017 (10)
N20.0427 (13)0.0394 (13)0.0421 (13)0.0010 (10)0.0131 (11)0.0065 (11)
N30.0503 (14)0.0377 (13)0.0349 (12)0.0030 (11)0.0007 (11)0.0058 (10)
N40.0366 (12)0.0352 (12)0.0353 (12)0.0032 (10)0.0033 (10)0.0046 (9)
N50.0415 (13)0.0515 (14)0.0306 (12)0.0014 (11)0.0058 (10)0.0104 (11)
O10.0515 (11)0.0442 (11)0.0398 (10)0.0130 (9)0.0017 (8)0.0003 (8)
O20.0481 (11)0.0838 (16)0.0408 (11)0.0196 (11)0.0074 (9)0.0005 (10)
O30.0797 (14)0.0853 (15)0.0274 (10)0.0219 (12)0.0016 (10)0.0122 (10)
O40.0664 (13)0.0493 (12)0.0609 (13)0.0107 (10)0.0144 (10)0.0134 (10)
O50.0459 (11)0.0590 (13)0.0428 (11)0.0098 (9)0.0014 (9)0.0118 (9)
O60.0702 (14)0.0825 (15)0.0472 (12)0.0069 (11)0.0163 (10)0.0287 (11)
O70.0618 (13)0.0821 (15)0.0546 (12)0.0132 (12)0.0126 (10)0.0241 (11)
Geometric parameters (Å, º) top
C1—O11.244 (2)C8—H80.9300
C1—C21.453 (3)C9—N51.304 (3)
C1—C61.457 (3)C9—N41.321 (3)
C2—C31.372 (3)C9—H90.9300
C2—N11.451 (3)C10—H10A0.9600
C3—C41.372 (3)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C4—C51.385 (3)N1—O21.214 (2)
C4—N21.438 (3)N1—O31.236 (2)
C5—C61.353 (3)N2—O51.230 (2)
C5—H50.9300N2—O41.236 (2)
C6—N31.470 (3)N3—O71.215 (2)
C7—C81.340 (3)N3—O61.222 (2)
C7—N41.375 (3)N4—H4A0.84 (2)
C7—C101.491 (3)N5—H5A0.87 (2)
C8—N51.370 (3)
O1—C1—C2125.9 (2)N5—C9—N4107.6 (2)
O1—C1—C6123.1 (2)N5—C9—H9126.2
C2—C1—C6111.0 (2)N4—C9—H9126.2
C3—C2—N1116.0 (2)C7—C10—H10A109.5
C3—C2—C1124.3 (2)C7—C10—H10B109.5
N1—C2—C1119.7 (2)H10A—C10—H10B109.5
C4—C3—C2119.5 (2)C7—C10—H10C109.5
C4—C3—H3120.2H10A—C10—H10C109.5
C2—C3—H3120.2H10B—C10—H10C109.5
C3—C4—C5120.8 (2)O2—N1—O3121.9 (2)
C3—C4—N2119.6 (2)O2—N1—C2120.7 (2)
C5—C4—N2119.6 (2)O3—N1—C2117.4 (2)
C6—C5—C4119.8 (2)O5—N2—O4122.5 (2)
C6—C5—H5120.1O5—N2—C4118.5 (2)
C4—C5—H5120.1O4—N2—C4118.9 (2)
C5—C6—C1124.5 (2)O7—N3—O6123.5 (2)
C5—C6—N3117.02 (19)O7—N3—C6119.07 (19)
C1—C6—N3118.4 (2)O6—N3—C6117.4 (2)
C8—C7—N4106.3 (2)C9—N4—C7109.4 (2)
C8—C7—C10131.6 (2)C9—N4—H4A125.9 (17)
N4—C7—C10122.1 (2)C7—N4—H4A124.4 (17)
C7—C8—N5106.6 (2)C9—N5—C8110.0 (2)
C7—C8—H8126.7C9—N5—H5A128.9 (17)
N5—C8—H8126.7C8—N5—H5A121.1 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O20.84 (2)2.46 (2)3.013 (3)124 (2)
N4—H4A···O10.84 (2)1.88 (2)2.687 (2)160 (2)
N5—H5A···O3i0.87 (2)2.07 (3)2.898 (3)160 (2)
C8—H8···O4ii0.932.503.302 (3)145
C9—H9···O5iii0.932.393.242 (3)152
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Dr Xiang-gao Meng for helpful discussions about this crystal structure.

References

First citationAitipamula, S., Mapp, L. K., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2015). CrystEngComm, 17, 9323–9335.  Web of Science CSD CrossRef CAS Google Scholar
First citationArenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732–3742.  Google Scholar
First citationBaburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791–802.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBertolasi, V., Gilli, P. & Gilli, G. (2011). Cryst. Growth Des. 11, 2724–2735.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhanabal, T., Sethuram, M., Amirthaganesan, G. & Das, S. K. (2013). J. Mol. Struct. 1045, 112–123.  Web of Science CSD CrossRef CAS Google Scholar
First citationDutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z.-X. & Meng, X.-G. (2006). Acta Cryst. E62, o1286–o1288.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManoj, K., Tamura, R., Takahashi, H. & Tsue, H. (2014). CrystEngComm, 16, 5811–5819.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobinson, D. I. (2010). Org. Process Res. Dev. 14, 946–959.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimpi, M. R. , Childs, S. L., Boström, D., & Velaga, S. P. (2014). CrystEngComm, 16, 8984–8993.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeyna, D. R., Cheney, M. L., Shan, N., Hanna, M., Wojtas, Ł. & Zaworotko, M. J. (2012). CrystEngComm, 14, 2377–2380.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds