research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen bonding in the crystal structure of the molecular salt of pyrazole–pyrazolium picrate

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: xingman_xu@126.com

Edited by A. J. Lough, University of Toronto, Canada (Received 11 April 2016; accepted 19 May 2016; online 27 May 2016)

The asymmetric unit of the title organic salt [systematic name: 1H-pyrazol-2-ium 2,4,6-tri­nitro­phenolate–1H-pyrazole (1/1)], H(C3H4N2)2+·C6H2N3O7, consists of one picrate anion and one hydrogen-bonded dimer of a pyrazolium monocation. The H atom involved in the dimer N—H⋯N hydrogen bond is disordered over both symmetry-unique pyrazole mol­ecules with occupancies of 0.52 (5) and 0.48 (5). In the crystal, the component ions are linked into chains along [100] by two different bifurcated N—H⋯(O,O) hydrogen bonds. In addition, weak C—H⋯O hydrogen bonds link inversion-related chains, forming columns along [100].

1. Chemical context

Research inter­est on co-crystals or organic complex salts in recent years has been prompted by their potential utilization in the pharmaceutical industry (Blagden et al., 2014[Blagden, N., Coles, S. J. & Berry, D. J. (2014). CrystEngComm, 16, 5753-5761.]; Duggirala et al., 2016[Duggirala, N. K., Perry, M. L., Almarsson, O. & Zaworotko, M. J. (2016). Chem. Commun. 52, 640-655.]). Imidazole and pyrazole derivatives are often used as co-crystallized pharmaceutical ingredients (Shimpi et al., 2014[Shimpi, M. R., Childs, S. L., Boström, D. & Velaga, S. P. (2014). CrystEngComm, 16, 8984-8993.]). Our investigations involve studies of weak inter­molecular inter­actions in co-crystallized compounds. As part of our continuing study on organic salts formed by imidazole derivatives and picric acid (Song et al., 2016[Song, X., Su, P. & Xu, X. (2016). Acta Cryst. E72, 772-775.]; Su et al., 2008[Su, P., Huang, X.-Y. & Meng, X. (2008). Acta Cryst. E64, o2217-o2218.]), we report herein the crystal structure of the title compound (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. It consists of one picrate anion and two pyrazole mol­ecules, which are connected by an N—H⋯N hydrogen bond (Table 1[link]), forming a dimeric pyrazolium monocation. The H atom of the hydrogen bond is disordered over both pyrazole mol­ecules. In the dimeric monocation, the two pyrazole rings form a dihedral angle of 74.6 (1)°. In the anion, the C—Ophenol bond [1.257 (3)Å] is shorter by ca 0.05Å than an average C—O single bond in a neutral picric acid mol­ecule [1.308 (2)Å] calculated statistically by analysis of a CSD search (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The C1—C2 [1.438 (4)Å] and C1—C6 [1.449 (4)Å] bonds are significantly longer than the other four benzene C-C bonds [1.367 (4)–1.380 (4)Å]. The C2—C1—C6 [111.9 (2)°] angle is smaller than the ideal value of 120° for a regular hexa­gon and the other five benzene inner angles of 119.0 (3)–124.4 (3). All variations of bond lengths and angles demonstrate that the negative charge on the phenol oxygen atom is delocalized over the aromatic ring, giving double-bond character for the C1—O1 bond due to the electron-withdrawing effect of the three nitro groups. This is similar to what is observed in some picrate-containing analogs (Zakharov et al., 2015[Zakharov, B. A., Ghazaryan, V. V., Boldyreva, E. V. & Petrosyan, A. M. (2015). J. Mol. Struct. 1100, 255-263.]; Gomathi & Kalaivani, 2015[Gomathi, J. & Kalaivani, D. (2015). Acta Cryst. E71, 1196-1198.]). The mean planes of the nitro groups in the anion, are twisted from the benzene ring by dihedral angles of 30.8 (2), 4.8 (3)° and 27.2 (4)° for N1/O2/O3, N2/O4/O5 and N3/O6/O7, respectively. The two ortho-nitro groups are twisted out of the benzene ring to a greater extent than the para-nitro group. This is most likely due to the steric hindrance between the ortho-nitro groups and the phenolic oxygen atom.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N6 0.86 (1) 1.81 (1) 2.663 (3) 173 (7)
N5—H5A⋯O1i 0.87 (1) 1.95 (1) 2.789 (3) 163 (3)
N5—H5A⋯O6i 0.87 (1) 2.42 (3) 2.961 (4) 121 (3)
N6—H6A⋯N4 0.86 (1) 1.81 (1) 2.663 (3) 174 (7)
N7—H7A⋯O1 0.86 (1) 2.04 (2) 2.864 (3) 160 (3)
N7—H7A⋯O2 0.86 (1) 2.29 (3) 2.841 (3) 122 (3)
C12—H12⋯O4ii 0.93 2.61 3.512 (5) 165
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Only one orientation of the disordered N—H⋯N hydrogen bond is shown.

3. Supra­molecular features

In the crystal of (I)[link], the component ions are linked into a chain along [100] by N—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]). In addition, inversion-related chains are connected by a weak C12—H12⋯O4 (−x, −y + 2, −z + 1) hydrogen bond, forming columns along [100]. A short O3(nitro)⋯O3(nitro) (−1 − x, 2 − y, 1 − z) distance of 2.913 (2) Å is also observed (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Although the benzene and pyrazolium rings are stacked in a parallel fashion, no significant ππ inter­actions exist between them (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). This could be attributed to the deficient π-electron nature resulting from the electron-withdrawing effects of the nitro groups.

[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of hydrogen-bonded columns along [100]. For clarity, H atoms not involved in the motif have been omitted. Green and red dashed lines indicate the N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds, respectively.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.37 plus one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicates there are some analogs prepared from picric acid and pyrazole derivatives, viz. SASKII, SASLAB, SASKUU, SASLUB (Singh et al., 2012[Singh, U. P., Goel, N., Singh, G. & Srivastava, P. (2012). Supramol. Chem. 24, 285-297.]) and SASKII01 (Dhanabal et al., 2013[Dhanabal, T., Amirthaganesan, G., Dhandapani, M. & Das, S. K. (2013). J. Mol. Struct. 1035, 483-492.]). A similar solvated organic adduct, C5H9N2+·C6H2N3O7 (SASKII; Singh et al., 2012[Singh, U. P., Goel, N., Singh, G. & Srivastava, P. (2012). Supramol. Chem. 24, 285-297.]) indicates that the solvent used for the crystallization process can affect the final product in which the ratio of component ions are different.

5. Synthesis and crystallization

Pyrazole (20.0 mmol, 136.0 mg) and picric acid (10. 0 mmol, 230.0mg) were dissolved in a 2:1 molar ratio in 95% methanol (50.0 ml). The mixture was stirred for an hour at 323 K and then cooled to room temperature and filtered. The resulting yellow solution was kept in air for two weeks. Needle-like yellow crystals of (I)[link] suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution. The crystals were separated by filtration (yield, 60%, ca 0.22 g).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were positioned geometrically with C—H = 0.93 Å (aromatic) and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C). H atoms bonded to N atoms were refined with a constraint of dN—H = 0.86 (1) Å and Uiso(H) = 1.2Ueq(N). Atoms H4A and H6A were found in difference Fourier maps and refined as disordered using the PART command (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The final site occupancies of the two hydrogen-atom components were 0.52 (1):0.48 (1) for H6A and H4A, respectively.

Table 2
Experimental details

Crystal data
Chemical formula C3H5N2+·C6H2N3O7·C3H4N2
Mr 365.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 4.2447 (14), 16.950 (5), 21.839 (7)
β (°) 92.029 (6)
V3) 1570.3 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.45 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.736, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 12038, 3086, 1787
Rint 0.050
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.157, 0.98
No. of reflections 3086
No. of parameters 248
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.16
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1H-Pyrazol-2-ium 2,4,6-trinitrophenolate 1H-pyrazole top
Crystal data top
C3H5N2+·C6H2N3O7·C3H4N2F(000) = 752
Mr = 365.28Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.2447 (14) ÅCell parameters from 1735 reflections
b = 16.950 (5) Åθ = 2.4–20.5°
c = 21.839 (7) ŵ = 0.13 mm1
β = 92.029 (6)°T = 298 K
V = 1570.3 (9) Å3Needle, yellow
Z = 40.45 × 0.06 × 0.04 mm
Data collection top
Bruker SMART CCD
diffractometer
1787 reflections with I > 2σ(I)
φ and ω scansRint = 0.050
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 26.0°, θmin = 1.5°
Tmin = 0.736, Tmax = 0.875h = 55
12038 measured reflectionsk = 2020
3086 independent reflectionsl = 2624
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.3803P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.18 e Å3
3086 reflectionsΔρmin = 0.16 e Å3
248 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2577 (7)0.78567 (15)0.50270 (13)0.0502 (7)
C20.0904 (7)0.85715 (15)0.51570 (12)0.0478 (7)
C30.0496 (7)0.88621 (16)0.57336 (13)0.0565 (8)
H30.06670.93200.57890.068*
C40.1825 (8)0.84691 (17)0.62309 (13)0.0577 (8)
C50.3503 (7)0.77808 (17)0.61557 (13)0.0573 (8)
H50.44230.75250.64940.069*
C60.3802 (7)0.74780 (15)0.55807 (13)0.0506 (7)
C70.7321 (8)0.56590 (19)0.33757 (15)0.0683 (9)
H70.59020.56010.30450.082*
C80.8600 (8)0.50504 (18)0.37140 (16)0.0689 (9)
H80.82290.45140.36600.083*
C91.0517 (8)0.53966 (19)0.41426 (15)0.0679 (9)
H91.17310.51370.44430.082*
C100.8031 (8)0.80992 (19)0.26399 (14)0.0675 (9)
H100.93740.78620.23670.081*
C110.6789 (9)0.88402 (19)0.25746 (15)0.0698 (9)
H110.71140.91970.22600.084*
C120.4981 (8)0.89415 (18)0.30687 (15)0.0648 (9)
H120.38090.93880.31570.078*
N10.0457 (6)0.90430 (13)0.46540 (12)0.0532 (6)
N20.1422 (9)0.87879 (19)0.68408 (13)0.0815 (9)
N30.5497 (7)0.67352 (16)0.55396 (14)0.0645 (7)
N40.8395 (7)0.63381 (15)0.35881 (12)0.0613 (7)
H4A0.808 (16)0.6815 (15)0.346 (3)0.074*0.48 (5)
N51.0360 (7)0.61758 (14)0.40591 (12)0.0617 (7)
H5A1.133 (7)0.6554 (14)0.4254 (13)0.074*
N60.7043 (7)0.77681 (14)0.31469 (12)0.0600 (7)
H6A0.761 (15)0.7321 (19)0.330 (3)0.072*0.52 (5)
N70.5183 (6)0.82915 (14)0.34019 (11)0.0553 (6)
H7A0.434 (7)0.8196 (18)0.3747 (8)0.066*
O10.2919 (6)0.75921 (11)0.44959 (9)0.0668 (6)
O20.0820 (5)0.90477 (13)0.41655 (9)0.0709 (7)
O30.2780 (5)0.94352 (13)0.47569 (11)0.0756 (7)
O40.0220 (9)0.93651 (17)0.68985 (11)0.1281 (13)
O50.2766 (8)0.84518 (17)0.72727 (12)0.1047 (10)
O60.4897 (7)0.62868 (15)0.51168 (12)0.0976 (9)
O70.7405 (7)0.65737 (15)0.59511 (13)0.0968 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0571 (19)0.0411 (15)0.0529 (18)0.0044 (13)0.0093 (14)0.0021 (13)
C20.0536 (18)0.0405 (14)0.0496 (17)0.0054 (13)0.0070 (14)0.0018 (12)
C30.069 (2)0.0407 (15)0.0609 (19)0.0060 (14)0.0160 (16)0.0012 (14)
C40.083 (2)0.0481 (17)0.0431 (17)0.0152 (16)0.0113 (16)0.0028 (13)
C50.067 (2)0.0531 (17)0.0517 (18)0.0163 (15)0.0001 (15)0.0063 (14)
C60.0516 (18)0.0417 (15)0.0586 (19)0.0056 (13)0.0047 (14)0.0059 (13)
C70.081 (2)0.0542 (19)0.070 (2)0.0002 (17)0.0032 (18)0.0008 (16)
C80.082 (2)0.0443 (17)0.081 (2)0.0001 (17)0.011 (2)0.0028 (17)
C90.079 (2)0.0543 (19)0.072 (2)0.0136 (17)0.0130 (19)0.0148 (16)
C100.082 (2)0.064 (2)0.057 (2)0.0059 (18)0.0108 (17)0.0026 (16)
C110.084 (2)0.062 (2)0.064 (2)0.0043 (18)0.0063 (18)0.0165 (16)
C120.071 (2)0.0494 (17)0.074 (2)0.0102 (15)0.0029 (18)0.0093 (16)
N10.0543 (16)0.0428 (13)0.0625 (17)0.0019 (12)0.0015 (13)0.0003 (12)
N20.136 (3)0.0584 (18)0.0513 (18)0.0198 (18)0.0169 (18)0.0022 (15)
N30.0695 (19)0.0586 (16)0.0659 (18)0.0079 (14)0.0087 (15)0.0137 (15)
N40.080 (2)0.0445 (15)0.0593 (17)0.0116 (14)0.0079 (15)0.0077 (13)
N50.075 (2)0.0482 (16)0.0624 (18)0.0046 (13)0.0103 (15)0.0023 (13)
N60.0765 (19)0.0439 (14)0.0593 (17)0.0071 (13)0.0008 (14)0.0020 (13)
N70.0655 (17)0.0490 (14)0.0513 (15)0.0082 (12)0.0033 (12)0.0009 (12)
O10.1065 (18)0.0453 (11)0.0493 (13)0.0069 (11)0.0120 (12)0.0007 (9)
O20.0857 (17)0.0755 (15)0.0519 (14)0.0201 (12)0.0063 (12)0.0082 (11)
O30.0627 (15)0.0675 (14)0.0969 (18)0.0187 (12)0.0090 (13)0.0079 (12)
O40.244 (4)0.0713 (18)0.0722 (18)0.027 (2)0.046 (2)0.0084 (14)
O50.153 (3)0.106 (2)0.0549 (16)0.0167 (19)0.0024 (17)0.0058 (14)
O60.148 (3)0.0690 (15)0.0753 (17)0.0389 (16)0.0009 (16)0.0061 (14)
O70.095 (2)0.0828 (18)0.111 (2)0.0201 (15)0.0245 (17)0.0184 (15)
Geometric parameters (Å, º) top
C1—O11.257 (3)C10—N61.323 (4)
C1—C21.438 (4)C10—C111.368 (4)
C1—C61.449 (4)C10—H100.9300
C2—C31.369 (4)C11—C121.357 (4)
C2—N11.461 (4)C11—H110.9300
C3—C41.378 (4)C12—N71.321 (4)
C3—H30.9300C12—H120.9300
C4—C51.380 (4)N1—O21.214 (3)
C4—N21.453 (4)N1—O31.216 (3)
C5—C61.367 (4)N2—O41.210 (4)
C5—H50.9300N2—O51.225 (4)
C6—N31.454 (4)N3—O61.216 (3)
C7—N41.316 (4)N3—O71.219 (3)
C7—C81.370 (4)N4—N51.330 (4)
C7—H70.9300N4—H4A0.862 (10)
C8—C91.352 (5)N5—H5A0.865 (10)
C8—H80.9300N6—N71.323 (3)
C9—N51.335 (4)N6—H6A0.861 (10)
C9—H90.9300N7—H7A0.861 (10)
O1—C1—C2123.9 (3)C11—C10—H10124.9
O1—C1—C6124.2 (3)C12—C11—C10105.1 (3)
C2—C1—C6111.9 (2)C12—C11—H11127.5
C3—C2—C1124.4 (3)C10—C11—H11127.5
C3—C2—N1115.8 (2)N7—C12—C11107.7 (3)
C1—C2—N1119.8 (2)N7—C12—H12126.1
C2—C3—C4119.3 (3)C11—C12—H12126.1
C2—C3—H3120.3O2—N1—O3123.3 (3)
C4—C3—H3120.3O2—N1—C2119.2 (2)
C3—C4—C5120.9 (3)O3—N1—C2117.5 (3)
C3—C4—N2119.0 (3)O4—N2—O5123.3 (3)
C5—C4—N2120.1 (3)O4—N2—C4118.9 (3)
C6—C5—C4119.5 (3)O5—N2—C4117.8 (3)
C6—C5—H5120.3O6—N3—O7122.3 (3)
C4—C5—H5120.3O6—N3—C6119.8 (3)
C5—C6—C1123.9 (3)O7—N3—C6117.8 (3)
C5—C6—N3116.4 (3)C7—N4—N5106.9 (3)
C1—C6—N3119.7 (3)C7—N4—H4A131 (5)
N4—C7—C8110.1 (3)N5—N4—H4A122 (5)
N4—C7—H7125.0N4—N5—C9109.7 (3)
C8—C7—H7125.0N4—N5—H5A120 (2)
C9—C8—C7105.3 (3)C9—N5—H5A130 (2)
C9—C8—H8127.3C10—N6—N7106.2 (2)
C7—C8—H8127.3C10—N6—H6A127 (4)
N5—C9—C8108.0 (3)N7—N6—H6A126 (4)
N5—C9—H9126.0C12—N7—N6110.8 (3)
C8—C9—H9126.0C12—N7—H7A128 (2)
N6—C10—C11110.2 (3)N6—N7—H7A121 (2)
N6—C10—H10124.9
O1—C1—C2—C3179.5 (3)C10—C11—C12—N70.2 (4)
C6—C1—C2—C30.3 (4)C3—C2—N1—O2148.3 (3)
O1—C1—C2—N11.3 (4)C1—C2—N1—O231.0 (4)
C6—C1—C2—N1179.0 (2)C3—C2—N1—O329.2 (4)
C1—C2—C3—C42.0 (4)C1—C2—N1—O3151.5 (3)
N1—C2—C3—C4177.3 (2)C3—C4—N2—O44.1 (5)
C2—C3—C4—C51.3 (4)C5—C4—N2—O4175.5 (3)
C2—C3—C4—N2179.1 (3)C3—C4—N2—O5176.2 (3)
C3—C4—C5—C61.1 (4)C5—C4—N2—O54.2 (5)
N2—C4—C5—C6178.5 (3)C5—C6—N3—O6152.3 (3)
C4—C5—C6—C13.1 (4)C1—C6—N3—O628.5 (4)
C4—C5—C6—N3177.7 (3)C5—C6—N3—O724.9 (4)
O1—C1—C6—C5178.0 (3)C1—C6—N3—O7154.4 (3)
C2—C1—C6—C52.3 (4)C8—C7—N4—N50.1 (4)
O1—C1—C6—N31.3 (4)C7—N4—N5—C90.1 (3)
C2—C1—C6—N3178.5 (2)C8—C9—N5—N40.0 (4)
N4—C7—C8—C90.2 (4)C11—C10—N6—N70.2 (4)
C7—C8—C9—N50.1 (4)C11—C12—N7—N60.1 (4)
N6—C10—C11—C120.2 (4)C10—N6—N7—C120.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N60.86 (1)1.81 (1)2.663 (3)173 (7)
N5—H5A···O1i0.87 (1)1.95 (1)2.789 (3)163 (3)
N5—H5A···O6i0.87 (1)2.42 (3)2.961 (4)121 (3)
N6—H6A···N40.86 (1)1.81 (1)2.663 (3)174 (7)
N7—H7A···O10.86 (1)2.04 (2)2.864 (3)160 (3)
N7—H7A···O20.86 (1)2.29 (3)2.841 (3)122 (3)
C12—H12···O4ii0.932.613.512 (5)165
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1.
 

Acknowledgements

We thank Dr Xiang-gao Meng for his helpful discussions about this crystal structure.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlagden, N., Coles, S. J. & Berry, D. J. (2014). CrystEngComm, 16, 5753–5761.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhanabal, T., Amirthaganesan, G., Dhandapani, M. & Das, S. K. (2013). J. Mol. Struct. 1035, 483–492.  CrossRef CAS Google Scholar
First citationDuggirala, N. K., Perry, M. L., Almarsson, O. & Zaworotko, M. J. (2016). Chem. Commun. 52, 640–655.  CrossRef CAS Google Scholar
First citationGomathi, J. & Kalaivani, D. (2015). Acta Cryst. E71, 1196–1198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimpi, M. R., Childs, S. L., Boström, D. & Velaga, S. P. (2014). CrystEngComm, 16, 8984–8993.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, U. P., Goel, N., Singh, G. & Srivastava, P. (2012). Supramol. Chem. 24, 285–297.  CrossRef CAS Google Scholar
First citationSong, X., Su, P. & Xu, X. (2016). Acta Cryst. E72, 772–775.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, P., Huang, X.-Y. & Meng, X. (2008). Acta Cryst. E64, o2217–o2218.  CrossRef IUCr Journals Google Scholar
First citationZakharov, B. A., Ghazaryan, V. V., Boldyreva, E. V. & Petrosyan, A. M. (2015). J. Mol. Struct. 1100, 255–263.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds