research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [tris­­(pyridin-2-ylmeth­yl)amine-κ4N]copper(II) bromide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Physics, Saint Mary's College, Notre Dame, IN 46556, USA, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: koshin@saintmarys.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 28 April 2016; accepted 5 May 2016; online 10 May 2016)

In the asymmetric unit of the title compound, [CuBr(C18H18N4)]Br, there are three crystallographically independent cations. One of the cations exhibits positional disorder of the pyridin-2-yl­methyl groups over two sets of sites with refined occupancies of 0.672 (8) and 0.328 (8). The outer-sphere bromine counter-ion is severely disordered over multiple sites. In each cation, the CuII ion is coordinated by the four N atoms of the tris­(pyridin-2-ylmeth­yl)amine ligand and one bromine and adopts a slightly distorted trigonal–bipyramidal geometry.

1. Chemical context

Atom Transfer Radical Addition (ATRA) reactions involve the formation of carbon–carbon bonds through the addition of saturated poly-halogenated hydro­carbons to alkenes (Eckenhoff & Pintauer, 2010[Eckenhoff, W. T. & Pintauer, T. (2010). Catal. Rev. 52, 1-59.]). First reported by Kharasch in the 1940s (Kharasch et al., 1945[Kharasch, M. S., Jensen, E. V. & Urry, W. H. (1945). Science, 102, 128-129.]), the reaction incorporates halogen-group functionalities within products which can be used as starting reagents in further functionalization reactions (Iqbal et al., 1994[Iqbal, J., Bhatia, B. & Nayyar, N. K. (1994). Chem. Rev. 94, 519-564.]). Subsequently, ATRA reactions have emerged as some of the most atom-economical methods for simultaneously forming C—C and C—X bonds, leading to the production of more attractive mol­ecules (Eckenhoff & Pintauer, 2010[Eckenhoff, W. T. & Pintauer, T. (2010). Catal. Rev. 52, 1-59.]). Most ATRA reactions proceed in the presence of a free-radical precursor or transition metal complex (catalyst), as the halogen-atom transfer agent and have been efficiently catalyzed by complexes incorporating nickel, ruthenium, iron, and copper (Eckenhoff et al., 2008[Eckenhoff, W. T., Garrity, S. T. & Pintauer, T. (2008). Eur. J. Inorg. Chem. pp. 563-571.]). Studies suggest that the type of ligands used in ATRA reactions significantly influence the behavior of the catalyst generated due to different steric and electronic inter­actions with the metal atom (Matyjaszewski et al., 2001[Matyjaszewski, K., Göbelt, B., Paik, H. & Horwitz, C. (2001). Macromolecules, 34, 430-440.]). Copper complexes made with tetra­dentate nitro­gen-based ligands such as tris­[2-(di­methyl­amino)­eth­yl]amine (Me6TREN), 1,4,8,11-tetra­aza-1,4,8,11-tetra­methyl­cyclo­tetra­decane (Me6CYCLAM), and tris­(pyridin-2-yl­meth­yl)amine (TPMA) are currently some of the most active multi-dentate ligand structures used in atom-transfer radical reactions (Tang et al., 2008[Tang, W., Kwak, Y., Braunecker, W., Tsarevsky, N. V., Coote, M. L. & Matyjaszewski, K. (2008). J. Am. Chem. Soc. 130, 10702-10713.]). Given the significance and application of complexes made from these tetra­dentate ligands, we report on the synthesis and crystal structure of the title compound [CuBr(C18H18N4)]Br (I)[link] which incorporates tris(pyridin-2-yl­meth­yl)amine.

[Scheme 1]

2. Structural commentary

There are three crystallographically independent copper(II) atoms within the asymmetric unit reported herein (Fig. 1[link]). Each of the atoms adopts a slightly distorted trigonal–bipyramidal geometry and is coordinated by the four nitro­gen atoms of the tris­(pyridin-2-yl­meth­yl)amine ligand and one bromine atom (Table 1[link]). The amine nitro­gen and bromine atoms adopt the apical positions of the coordination environment and the pyridine nitro­gen atoms are located in the equatorial plane. Derived metrics (bond lengths and angles) from the copper atoms to their respective coordinating atoms are typical (MOGUL analysis; Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). The τ-5 values for Cu1, Cu2 and Cu3 are 0.99, 0.99 and 0.89, respectively (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); the latter deviates the most from ideal geometry due to the disorder present in that mol­ecule.

Table 1
Selected geometric parameters (Å, °)

Cu1—N3 2.037 (7) Cu2—N6 2.071 (6)
Cu1—N1 2.054 (6) Cu2—Br2 2.3664 (12)
Cu1—N4 2.060 (6) Cu3—N11 2.004 (10)
Cu1—N2 2.060 (7) Cu3—N10 2.045 (7)
Cu1—Br1 2.3781 (12) Cu3—N9 2.046 (6)
Cu2—N5 2.035 (6) Cu3—N12 2.115 (6)
Cu2—N7 2.060 (6) Cu3—Br3 2.3715 (11)
Cu2—N8 2.061 (7)    
       
N3—Cu1—N1 81.5 (3) N8—Cu2—N6 118.1 (2)
N3—Cu1—N4 119.7 (3) N5—Cu2—Br2 177.8 (2)
N1—Cu1—N4 80.4 (3) N7—Cu2—Br2 97.18 (19)
N3—Cu1—N2 120.1 (3) N8—Cu2—Br2 98.5 (2)
N1—Cu1—N2 81.5 (3) N6—Cu2—Br2 100.86 (19)
N4—Cu1—N2 113.3 (3) N11—Cu3—N10 126.2 (4)
N3—Cu1—Br1 98.9 (2) N11—Cu3—N9 82.6 (3)
N1—Cu1—Br1 179.4 (2) N10—Cu3—N9 81.3 (3)
N4—Cu1—Br1 99.82 (18) N11—Cu3—N12 118.1 (4)
N2—Cu1—Br1 97.8 (2) N10—Cu3—N12 110.5 (4)
N5—Cu2—N7 81.3 (3) N9—Cu3—N12 83.3 (3)
N5—Cu2—N8 81.0 (3) N11—Cu3—Br3 97.3 (3)
N7—Cu2—N8 118.7 (3) N10—Cu3—Br3 98.4 (2)
N5—Cu2—N6 81.2 (3) N9—Cu3—Br3 179.7 (2)
N7—Cu2—N6 116.3 (2) N12—Cu3—Br3 97.0 (2)
[Figure 1]
Figure 1
Labeling scheme for [tris­(pyridin-2-ylmeth­yl)amine]­copper(II) bromide. Atomic displacement ellipsoids depicted at 50% probability and H atoms as spheres of arbitrary radius. Some labels are omitted for clarity.

One of the three independent cations exhibits positional disorder of the pyridin-2-yl­methyl groups (see Refinement below for specific details). Despite this disorder, the connectivity is unequivocal. Unlike the polymorphic structure (Eckenhoff et al., 2008[Eckenhoff, W. T., Garrity, S. T. & Pintauer, T. (2008). Eur. J. Inorg. Chem. pp. 563-571.]) that has crystallographically imposed symmetry on the pyridin-2-yl­methyl arms, the pyridin-2-yl­methyl groups on the cations reported here have geometries independent of the others. Furthermore, the structure here is mixture of Δ and Λ conformations of the ligand, whereas Eckenhoff's structure has chirally resolved upon crystallization.

3. Supra­molecular features

The prominent feature of the crystal packing within this structure is the excessive positional disorder of the outer-sphere bromine anions. These are observed in a channel within the lattice (Fig. 2[link]) that presumably has unresolvable solvent of crystallization also present. Because there are no prominent charge surfaces, packing is solely due to van der Waals inter­actions.

[Figure 2]
Figure 2
Packing diagram of [tris­(pyridin-2-ylmeth­yl)amine]­copper(II) bromide, viewed along the b axis, highlighting the channels in which disordered bromine ions reside. H atoms and the minor disorder components are omitted for clarity. Atomic displacement parameters depicted at 50% probability.

4. Database survey

There are six reported copper(II) bromide structures deposited in the Cambridge Structure Database incorporating the tris­(pyridin-2-yl­meth­yl)amine ligand derivatives (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; CSD Version 5.37 plus one update). Of those six structures, one is a dimer incorporating two bridging bromine ligands (Maiti et al., 2007[Maiti, D., Woertink, J. S., Vance, M. A., Milligan, A. E., Narducci Sarjeant, A. A., Solomon, E. I. & Karlin, K. D. (2007). J. Am. Chem. Soc. 129, 8882-8892.]) and the remaining five are monomers. Out of the five monomer structures, three incorporate methyl or meth­oxy electron-withdrawing groups (Kaur et al., 2015[Kaur, A., Ribelli, T. G., Schröder, K., Matyjaszewski, K. & Pintauer, T. (2015). Inorg. Chem. 54, 1474-1486.]), while one incorporates hydroxyl electron-donating groups (He et al., 2000[He, Z., Chaimungkalanont, P., Craig, D. C. & Colbran, S. B. (2000). J. Chem. Soc. Dalton Trans. pp. 1419-1429.]). The final structure is a polymorph of that presented here: it incorporates an unsubstituted TPMA ligand framework but adopts a different space group (cubic, P213) and unit-cell parameters (a = 12.633 Å) due to lack of disorder in the ligand framework (Eckenhoff et al., 2008[Eckenhoff, W. T., Garrity, S. T. & Pintauer, T. (2008). Eur. J. Inorg. Chem. pp. 563-571.]). Of the six total reported structures, four adopt similar distorted five-coordinate geometries as observed in complex (I)[link], while two adopt a distorted six-coordinate geometry about the metal atom.

5. Synthesis and crystallization

Synthesis of tris­(pyridin-2-yl­meth­yl)amine (TPMA) ligand: the TPMA ligand was synthesized according to modified literature procedures (Britovsek et al., 2005[Britovsek, G. P., England, J. & White, A. P. (2005). Inorg. Chem. 44, 8125-8134.]). A 500 mL round-bottom flask was charged with 100 mL of di­chloro­methane solvent. While mixing, 2-(amino­meth­yl)pyridine (1.62 mL, 15.0 mmol) and sodium tri­acet­oxy­borohydride (9.63 g, 44.2 mmol) were added, generating a clear-colored solution. 2-Pyridine­carboxaldehyde (3.38 g, 31.54 mmol) was slowly added to the mixture, producing a yellow-colored solution. The reaction was allowed to mix for 24 h and inter­rupted with the addition of sodium hydrogen carbonate until a pH of 10 was achieved. Extractions were performed on the resulting solution with ethyl acetate and the organic layers collected. The organic layer was subsequently dried using magnesium sulfate (MgSO4) and solvent removed using a rotary evaporator to generate a yellow residue. This residue was dried under vacuum for three h to produce the desired ligand as a yellow solid (4.43 g, 97%). 1H NMR (CDCl3, 400 MHz): δ3.86 (s, 2H), δ7.51 (d, 1H), δ7.63 (t, 1H), δ 8.52 (d, 1H). 13C NMR (CDCl3, 400 MHz): δ 60.60, 122.35, 123.32, 136.59, 149.35, 159.81. FT–IR (solid) v (cm−1): 3048 (s), 3009 (s), 2920 (s), 2803 (s), 1585 (s), 1566 (s), 970 (s), 745 (s).

[Scheme 2]

Synthesis of tris(pyridin-2-yl­meth­yl)amine copper(II) bromide complex: TPMA (0.500 g, 1.72 mmol) was dissolved in 15 mL methanol in a 100 mL round-bottom flask. Copper(II) bromide (0.384 g, 1.72 mmol) was added to the flask to give a greenish-blue-colored solution. The reaction was allowed to mix for one hour then 30 mL of diethyl ether was transferred into the flask, facilitating the precipitation of the desired complex as a green powder. The mixture was filtered and the precipitate washed with excess diethyl ether solvent. The precipitate was dried under vacuum for 30 minutes to yield a green-colored solid (1.44 g, 94%). TOF–ESI–MS: (m/z) [M – (Br)]+ calculated for C18H18N4CuBr = 432.00, found 432.03. FT–IR (solid): v (cm−1) = 3337 (b), 2018 (s), 1600 (s), 1473 (s), 1426 (s), 1257 (s), 1150 (s), 1015 (s), 949 (s), 837 (s). UV–Vis: λmax (MeOH) = 700 nm. Green-colored single crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a concentrated complex solution made in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The two ordered cations, the major occupancy component of the disordered cation and all outer-sphere bromine atoms were modeled with anisotropic atomic displacement parameters. The minor occupancy component of the disordered cation was modeled with isotropic atomic displacement parameters. Hydrogen atoms were included in geometrically calculated positions with C—H = 0.99 (methyl­ene) and 0.95 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [CuBr(C18H18N4)]Br
Mr 513.72
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 11.5415 (7), 15.2747 (9), 19.9663 (12)
α, β, γ (°) 88.425 (2), 75.894 (2), 69.650 (2)
V3) 3194.4 (3)
Z 6
Radiation type Mo Kα
μ (mm−1) 4.79
Crystal size (mm) 0.30 × 0.30 × 0.26
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT, SADABS and XP. Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.688, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 25682, 13032, 10550
Rint 0.020
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.254, 1.04
No. of reflections 13032
No. of parameters 769
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.78, −1.50
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT, SADABS and XP. Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.]), SHELXT2014/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Bruker, 2015[Bruker (2015). APEX3, SAINT, SADABS and XP. Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The disorder of the pyridin-2-yl­methyl groups was observed as residual electron density oriented in approximately a mirror to the major occupancy components. The occupancies of the two components were refined summed to unity, yielding an approximately 0.67:0.33 ratio. The pyridine rings for both components were constrained to an ideal hexa­gon, with C—C = 1.39 Å.

All of the outer-sphere, non-coordinating bromine counter-ions were found to be disordered over multiple sites. Initially, occupancies were refined freely to identify possible site pairings. One bromine (Br4) was found to be nearly fully located at one site. In subsequent refinement cycles, residual density adjacent to the site was revealed and ultimately modeled as a bromine disordered over two sites with occupancies 0.80:0.20. Two bromine sites whose occupancies refined independently to nearly 50% were both set to 50% occupancy and assumed to be disorder of the same bromine atom (Br5/5A). Final residual electron density ranging from 8 to 13 e Å−3 was observed. Because an additional bromine was required for charge balance and there were no other counter-ions used during synthesis, it was assumed that the final bromine was disordered over multiple sites, presumably in concert with solvent from crystallization. Ultimately, seven locations were refined as partial-occupancy bromine atoms with a total occupancy summed to unity, yielding a 0.13:0.17:0.17:0.20:0.11:0.12:0.10 ratio of sites. The solvent contribution could not be reliably modeled.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT-2014/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: XP (Bruker, 2015); software used to prepare material for publication: publCIF (Westrip, 2010).

[Tris(pyridin-2-ylmethyl)amine-κ4N]copper(II) bromide top
Crystal data top
[CuBr(C18H18N4)]BrZ = 6
Mr = 513.72F(000) = 1518
Triclinic, P1Dx = 1.602 Mg m3
a = 11.5415 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.2747 (9) ÅCell parameters from 9798 reflections
c = 19.9663 (12) Åθ = 2.4–26.3°
α = 88.425 (2)°µ = 4.79 mm1
β = 75.894 (2)°T = 120 K
γ = 69.650 (2)°Block, green
V = 3194.4 (3) Å30.30 × 0.30 × 0.26 mm
Data collection top
Bruker APEXII
diffractometer
13032 independent reflections
Radiation source: fine-focus sealed tube10550 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.020
combination of ω and φ–scansθmax = 26.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1414
Tmin = 0.688, Tmax = 0.862k = 1919
25682 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: real-space vector search
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.254H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1449P)2 + 25.6015P]
where P = (Fo2 + 2Fc2)/3
13032 reflections(Δ/σ)max = 0.027
769 parametersΔρmax = 3.78 e Å3
1 restraintΔρmin = 1.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The outer sphere bromine anion atoms were all found to be disordered over multiple sites. Br4/4A was found to occupy two sites close to each other and was refined with occupancies summed to unity yielding an approximate 0.83:0.17 ratio. Br5/5A was modeled as two half occupancy bromine atoms from an initial, independent, refinement of the occupancies for these sites. Br6 is disordered over multiple sites. Occupancies of the sites were refined summed to unity yielding an approximately 0.14:0.17:0.17:0.20:0.11:0.12:0.09 ratio of site occupancies.

Attempts to model this disorder as undifferentiated solvent did not meet with success. Furthermore, because the electron density associated with this is located within the enveloped developed by SQUEEZE, this routine could not be employed. The result is that there is some additional residual electron density that cannot be reliably accounted for.

Presumably there is solvent of crystallization present at the sites when they are not occupied by anions. This was not modeled.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.29355 (9)0.21210 (6)0.12631 (5)0.0349 (2)
Br10.28112 (9)0.08631 (6)0.19713 (5)0.0542 (3)
N10.3062 (6)0.3198 (4)0.0645 (3)0.0357 (14)
N20.4733 (6)0.1456 (5)0.0635 (4)0.0431 (16)
N30.2663 (7)0.3099 (5)0.2015 (4)0.0418 (16)
N40.1495 (6)0.2241 (4)0.0789 (3)0.0337 (13)
C10.3979 (9)0.2781 (6)0.0032 (4)0.046 (2)
H1A0.43390.32460.02600.055*
H1B0.35270.26080.03400.055*
C20.5051 (8)0.1917 (6)0.0084 (5)0.046 (2)
C30.6262 (10)0.1613 (8)0.0350 (6)0.063 (3)
H30.64770.19570.07340.076*
C40.7151 (10)0.0802 (9)0.0217 (8)0.080 (4)
H40.79950.05900.05060.096*
C50.6831 (10)0.0305 (8)0.0323 (7)0.069 (3)
H50.74300.02700.04050.082*
C60.5597 (8)0.0659 (7)0.0757 (5)0.051 (2)
H60.53680.03260.11460.061*
C70.3496 (9)0.3801 (6)0.1005 (4)0.0426 (18)
H7A0.32770.44290.08190.051*
H7B0.44340.35300.09340.051*
C80.2855 (8)0.3877 (6)0.1763 (4)0.0413 (18)
C90.2535 (10)0.4680 (7)0.2179 (5)0.057 (2)
H90.26570.52270.19880.068*
C100.2035 (11)0.4664 (8)0.2878 (5)0.063 (3)
H100.17980.52060.31760.075*
C110.1881 (11)0.3863 (9)0.3143 (5)0.065 (3)
H110.15630.38410.36260.078*
C120.2189 (10)0.3083 (8)0.2701 (5)0.055 (2)
H120.20650.25330.28840.066*
C130.1770 (8)0.3701 (6)0.0540 (4)0.0396 (17)
H13A0.18340.40800.01310.048*
H13B0.12330.41280.09490.048*
C140.1174 (8)0.3004 (5)0.0431 (4)0.0365 (16)
C150.0359 (9)0.3132 (7)0.0003 (4)0.047 (2)
H150.01220.36890.02350.056*
C160.0100 (8)0.2432 (7)0.0068 (4)0.050 (2)
H160.06250.24850.03790.060*
C170.0196 (9)0.1657 (7)0.0305 (4)0.0453 (19)
H170.01350.11760.02670.054*
C180.0975 (8)0.1589 (6)0.0734 (4)0.0407 (18)
H180.11590.10610.10050.049*
Cu20.78574 (9)1.03414 (6)0.22801 (5)0.0341 (2)
Br20.94552 (9)0.97310 (6)0.12441 (4)0.0507 (3)
N50.6517 (6)1.0824 (5)0.3189 (3)0.0366 (14)
N60.7077 (6)1.1724 (4)0.2059 (3)0.0346 (13)
N70.9054 (6)1.0078 (4)0.2935 (3)0.0345 (13)
N80.6826 (7)0.9480 (4)0.2270 (4)0.0428 (16)
C190.6282 (9)1.1832 (6)0.3303 (5)0.046 (2)
H19A0.69201.19060.35280.055*
H19B0.54241.21390.36150.055*
C200.6366 (7)1.2294 (5)0.2629 (4)0.0374 (17)
C210.5785 (8)1.3247 (6)0.2589 (5)0.047 (2)
H210.52611.36400.29900.056*
C220.5998 (9)1.3609 (6)0.1940 (5)0.051 (2)
H220.56311.42630.18990.061*
C230.6724 (9)1.3040 (6)0.1362 (5)0.048 (2)
H230.68651.32880.09200.058*
C240.7246 (8)1.2095 (6)0.1439 (5)0.0415 (18)
H240.77431.16910.10400.050*
C250.7049 (8)1.0265 (7)0.3737 (4)0.0457 (19)
H25A0.68980.96640.37530.055*
H25B0.66131.06110.41940.055*
C260.8459 (8)1.0079 (6)0.3590 (4)0.0407 (18)
C270.9092 (10)0.9863 (7)0.4114 (5)0.052 (2)
H270.86440.98410.45780.062*
C281.0400 (11)0.9678 (8)0.3942 (6)0.061 (3)
H281.08580.95500.42910.074*
C291.1022 (10)0.9683 (7)0.3262 (6)0.057 (2)
H291.19190.95420.31350.068*
C301.0333 (9)0.9894 (6)0.2762 (5)0.0443 (19)
H301.07610.99100.22930.053*
C310.5351 (8)1.0677 (6)0.3124 (5)0.048 (2)
H31A0.48851.11770.28600.057*
H31B0.47841.07010.35890.057*
C320.5716 (8)0.9739 (6)0.2755 (6)0.055 (3)
C330.4913 (10)0.9229 (8)0.2883 (10)0.093 (5)
H330.41250.94440.32240.112*
C340.5301 (13)0.8390 (9)0.2492 (12)0.128 (8)
H340.47850.80110.25670.154*
C350.6430 (12)0.8119 (7)0.2002 (9)0.085 (5)
H350.67090.75460.17330.102*
C360.7173 (11)0.8676 (6)0.1895 (6)0.058 (3)
H360.79510.84830.15450.069*
Cu30.78179 (9)0.55333 (7)0.25199 (4)0.0332 (2)
Br30.84691 (9)0.53090 (6)0.12962 (4)0.0474 (2)
N90.7248 (6)0.5733 (5)0.3575 (3)0.0336 (13)
C370.6067 (11)0.5541 (8)0.3805 (6)0.036 (3)0.672 (8)
H37A0.56080.58410.42740.043*0.672 (8)
H37B0.62660.48580.38300.043*0.672 (8)
C380.5254 (6)0.5897 (6)0.3329 (3)0.040 (3)0.672 (8)
C390.3929 (7)0.6198 (7)0.3517 (4)0.048 (3)0.672 (8)
H390.34900.62070.39870.058*0.672 (8)
C400.3247 (6)0.6484 (7)0.3016 (6)0.059 (4)0.672 (8)
H400.23410.66900.31440.071*0.672 (8)
C410.3889 (10)0.6470 (9)0.2328 (5)0.073 (9)0.672 (8)
H410.34230.66660.19860.087*0.672 (8)
C420.5214 (10)0.6170 (8)0.2140 (3)0.064 (11)0.672 (8)
H420.56530.61600.16700.077*0.672 (8)
N100.5897 (6)0.5883 (6)0.2641 (4)0.036 (2)0.672 (8)
C430.7222 (10)0.6622 (8)0.3746 (6)0.033 (2)0.672 (8)
H43A0.73080.66440.42260.040*0.672 (8)
H43B0.63880.70920.37270.040*0.672 (8)
C440.8253 (9)0.6864 (6)0.3276 (4)0.036 (3)0.672 (8)
C450.8754 (10)0.7504 (6)0.3455 (5)0.047 (3)0.672 (8)
H450.84350.78120.39040.056*0.672 (8)
C460.9721 (10)0.7694 (7)0.2977 (7)0.049 (5)0.672 (8)
H461.00640.81310.30990.059*0.672 (8)
C471.0188 (10)0.7243 (10)0.2320 (6)0.043 (5)0.672 (8)
H471.08490.73730.19930.052*0.672 (8)
C480.9687 (12)0.6603 (10)0.2141 (4)0.043 (5)0.672 (8)
H481.00050.62950.16910.052*0.672 (8)
N110.8719 (11)0.6413 (7)0.2618 (5)0.038 (4)0.672 (8)
C490.8310 (12)0.4950 (8)0.3817 (6)0.035 (2)0.672 (8)
H49A0.90630.51420.37620.042*0.672 (8)
H49B0.80000.48710.43150.042*0.672 (8)
C500.8702 (8)0.4041 (4)0.3422 (3)0.036 (3)0.672 (8)
C510.9133 (9)0.3163 (5)0.3678 (3)0.041 (3)0.672 (8)
H510.91690.31090.41480.049*0.672 (8)
C520.9512 (9)0.2362 (4)0.3246 (5)0.046 (3)0.672 (8)
H520.98070.17620.34210.055*0.672 (8)
C530.9460 (11)0.2441 (5)0.2558 (4)0.045 (4)0.672 (8)
H530.97190.18940.22630.053*0.672 (8)
C540.9028 (12)0.3319 (7)0.2302 (3)0.051 (5)0.672 (8)
H540.89920.33730.18310.061*0.672 (8)
N120.8649 (10)0.4120 (5)0.2734 (4)0.031 (2)0.672 (8)
C37A0.5973 (18)0.6729 (13)0.3737 (10)0.023 (4)*0.328 (8)
H37C0.54880.67810.42260.028*0.328 (8)
H37D0.62520.72750.36530.028*0.328 (8)
C38A0.5180 (11)0.6709 (10)0.3282 (6)0.025 (4)*0.328 (8)
C39A0.3857 (11)0.7107 (10)0.3429 (6)0.040 (6)*0.328 (8)
H39A0.33890.74230.38670.048*0.328 (8)
C40A0.3221 (9)0.7041 (12)0.2935 (7)0.030 (5)*0.328 (8)
H40A0.23170.73130.30360.036*0.328 (8)
C41A0.3907 (12)0.6578 (13)0.2294 (6)0.026 (7)*0.328 (8)
H41A0.34720.65340.19570.031*0.328 (8)
C42A0.5229 (12)0.6180 (10)0.2147 (5)0.012 (8)*0.328 (8)
H42A0.56980.58640.17090.015*0.328 (8)
N10A0.5866 (9)0.6246 (8)0.2641 (6)0.017 (4)*0.328 (8)
C43A0.8177 (18)0.6049 (14)0.3841 (10)0.023 (4)*0.328 (8)
H43C0.77190.64220.42850.028*0.328 (8)
H43D0.88600.54890.39340.028*0.328 (8)
C44A0.8751 (18)0.6595 (12)0.3373 (8)0.032 (6)*0.328 (8)
C45A0.9284 (19)0.7224 (13)0.3536 (7)0.026 (5)*0.328 (8)
H45A0.92120.73760.40060.031*0.328 (8)
C46A0.992 (2)0.7630 (15)0.3010 (11)0.041 (9)*0.328 (8)
H46A1.02860.80600.31220.049*0.328 (8)
C47A1.003 (2)0.7407 (19)0.2323 (9)0.031 (8)*0.328 (8)
H47A1.04630.76850.19640.037*0.328 (8)
C48A0.949 (3)0.6778 (18)0.2160 (7)0.019 (6)*0.328 (8)
H48A0.95650.66260.16900.023*0.328 (8)
N11A0.886 (2)0.6372 (13)0.2685 (10)0.016 (6)*0.328 (8)
C49A0.6874 (19)0.5069 (14)0.3899 (10)0.023 (4)*0.328 (8)
H49C0.59880.51620.38850.028*0.328 (8)
H49D0.69150.50740.43890.028*0.328 (8)
C50A0.7774 (15)0.4172 (9)0.3521 (7)0.028 (4)*0.328 (8)
C51A0.8117 (16)0.3309 (10)0.3808 (6)0.042 (6)*0.328 (8)
H51A0.78010.32630.42890.051*0.328 (8)
C52A0.8923 (17)0.2511 (8)0.3392 (8)0.040 (7)*0.328 (8)
H52A0.91570.19200.35880.048*0.328 (8)
C53A0.9385 (18)0.2577 (10)0.2688 (8)0.027 (6)*0.328 (8)
H53A0.99350.20310.24030.032*0.328 (8)
C54A0.9041 (17)0.3441 (13)0.2401 (6)0.009 (4)*0.328 (8)
H54A0.93570.34860.19200.011*0.328 (8)
N12A0.8236 (15)0.4238 (10)0.2818 (7)0.027 (6)*0.328 (8)
Br40.2753 (9)0.6342 (2)0.06977 (13)0.0424 (9)0.80 (4)
Br4A0.320 (5)0.626 (2)0.0748 (10)0.046 (6)0.20 (4)
Br50.9243 (4)0.4418 (2)0.53149 (17)0.1024 (11)0.5
Br5A0.66590 (18)0.18484 (14)0.53556 (10)0.0538 (5)0.5
Br6A0.6049 (11)0.0709 (6)0.5606 (3)0.083 (4)0.136 (3)
Br6B0.3821 (5)0.4517 (7)0.4322 (2)0.085 (3)0.171 (3)
Br6C0.8053 (6)0.1392 (5)0.5725 (4)0.059 (2)0.167 (3)
Br6D0.7729 (6)0.1886 (7)0.5463 (3)0.090 (3)0.198 (3)
Br6E0.4331 (9)0.1069 (7)0.5323 (4)0.053 (3)0.107 (3)
Br6F0.5711 (7)0.5148 (6)0.0703 (4)0.051 (2)0.125 (3)
Br6G1.0726 (13)0.7636 (11)0.4667 (8)0.078 (4)0.096 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0329 (5)0.0306 (5)0.0386 (5)0.0070 (4)0.0112 (4)0.0110 (4)
Br10.0519 (5)0.0450 (5)0.0618 (6)0.0129 (4)0.0160 (4)0.0285 (4)
N10.044 (4)0.033 (3)0.032 (3)0.016 (3)0.009 (3)0.005 (3)
N20.034 (3)0.041 (4)0.052 (4)0.010 (3)0.011 (3)0.000 (3)
N30.043 (4)0.047 (4)0.038 (4)0.011 (3)0.023 (3)0.010 (3)
N40.036 (3)0.033 (3)0.029 (3)0.009 (3)0.008 (2)0.002 (2)
C10.049 (5)0.049 (5)0.038 (4)0.022 (4)0.000 (4)0.001 (4)
C20.043 (5)0.044 (5)0.053 (5)0.021 (4)0.006 (4)0.004 (4)
C30.060 (6)0.059 (6)0.068 (7)0.031 (5)0.007 (5)0.011 (5)
C40.039 (5)0.065 (7)0.117 (11)0.016 (5)0.015 (6)0.020 (7)
C50.043 (5)0.056 (6)0.094 (9)0.001 (5)0.015 (5)0.006 (6)
C60.038 (4)0.047 (5)0.063 (6)0.007 (4)0.016 (4)0.001 (4)
C70.051 (5)0.037 (4)0.046 (5)0.018 (4)0.018 (4)0.011 (3)
C80.046 (4)0.043 (4)0.045 (5)0.017 (4)0.027 (4)0.008 (3)
C90.067 (6)0.054 (6)0.055 (6)0.014 (5)0.034 (5)0.003 (4)
C100.074 (7)0.069 (7)0.047 (5)0.014 (5)0.033 (5)0.008 (5)
C110.064 (6)0.094 (9)0.039 (5)0.018 (6)0.026 (5)0.004 (5)
C120.065 (6)0.069 (6)0.039 (5)0.023 (5)0.027 (4)0.011 (4)
C130.047 (4)0.035 (4)0.033 (4)0.005 (3)0.017 (3)0.005 (3)
C140.040 (4)0.036 (4)0.028 (4)0.006 (3)0.010 (3)0.002 (3)
C150.050 (5)0.054 (5)0.031 (4)0.005 (4)0.020 (4)0.009 (4)
C160.041 (5)0.073 (6)0.035 (4)0.015 (4)0.014 (4)0.007 (4)
C170.048 (5)0.056 (5)0.034 (4)0.025 (4)0.004 (3)0.008 (4)
C180.041 (4)0.047 (5)0.031 (4)0.015 (4)0.003 (3)0.002 (3)
Cu20.0355 (5)0.0312 (5)0.0343 (5)0.0097 (4)0.0087 (4)0.0037 (4)
Br20.0523 (5)0.0471 (5)0.0380 (5)0.0038 (4)0.0037 (4)0.0084 (4)
N50.033 (3)0.039 (3)0.038 (3)0.014 (3)0.007 (3)0.002 (3)
N60.030 (3)0.030 (3)0.042 (4)0.008 (2)0.009 (3)0.006 (3)
N70.035 (3)0.034 (3)0.038 (3)0.016 (3)0.011 (3)0.003 (3)
N80.046 (4)0.026 (3)0.064 (5)0.007 (3)0.034 (4)0.003 (3)
C190.046 (5)0.043 (5)0.045 (5)0.014 (4)0.007 (4)0.011 (4)
C200.032 (4)0.035 (4)0.047 (4)0.014 (3)0.008 (3)0.002 (3)
C210.038 (4)0.040 (4)0.058 (5)0.008 (4)0.011 (4)0.011 (4)
C220.049 (5)0.034 (4)0.070 (6)0.010 (4)0.020 (4)0.000 (4)
C230.050 (5)0.034 (4)0.059 (5)0.013 (4)0.013 (4)0.009 (4)
C240.037 (4)0.039 (4)0.045 (5)0.011 (3)0.007 (3)0.001 (3)
C250.042 (4)0.051 (5)0.038 (4)0.013 (4)0.005 (3)0.000 (4)
C260.047 (5)0.036 (4)0.042 (4)0.014 (3)0.017 (4)0.001 (3)
C270.063 (6)0.054 (5)0.038 (5)0.014 (4)0.023 (4)0.011 (4)
C280.076 (7)0.062 (6)0.065 (7)0.031 (5)0.042 (6)0.015 (5)
C290.054 (6)0.057 (6)0.073 (7)0.026 (5)0.032 (5)0.014 (5)
C300.048 (5)0.039 (4)0.056 (5)0.024 (4)0.020 (4)0.011 (4)
C310.030 (4)0.043 (5)0.066 (6)0.013 (3)0.007 (4)0.001 (4)
C320.034 (4)0.035 (4)0.110 (8)0.011 (4)0.044 (5)0.011 (5)
C330.031 (5)0.054 (6)0.200 (17)0.011 (5)0.045 (7)0.001 (8)
C340.057 (8)0.049 (7)0.30 (3)0.019 (6)0.089 (12)0.016 (10)
C350.069 (8)0.040 (5)0.159 (14)0.002 (5)0.073 (9)0.022 (7)
C360.071 (6)0.029 (4)0.084 (7)0.006 (4)0.058 (6)0.000 (4)
Cu30.0383 (5)0.0402 (5)0.0208 (4)0.0115 (4)0.0105 (3)0.0043 (3)
Br30.0607 (5)0.0542 (5)0.0224 (4)0.0158 (4)0.0081 (3)0.0019 (3)
N90.034 (3)0.051 (4)0.023 (3)0.020 (3)0.014 (2)0.004 (3)
C370.042 (6)0.035 (6)0.026 (5)0.012 (5)0.003 (4)0.002 (4)
C380.044 (6)0.034 (6)0.042 (7)0.010 (5)0.018 (5)0.008 (5)
C390.037 (6)0.046 (7)0.060 (8)0.006 (5)0.019 (6)0.013 (6)
C400.043 (8)0.054 (9)0.085 (12)0.012 (6)0.033 (8)0.007 (8)
C410.078 (14)0.065 (12)0.100 (18)0.026 (9)0.067 (13)0.001 (10)
C420.10 (2)0.043 (10)0.078 (16)0.032 (9)0.067 (14)0.009 (7)
N100.053 (6)0.028 (6)0.033 (5)0.014 (4)0.021 (4)0.005 (4)
C430.034 (6)0.033 (6)0.029 (5)0.005 (4)0.011 (4)0.002 (4)
C440.049 (7)0.031 (6)0.030 (6)0.009 (5)0.018 (5)0.004 (4)
C450.035 (7)0.042 (7)0.057 (8)0.002 (6)0.020 (6)0.007 (6)
C460.031 (7)0.030 (7)0.082 (13)0.005 (5)0.013 (7)0.002 (6)
C470.024 (6)0.032 (7)0.065 (10)0.001 (6)0.014 (6)0.018 (6)
C480.032 (8)0.030 (8)0.054 (9)0.006 (6)0.014 (6)0.016 (5)
N110.040 (7)0.038 (7)0.028 (6)0.003 (5)0.008 (5)0.000 (4)
C490.047 (6)0.031 (5)0.027 (5)0.010 (5)0.018 (5)0.002 (4)
C500.038 (6)0.036 (6)0.028 (5)0.002 (5)0.012 (4)0.000 (4)
C510.041 (7)0.043 (7)0.034 (6)0.008 (5)0.010 (5)0.013 (5)
C520.049 (8)0.036 (6)0.041 (7)0.011 (6)0.001 (6)0.005 (5)
C530.041 (7)0.034 (7)0.054 (8)0.010 (5)0.008 (6)0.007 (6)
C540.051 (9)0.049 (9)0.052 (9)0.016 (7)0.011 (7)0.018 (7)
N120.032 (6)0.035 (6)0.025 (5)0.008 (5)0.010 (4)0.005 (4)
Br40.043 (2)0.0419 (7)0.0400 (7)0.0046 (8)0.0224 (8)0.0031 (5)
Br4A0.055 (12)0.051 (6)0.040 (4)0.028 (7)0.011 (5)0.002 (4)
Br50.119 (2)0.106 (2)0.0821 (19)0.060 (2)0.0087 (17)0.0372 (17)
Br5A0.0488 (10)0.0572 (11)0.0579 (11)0.0253 (8)0.0048 (8)0.0256 (9)
Br6A0.164 (9)0.078 (5)0.015 (3)0.090 (6)0.034 (4)0.004 (3)
Br6B0.037 (3)0.206 (9)0.010 (2)0.043 (4)0.0021 (18)0.001 (3)
Br6C0.053 (3)0.075 (4)0.048 (4)0.036 (3)0.006 (3)0.021 (3)
Br6D0.054 (3)0.139 (7)0.023 (2)0.023 (4)0.004 (2)0.005 (3)
Br6E0.056 (5)0.070 (6)0.042 (4)0.044 (5)0.006 (4)0.001 (4)
Br6F0.048 (4)0.060 (5)0.048 (4)0.017 (3)0.018 (3)0.007 (3)
Br6G0.070 (8)0.102 (10)0.088 (9)0.050 (7)0.042 (7)0.051 (8)
Geometric parameters (Å, º) top
Cu1—N32.037 (7)C36—H360.9500
Cu1—N12.054 (6)Cu3—N12A1.977 (12)
Cu1—N42.060 (6)Cu3—N112.004 (10)
Cu1—N22.060 (7)Cu3—N102.045 (7)
Cu1—Br12.3781 (12)Cu3—N92.046 (6)
N1—C71.465 (11)Cu3—N10A2.088 (9)
N1—C131.485 (10)Cu3—N11A2.114 (17)
N1—C11.495 (10)Cu3—N122.115 (6)
N2—C21.335 (12)Cu3—Br32.3715 (11)
N2—C61.339 (11)N9—C49A1.33 (2)
N3—C81.346 (11)N9—C431.398 (13)
N3—C121.347 (12)N9—C371.456 (13)
N4—C141.337 (10)N9—C43A1.52 (2)
N4—C181.348 (11)N9—C491.551 (12)
C1—C21.521 (13)N9—C37A1.68 (2)
C1—H1A0.9900C37—C381.459 (13)
C1—H1B0.9900C37—H37A0.9900
C2—C31.379 (13)C37—H37B0.9900
C3—C41.374 (18)C38—C391.3900
C3—H30.9500C38—N101.3900
C4—C51.353 (18)C39—C401.3900
C4—H40.9500C39—H390.9500
C5—C61.401 (14)C40—C411.3900
C5—H50.9500C40—H400.9500
C6—H60.9500C41—C421.3900
C7—C81.502 (12)C41—H410.9500
C7—H7A0.9900C42—N101.3900
C7—H7B0.9900C42—H420.9500
C8—C91.388 (13)C43—C441.475 (14)
C9—C101.377 (15)C43—H43A0.9900
C9—H90.9500C43—H43B0.9900
C10—C111.370 (17)C44—C451.3900
C10—H100.9500C44—N111.3900
C11—C121.391 (15)C45—C461.3900
C11—H110.9500C45—H450.9500
C12—H120.9500C46—C471.3900
C13—C141.499 (12)C46—H460.9500
C13—H13A0.9900C47—C481.3900
C13—H13B0.9900C47—H470.9500
C14—C151.382 (11)C48—N111.3900
C15—C161.373 (14)C48—H480.9500
C15—H150.9500C49—C501.485 (12)
C16—C171.367 (14)C49—H49A0.9900
C16—H160.9500C49—H49B0.9900
C17—C181.363 (12)C50—C511.3900
C17—H170.9500C50—N121.3900
C18—H180.9500C51—C521.3900
Cu2—N52.035 (6)C51—H510.9500
Cu2—N72.060 (6)C52—C531.3900
Cu2—N82.061 (7)C52—H520.9500
Cu2—N62.071 (6)C53—C541.3900
Cu2—Br22.3664 (12)C53—H530.9500
N5—C311.475 (11)C54—N121.3900
N5—C191.482 (11)C54—H540.9500
N5—C251.488 (11)C37A—C38A1.45 (2)
N6—C241.346 (11)C37A—H37C0.9900
N6—C201.352 (10)C37A—H37D0.9900
N7—C261.320 (11)C38A—C39A1.3900
N7—C301.360 (11)C38A—N10A1.3900
N8—C321.341 (13)C39A—C40A1.3900
N8—C361.339 (11)C39A—H39A0.9500
C19—C201.500 (12)C40A—C41A1.3900
C19—H19A0.9900C40A—H40A0.9500
C19—H19B0.9900C41A—C42A1.3900
C20—C211.384 (12)C41A—H41A0.9500
C21—C221.395 (14)C42A—N10A1.3900
C21—H210.9500C42A—H42A0.9500
C22—C231.367 (14)C43A—C44A1.43 (2)
C22—H220.9500C43A—H43C0.9900
C23—C241.377 (12)C43A—H43D0.9900
C23—H230.9500C44A—C45A1.3900
C24—H240.9500C44A—N11A1.3900
C25—C261.505 (12)C45A—C46A1.3900
C25—H25A0.9900C45A—H45A0.9500
C25—H25B0.9900C46A—C47A1.3900
C26—C271.387 (12)C46A—H46A0.9500
C27—C281.390 (15)C47A—C48A1.3900
C27—H270.9500C47A—H47A0.9500
C28—C291.374 (16)C48A—N11A1.3900
C28—H280.9500C48A—H48A0.9500
C29—C301.387 (13)C49A—C50A1.49 (2)
C29—H290.9500C49A—H49C0.9900
C30—H300.9500C49A—H49D0.9900
C31—C321.503 (13)C50A—C51A1.3900
C31—H31A0.9900C50A—N12A1.3900
C31—H31B0.9900C51A—C52A1.3900
C32—C331.380 (14)C51A—H51A0.9500
C33—C341.39 (2)C52A—C53A1.3900
C33—H330.9500C52A—H52A0.9500
C34—C351.36 (2)C53A—C54A1.3900
C34—H340.9500C53A—H53A0.9500
C35—C361.384 (17)C54A—N12A1.3900
C35—H350.9500C54A—H54A0.9500
N3—Cu1—N181.5 (3)N11—Cu3—N10126.2 (4)
N3—Cu1—N4119.7 (3)N12A—Cu3—N977.5 (5)
N1—Cu1—N480.4 (3)N11—Cu3—N982.6 (3)
N3—Cu1—N2120.1 (3)N10—Cu3—N981.3 (3)
N1—Cu1—N281.5 (3)N12A—Cu3—N10A113.6 (6)
N4—Cu1—N2113.3 (3)N9—Cu3—N10A80.5 (4)
N3—Cu1—Br198.9 (2)N12A—Cu3—N11A121.0 (8)
N1—Cu1—Br1179.4 (2)N9—Cu3—N11A79.7 (6)
N4—Cu1—Br199.82 (18)N10A—Cu3—N11A115.0 (7)
N2—Cu1—Br197.8 (2)N11—Cu3—N12118.1 (4)
C7—N1—C13111.9 (6)N10—Cu3—N12110.5 (4)
C7—N1—C1112.2 (7)N9—Cu3—N1283.3 (3)
C13—N1—C1110.0 (6)N12A—Cu3—Br3102.8 (5)
C7—N1—Cu1107.6 (5)N11—Cu3—Br397.3 (3)
C13—N1—Cu1107.1 (5)N10—Cu3—Br398.4 (2)
C1—N1—Cu1107.9 (5)N9—Cu3—Br3179.7 (2)
C2—N2—C6119.3 (8)N10A—Cu3—Br399.2 (3)
C2—N2—Cu1114.5 (6)N11A—Cu3—Br3100.3 (5)
C6—N2—Cu1126.0 (7)N12—Cu3—Br397.0 (2)
C8—N3—C12119.1 (8)C43—N9—C37117.6 (8)
C8—N3—Cu1113.2 (6)C49A—N9—C43A118.1 (12)
C12—N3—Cu1127.2 (7)C43—N9—C49111.6 (7)
C14—N4—C18118.0 (7)C37—N9—C49108.0 (8)
C14—N4—Cu1114.7 (5)C49A—N9—C37A107.2 (12)
C18—N4—Cu1126.8 (5)C43A—N9—C37A99.7 (10)
N1—C1—C2109.9 (7)C49A—N9—Cu3114.9 (9)
N1—C1—H1A109.7C43—N9—Cu3107.3 (6)
C2—C1—H1A109.7C37—N9—Cu3107.8 (5)
N1—C1—H1B109.7C43A—N9—Cu3109.9 (8)
C2—C1—H1B109.7C49—N9—Cu3103.4 (5)
H1A—C1—H1B108.2C37A—N9—Cu3105.0 (7)
N2—C2—C3121.7 (9)N9—C37—C38110.6 (8)
N2—C2—C1115.2 (7)N9—C37—H37A109.5
C3—C2—C1123.1 (9)C38—C37—H37A109.5
C4—C3—C2118.8 (11)N9—C37—H37B109.5
C4—C3—H3120.6C38—C37—H37B109.5
C2—C3—H3120.6H37A—C37—H37B108.1
C5—C4—C3120.3 (10)C39—C38—N10120.0
C5—C4—H4119.9C39—C38—C37124.6 (7)
C3—C4—H4119.9N10—C38—C37115.3 (7)
C4—C5—C6118.5 (10)C40—C39—C38120.0
C4—C5—H5120.7C40—C39—H39120.0
C6—C5—H5120.7C38—C39—H39120.0
N2—C6—C5121.3 (10)C39—C40—C41120.0
N2—C6—H6119.3C39—C40—H40120.0
C5—C6—H6119.3C41—C40—H40120.0
N1—C7—C8108.6 (7)C42—C41—C40120.0
N1—C7—H7A110.0C42—C41—H41120.0
C8—C7—H7A110.0C40—C41—H41120.0
N1—C7—H7B110.0N10—C42—C41120.0
C8—C7—H7B110.0N10—C42—H42120.0
H7A—C7—H7B108.3C41—C42—H42120.0
N3—C8—C9122.3 (9)C42—N10—C38120.0
N3—C8—C7115.4 (7)C42—N10—Cu3127.7 (4)
C9—C8—C7122.2 (8)C38—N10—Cu3112.1 (4)
C10—C9—C8118.3 (10)N9—C43—C44112.2 (8)
C10—C9—H9120.9N9—C43—H43A109.2
C8—C9—H9120.9C44—C43—H43A109.2
C11—C10—C9119.7 (10)N9—C43—H43B109.2
C11—C10—H10120.2C44—C43—H43B109.2
C9—C10—H10120.2H43A—C43—H43B107.9
C10—C11—C12119.8 (10)C45—C44—N11120.0
C10—C11—H11120.1C45—C44—C43123.8 (7)
C12—C11—H11120.1N11—C44—C43116.2 (7)
N3—C12—C11120.8 (10)C46—C45—C44120.0
N3—C12—H12119.6C46—C45—H45120.0
C11—C12—H12119.6C44—C45—H45120.0
N1—C13—C14109.4 (6)C45—C46—C47120.0
N1—C13—H13A109.8C45—C46—H46120.0
C14—C13—H13A109.8C47—C46—H46120.0
N1—C13—H13B109.8C46—C47—C48120.0
C14—C13—H13B109.8C46—C47—H47120.0
H13A—C13—H13B108.2C48—C47—H47120.0
N4—C14—C15122.4 (8)C47—C48—N11120.0
N4—C14—C13114.1 (7)C47—C48—H48120.0
C15—C14—C13123.5 (7)N11—C48—H48120.0
C16—C15—C14118.1 (8)C48—N11—C44120.0
C16—C15—H15121.0C48—N11—Cu3129.4 (6)
C14—C15—H15121.0C44—N11—Cu3110.6 (6)
C17—C16—C15120.2 (8)C50—C49—N9112.4 (7)
C17—C16—H16119.9C50—C49—H49A109.1
C15—C16—H16119.9N9—C49—H49A109.1
C18—C17—C16118.5 (8)C50—C49—H49B109.1
C18—C17—H17120.7N9—C49—H49B109.1
C16—C17—H17120.7H49A—C49—H49B107.9
N4—C18—C17122.7 (8)C51—C50—N12120.0
N4—C18—H18118.7C51—C50—C49125.7 (6)
C17—C18—H18118.7N12—C50—C49114.3 (6)
N5—Cu2—N781.3 (3)C52—C51—C50120.0
N5—Cu2—N881.0 (3)C52—C51—H51120.0
N7—Cu2—N8118.7 (3)C50—C51—H51120.0
N5—Cu2—N681.2 (3)C51—C52—C53120.0
N7—Cu2—N6116.3 (2)C51—C52—H52120.0
N8—Cu2—N6118.1 (2)C53—C52—H52120.0
N5—Cu2—Br2177.8 (2)C54—C53—C52120.0
N7—Cu2—Br297.18 (19)C54—C53—H53120.0
N8—Cu2—Br298.5 (2)C52—C53—H53120.0
N6—Cu2—Br2100.86 (19)N12—C54—C53120.0
C31—N5—C19111.0 (7)N12—C54—H54120.0
C31—N5—C25111.6 (7)C53—C54—H54120.0
C19—N5—C25111.9 (7)C54—N12—C50120.0
C31—N5—Cu2107.3 (5)C54—N12—Cu3128.6 (4)
C19—N5—Cu2108.3 (5)C50—N12—Cu3111.2 (4)
C25—N5—Cu2106.6 (5)C38A—C37A—N9108.1 (13)
C24—N6—C20119.2 (7)C38A—C37A—H37C110.1
C24—N6—Cu2127.7 (5)N9—C37A—H37C110.1
C20—N6—Cu2113.0 (5)C38A—C37A—H37D110.1
C26—N7—C30119.4 (7)N9—C37A—H37D110.1
C26—N7—Cu2113.1 (5)H37C—C37A—H37D108.4
C30—N7—Cu2127.5 (6)C39A—C38A—N10A120.0
C32—N8—C36117.7 (8)C39A—C38A—C37A126.4 (11)
C32—N8—Cu2113.4 (6)N10A—C38A—C37A113.6 (11)
C36—N8—Cu2128.6 (7)C38A—C39A—C40A120.0
N5—C19—C20110.5 (7)C38A—C39A—H39A120.0
N5—C19—H19A109.5C40A—C39A—H39A120.0
C20—C19—H19A109.5C41A—C40A—C39A120.0
N5—C19—H19B109.5C41A—C40A—H40A120.0
C20—C19—H19B109.5C39A—C40A—H40A120.0
H19A—C19—H19B108.1C40A—C41A—C42A120.0
N6—C20—C21121.7 (8)C40A—C41A—H41A120.0
N6—C20—C19115.9 (7)C42A—C41A—H41A120.0
C21—C20—C19122.4 (8)N10A—C42A—C41A120.0
C20—C21—C22117.5 (8)N10A—C42A—H42A120.0
C20—C21—H21121.3C41A—C42A—H42A120.0
C22—C21—H21121.3C42A—N10A—C38A120.0
C23—C22—C21121.2 (8)C42A—N10A—Cu3122.9 (7)
C23—C22—H22119.4C38A—N10A—Cu3116.7 (7)
C21—C22—H22119.4C44A—C43A—N9113.8 (15)
C22—C23—C24117.9 (9)C44A—C43A—H43C108.8
C22—C23—H23121.0N9—C43A—H43C108.8
C24—C23—H23121.0C44A—C43A—H43D108.8
N6—C24—C23122.4 (8)N9—C43A—H43D108.8
N6—C24—H24118.8H43C—C43A—H43D107.7
C23—C24—H24118.8C45A—C44A—N11A120.0
N5—C25—C26110.0 (7)C45A—C44A—C43A127.1 (14)
N5—C25—H25A109.7N11A—C44A—C43A112.6 (14)
C26—C25—H25A109.7C44A—C45A—C46A120.0
N5—C25—H25B109.7C44A—C45A—H45A120.0
C26—C25—H25B109.7C46A—C45A—H45A120.0
H25A—C25—H25B108.2C47A—C46A—C45A120.0
N7—C26—C27122.8 (8)C47A—C46A—H46A120.0
N7—C26—C25116.1 (7)C45A—C46A—H46A120.0
C27—C26—C25121.0 (8)C46A—C47A—C48A120.0
C26—C27—C28118.2 (9)C46A—C47A—H47A120.0
C26—C27—H27120.9C48A—C47A—H47A120.0
C28—C27—H27120.9N11A—C48A—C47A120.0
C29—C28—C27119.2 (9)N11A—C48A—H48A120.0
C29—C28—H28120.4C47A—C48A—H48A120.0
C27—C28—H28120.4C48A—N11A—C44A120.0
C28—C29—C30119.6 (10)C48A—N11A—Cu3123.9 (11)
C28—C29—H29120.2C44A—N11A—Cu3115.7 (11)
C30—C29—H29120.2N9—C49A—C50A105.6 (14)
N7—C30—C29120.7 (9)N9—C49A—H49C110.6
N7—C30—H30119.6C50A—C49A—H49C110.6
C29—C30—H30119.6N9—C49A—H49D110.6
N5—C31—C32109.1 (7)C50A—C49A—H49D110.6
N5—C31—H31A109.9H49C—C49A—H49D108.7
C32—C31—H31A109.9C51A—C50A—N12A120.0
N5—C31—H31B109.9C51A—C50A—C49A125.5 (12)
C32—C31—H31B109.9N12A—C50A—C49A114.5 (12)
H31A—C31—H31B108.3C52A—C51A—C50A120.0
N8—C32—C33123.8 (10)C52A—C51A—H51A120.0
N8—C32—C31114.6 (7)C50A—C51A—H51A120.0
C33—C32—C31121.4 (10)C51A—C52A—C53A120.0
C32—C33—C34117.5 (14)C51A—C52A—H52A120.0
C32—C33—H33121.2C53A—C52A—H52A120.0
C34—C33—H33121.2C54A—C53A—C52A120.0
C35—C34—C33119.0 (12)C54A—C53A—H53A120.0
C35—C34—H34120.5C52A—C53A—H53A120.0
C33—C34—H34120.5C53A—C54A—N12A120.0
C34—C35—C36120.1 (11)C53A—C54A—H54A120.0
C34—C35—H35120.0N12A—C54A—H54A120.0
C36—C35—H35120.0C54A—N12A—C50A120.0
N8—C36—C35121.8 (12)C54A—N12A—Cu3125.2 (8)
N8—C36—H36119.1C50A—N12A—Cu3114.4 (8)
C35—C36—H36119.1
C7—N1—C1—C282.6 (8)C43—N9—C37—C3882.4 (10)
C13—N1—C1—C2152.2 (7)C49—N9—C37—C38150.2 (8)
Cu1—N1—C1—C235.7 (8)Cu3—N9—C37—C3839.0 (9)
C6—N2—C2—C32.4 (14)N9—C37—C38—C39151.0 (7)
Cu1—N2—C2—C3173.7 (7)N9—C37—C38—N1031.9 (10)
C6—N2—C2—C1176.4 (8)N10—C38—C39—C400.0
Cu1—N2—C2—C17.5 (10)C37—C38—C39—C40177.1 (10)
N1—C1—C2—N229.3 (10)C38—C39—C40—C410.0
N1—C1—C2—C3151.9 (9)C39—C40—C41—C420.0
N2—C2—C3—C41.3 (16)C40—C41—C42—N100.0
C1—C2—C3—C4177.3 (10)C41—C42—N10—C380.0
C2—C3—C4—C51.3 (19)C41—C42—N10—Cu3173.6 (6)
C3—C4—C5—C62.9 (19)C39—C38—N10—C420.0
C2—N2—C6—C50.7 (14)C37—C38—N10—C42177.3 (9)
Cu1—N2—C6—C5174.8 (8)C39—C38—N10—Cu3174.5 (6)
C4—C5—C6—N21.9 (17)C37—C38—N10—Cu38.2 (8)
C13—N1—C7—C878.2 (8)C37—N9—C43—C44157.2 (8)
C1—N1—C7—C8157.7 (7)C49—N9—C43—C4477.1 (10)
Cu1—N1—C7—C839.2 (7)Cu3—N9—C43—C4435.5 (9)
C12—N3—C8—C92.6 (12)N9—C43—C44—C45155.1 (7)
Cu1—N3—C8—C9170.0 (7)N9—C43—C44—N1125.2 (11)
C12—N3—C8—C7174.6 (8)N11—C44—C45—C460.0
Cu1—N3—C8—C712.8 (9)C43—C44—C45—C46179.7 (10)
N1—C7—C8—N335.4 (10)C44—C45—C46—C470.0
N1—C7—C8—C9147.4 (8)C45—C46—C47—C480.0
N3—C8—C9—C101.7 (14)C46—C47—C48—N110.0
C7—C8—C9—C10175.3 (9)C47—C48—N11—C440.0
C8—C9—C10—C110.7 (15)C47—C48—N11—Cu3179.6 (8)
C9—C10—C11—C122.1 (16)C45—C44—N11—C480.0
C8—N3—C12—C111.1 (13)C43—C44—N11—C48179.7 (9)
Cu1—N3—C12—C11170.4 (7)C45—C44—N11—Cu3179.7 (7)
C10—C11—C12—N31.3 (15)C43—C44—N11—Cu30.6 (8)
C7—N1—C13—C14158.3 (6)C43—N9—C49—C50157.5 (9)
C1—N1—C13—C1476.3 (8)C37—N9—C49—C5071.7 (10)
Cu1—N1—C13—C1440.7 (7)Cu3—N9—C49—C5042.4 (9)
C18—N4—C14—C151.3 (11)N9—C49—C50—C51148.6 (7)
Cu1—N4—C14—C15170.7 (6)N9—C49—C50—N1233.5 (11)
C18—N4—C14—C13178.4 (7)N12—C50—C51—C520.0
Cu1—N4—C14—C139.6 (8)C49—C50—C51—C52177.8 (10)
N1—C13—C14—N433.9 (9)C50—C51—C52—C530.0
N1—C13—C14—C15146.4 (8)C51—C52—C53—C540.0
N4—C14—C15—C162.0 (13)C52—C53—C54—N120.0
C13—C14—C15—C16178.3 (8)C53—C54—N12—C500.0
C14—C15—C16—C173.4 (13)C53—C54—N12—Cu3174.5 (7)
C15—C16—C17—C181.5 (13)C51—C50—N12—C540.0
C14—N4—C18—C173.4 (11)C49—C50—N12—C54178.1 (9)
Cu1—N4—C18—C17167.5 (6)C51—C50—N12—Cu3175.4 (6)
C16—C17—C18—N42.0 (12)C49—C50—N12—Cu36.5 (8)
C31—N5—C19—C2081.9 (9)C49A—N9—C37A—C38A79.5 (16)
C25—N5—C19—C20152.8 (7)C43A—N9—C37A—C38A157.0 (13)
Cu2—N5—C19—C2035.6 (8)Cu3—N9—C37A—C38A43.1 (14)
C24—N6—C20—C211.3 (12)N9—C37A—C38A—C39A147.6 (10)
Cu2—N6—C20—C21178.7 (6)N9—C37A—C38A—N10A33.2 (16)
C24—N6—C20—C19176.9 (7)N10A—C38A—C39A—C40A0.0
Cu2—N6—C20—C190.5 (9)C37A—C38A—C39A—C40A179.2 (17)
N5—C19—C20—N624.3 (10)C38A—C39A—C40A—C41A0.0
N5—C19—C20—C21157.6 (7)C39A—C40A—C41A—C42A0.0
N6—C20—C21—C222.3 (12)C40A—C41A—C42A—N10A0.0
C19—C20—C21—C22175.8 (8)C41A—C42A—N10A—C38A0.0
C20—C21—C22—C231.7 (14)C41A—C42A—N10A—Cu3172.1 (10)
C21—C22—C23—C240.2 (14)C39A—C38A—N10A—C42A0.0
C20—N6—C24—C230.3 (12)C37A—C38A—N10A—C42A179.3 (15)
Cu2—N6—C24—C23176.6 (6)C39A—C38A—N10A—Cu3172.6 (9)
C22—C23—C24—N60.9 (14)C37A—C38A—N10A—Cu38.2 (13)
C31—N5—C25—C26154.8 (7)C49A—N9—C43A—C44A166.1 (15)
C19—N5—C25—C2680.3 (8)C37A—N9—C43A—C44A78.4 (16)
Cu2—N5—C25—C2637.9 (8)Cu3—N9—C43A—C44A31.6 (17)
C30—N7—C26—C272.6 (12)N9—C43A—C44A—C45A157.4 (13)
Cu2—N7—C26—C27176.1 (7)N9—C43A—C44A—N11A28.8 (19)
C30—N7—C26—C25178.6 (7)N11A—C44A—C45A—C46A0.0
Cu2—N7—C26—C250.2 (9)C43A—C44A—C45A—C46A173 (2)
N5—C25—C26—N726.0 (10)C44A—C45A—C46A—C47A0.0
N5—C25—C26—C27158.0 (8)C45A—C46A—C47A—C48A0.0
N7—C26—C27—C282.9 (14)C46A—C47A—C48A—N11A0.0
C25—C26—C27—C28178.6 (9)C47A—C48A—N11A—C44A0.0
C26—C27—C28—C292.3 (15)C47A—C48A—N11A—Cu3172.5 (15)
C27—C28—C29—C301.6 (15)C45A—C44A—N11A—C48A0.0
C26—N7—C30—C291.8 (12)C43A—C44A—N11A—C48A174.3 (19)
Cu2—N7—C30—C29176.7 (7)C45A—C44A—N11A—Cu3173.1 (14)
C28—C29—C30—N71.3 (14)C43A—C44A—N11A—Cu312.6 (16)
C19—N5—C31—C32159.0 (8)C43A—N9—C49A—C50A92.7 (16)
C25—N5—C31—C3275.6 (9)C37A—N9—C49A—C50A155.9 (13)
Cu2—N5—C31—C3240.8 (9)Cu3—N9—C49A—C50A39.6 (16)
C36—N8—C32—C330.7 (14)N9—C49A—C50A—C51A151.3 (12)
Cu2—N8—C32—C33174.8 (10)N9—C49A—C50A—N12A31.7 (18)
C36—N8—C32—C31176.3 (8)N12A—C50A—C51A—C52A0.0
Cu2—N8—C32—C319.6 (10)C49A—C50A—C51A—C52A176.9 (18)
N5—C31—C32—N834.0 (11)C50A—C51A—C52A—C53A0.0
N5—C31—C32—C33150.3 (11)C51A—C52A—C53A—C54A0.0
N8—C32—C33—C341 (2)C52A—C53A—C54A—N12A0.0
C31—C32—C33—C34176.8 (13)C53A—C54A—N12A—C50A0.0
C32—C33—C34—C351 (2)C53A—C54A—N12A—Cu3172.3 (13)
C33—C34—C35—C360 (2)C51A—C50A—N12A—C54A0.0
C32—N8—C36—C350.6 (13)C49A—C50A—N12A—C54A177.2 (16)
Cu2—N8—C36—C35172.4 (8)C51A—C50A—N12A—Cu3173.1 (12)
C34—C35—C36—N81.1 (18)C49A—C50A—N12A—Cu39.7 (15)
 

Acknowledgements

The authors would like to thank all students who participated in this laboratory experiment for their contribution and the University of Notre Dame for instrument support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBritovsek, G. P., England, J. & White, A. P. (2005). Inorg. Chem. 44, 8125–8134.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2015). APEX3, SAINT, SADABS and XP. Bruker–Nonius AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEckenhoff, W. T., Garrity, S. T. & Pintauer, T. (2008). Eur. J. Inorg. Chem. pp. 563–571.  Web of Science CSD CrossRef Google Scholar
First citationEckenhoff, W. T. & Pintauer, T. (2010). Catal. Rev. 52, 1–59.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Z., Chaimungkalanont, P., Craig, D. C. & Colbran, S. B. (2000). J. Chem. Soc. Dalton Trans. pp. 1419–1429.  Web of Science CSD CrossRef Google Scholar
First citationIqbal, J., Bhatia, B. & Nayyar, N. K. (1994). Chem. Rev. 94, 519–564.  CrossRef CAS Web of Science Google Scholar
First citationKaur, A., Ribelli, T. G., Schröder, K., Matyjaszewski, K. & Pintauer, T. (2015). Inorg. Chem. 54, 1474–1486.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKharasch, M. S., Jensen, E. V. & Urry, W. H. (1945). Science, 102, 128–129.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMaiti, D., Woertink, J. S., Vance, M. A., Milligan, A. E., Narducci Sarjeant, A. A., Solomon, E. I. & Karlin, K. D. (2007). J. Am. Chem. Soc. 129, 8882–8892.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMatyjaszewski, K., Göbelt, B., Paik, H. & Horwitz, C. (2001). Macromolecules, 34, 430–440.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTang, W., Kwak, Y., Braunecker, W., Tsarevsky, N. V., Coote, M. L. & Matyjaszewski, K. (2008). J. Am. Chem. Soc. 130, 10702–10713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds