research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and magnetic properties of LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2

CROSSMARK_Color_square_no_text.svg

aState Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China, and bDepartment of Physics, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: huizhangmpg@hotmail.com, huangfq@mail.sic.ac.cn

Edited by T. J. Prior, University of Hull, England (Received 7 May 2016; accepted 18 May 2016; online 24 May 2016)

The synthesis, structure, and magnetic properties of lithium dibarium calcium oxide fluoride di­sulfide are reported. LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2 crystallizes in the tetra­gonal space group P4/nmm. The structure exhibits disorder of the Ca2+ and Bi3+ cations, and the O2− and F anions. The structure is composed of a stacking of [(O,F)2La2] layers and double [(Bi,Ca)S2] layers. Magnetic property measurements indicate a very small magnetization at 300 K and the existence of weak ferromagnetism at 2 K.

1. Chemical context

Layered crystal structures seem to be a common stage on which to explore superconductivity (Vershinin et al., 2004[Vershinin, M., Misra, S., Ono, S., Abe, Y., Ando, Y. & Yazdani, A. (2004). Science, 303, 1995-1998.]; Kamihara et al., 2008[Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. (2008). J. Am. Chem. Soc. 130, 3296-3297.]; Chen et al., 2008[Chen, X. H., Wu, T., Wu, G., Liu, R. H., Chen, H. & Fang, D. F. (2008). Nature, 453, 761-762.]; Fang et al., 2010[Fang, A. H., Huang, F. Q., Xie, X. M. & Jiang, M. H. (2010). J. Am. Chem. Soc. 132, 3260-3261.]). The discovery of [Fe2An2] (An = P, As, S, Se or Te) and [CuO2] superconducting layers has opened a new field in physics and chemistry for the exploration of low-dimensional superconductivity. Recently, superconductivity with transition temperatures of 4.5 K was reported in the BiS2-based compound Bi4O4S3 (Singh et al., 2012[Singh, S. K., Kumar, A., Gahtori, B., Sharma, G., Patnaik, S. & Awana, V. P. S. (2012). J. Am. Chem. Soc. 134, 16504-16507.]). Soon after, LnO1-xFxBiS2 (Ln = La, Ce, Pr and Nd), were reported to be superconducting with transition temperatures Tc of 3–10.6 K (Nagao et al., 2013[Nagao, M., Demura, S., Deguchi, K., Miura, A., Watauchi, S., Takei, T., Takano, Y., Kumada, N. & Tanaka, I. (2013). J. Phys. Soc. Jpn, 82, 113701.]; Demura et al., 2013[Demura, S., Mizuguchi, Y., Deguchi, K., Okazaki, H., Hara, H., Watanabe, T., Denholme, S. J., Fujioka, M., Ozaki, T., Fujihisa, H., Gotoh, Y., Miura, O., Yamaguchi, T., Takeya, H. & Takano, Y. (2013). J. Phys. Soc. Jpn, 82, 033708.]). The mother BiS2-based layered compound AeFBiS2 (Ae = Ca, Sr or Ba; Lei et al., 2013[Lei, H. C., Wang, K. F., Abeykoon, M., Bozin, E. S. & Petrovic, C. (2013). Inorg. Chem. 52, 10685-10689.]; Han et al., 2008[Han, F., Zhu, X., Mu, G., Cheng, P. & Wen, H. H. (2008). Phys. Rev. B, 78, 180503(R).]) is isostructural to LnOBiS2, with the [Ln2O2]2− layer being replaced by an isocharged [Sr2F2]2− block. The parent phase of SrFBiS2 shows semiconducting behavior, but electron-doped Sr0.5La0.5FBiS2 has a superconducting transition of 2.8 K (Lin et al., 2013[Lin, X., Ni, X., Chen, B., Xu, X., Yang, X., Dai, J., Li, Y., Yang, X., Luo, Y., Tao, Q., Cao, G. & Xu, Z. (2013). Phys. Rev. B, 87 020504(R).]). Herein the synthesis, structure and magnetic properties of LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2 are reported.

2. Structural commentary

We attempted to prepare the Ca and F double-doped compound La1−xCaxO1−2xF2xBiS2, but the results indicate the single-crystal composition is LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2. An SEM image shows thick plate-shaped crystals of LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2 (Fig. 1[link]). LaO1−xFxBiS2 crystals usually show a thin-sheet shape (Fig. 2[link]). From the EDXS analysis, we obtained the elemental components of La, Ca, Bi, S, F and O. The final composition was obtained by structure refinement (details can be seen in the Refinement section).

[Figure 1]
Figure 1
SEM image of LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2.
[Figure 2]
Figure 2
SEM image of LaO0.6F0.4BiS2.

The structure of LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2, shown in Fig. 3[link], is composed of a stacking of [(O,F)2La2] layers and double [(Bi,Ca)S2] layers as in LaO1−xFxBiS2. The double [(Bi,Ca)S2] layers show Bi1/Ca1—S2 distances of 2.8672 (6) Å representing equatorial bonds and Bi1/Ca1—S1 distances of 2.530 (3) Å representing axial bonds; these are a little shorter than the Bi1—S1 distance of 2.87476 (15) and Bi1—S2 distance of 2.530 (6) Å in LaO1−xFxBiS2. The [(O,F)2La2] layers exhibit O1/F1—La1 bond lengths of 2.4414 (6) Å and La1—O1/F1—La1 bond angles of 108.08 (2) and 112.29 (4)°, which are close to the La—O/F bond length of 2.4402 (8) Å and La1—O1/F1—La1 bond angles of 107.82 (3) and 112.82 (6)° in LaO1−xFxBiS2. The ionic radius of Ca2+ is 114 pm which is a little shorter than that of 117.2/117 pm for La3+/Bi3+. The distinct reduced Bi1/Ca1—S2 distances in the title compound reflect the fact that Ca substitutes Bi sites rather than La sites.

[Figure 3]
Figure 3
Crystal structure of LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2, showing [(O,F)2La2] layers and double [BiS2] layers (O/F in red, La in blue, Bi/Ca in pink and S in yellow; 50% probability ellipsoids).

3. Magnetic property measurements

The magnetization versus temperature under a 1 T field for the title compound is given in Fig. 4[link]. Magnetization versus magnetic field is given in Fig. 5[link] for fields ranging from −5 to 5 T at 2 K and 300 K. The magnetic properties indicate weak ferromagnetism at 2 K and a very low magnetization at 300 K. The superconducting transition is not observed in the measured temperature range. This might be related to the Ca substitution of the Bi site in the title compound. For superconducting LaO1−xFxBiS2 crystals, the density of states at the Fermi level is mainly directed by the Bi p orbital. [BiS2] layers play a vital role in the transport and superconducting properties. The Ca substitution of the Bi site leads to a hole doping which changed the electronic band structure and density of state of LaO1−xFxBiS2. Another reason might be the reduced F content in LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2 compared with LaO1−xFxBiS2.

[Figure 4]
Figure 4
Magnetic moment versus temperature for LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2 under a 1 T field.
[Figure 5]
Figure 5
Magnetic moment versus field for LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2 from −5 T to 5 T at 2 K and 300 K.

4. Database survey

LnO1−xFxBiS2 (Ln = La, Ce, Pr and Nd) compounds were reported by Nagao et al. (2013[Nagao, M., Demura, S., Deguchi, K., Miura, A., Watauchi, S., Takei, T., Takano, Y., Kumada, N. & Tanaka, I. (2013). J. Phys. Soc. Jpn, 82, 113701.]) and Demura et al. (2013[Demura, S., Mizuguchi, Y., Deguchi, K., Okazaki, H., Hara, H., Watanabe, T., Denholme, S. J., Fujioka, M., Ozaki, T., Fujihisa, H., Gotoh, Y., Miura, O., Yamaguchi, T., Takeya, H. & Takano, Y. (2013). J. Phys. Soc. Jpn, 82, 033708.]). AeFBiS2 (Ae = Ca, Sr, Ba) (Lei et al., 2013[Lei, H. C., Wang, K. F., Abeykoon, M., Bozin, E. S. & Petrovic, C. (2013). Inorg. Chem. 52, 10685-10689.]; Han et al., 2008[Han, F., Zhu, X., Mu, G., Cheng, P. & Wen, H. H. (2008). Phys. Rev. B, 78, 180503(R).]) are isostructural to LnOBiS2. The doped Sr0.5La0.5FBiS2 (Lin et al., 2013[Lin, X., Ni, X., Chen, B., Xu, X., Yang, X., Dai, J., Li, Y., Yang, X., Luo, Y., Tao, Q., Cao, G. & Xu, Z. (2013). Phys. Rev. B, 87 020504(R).]) is isostructural to AeFBiS2.

5. Synthesis and crystallization

LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2 was prepared using of Bi2O3, CaF2, La2S3, Bi2S3 and Bi raw materials. The mixtures with a nominal composition of La0.85Ca0.15O0.70F0.30BiS2 were ground, pressed into pellets, sealed in an evacuated quartz tube, and heated at 1073 K for 3 d. High-quality single crystals were grown by using KI as the flux. Nominal La0.85Ca0.15O0.70F0.30BiS2 and KI in the molar ratio of 1:3 were mixed and placed in a quartz tube, which was sealed and heated to 1273 K and kept at this temperature for 1 d, then cooled to room temperature in 10 d. The product was washed with distilled water and acetone, then dried at 353 K for 12 h; finally black plate-shaped crystals were obtained.

The morphology and element compositions were investigated by a scanning electronic microscope equipped with an energy dispersive X-ray spectroscopy (EDXS, Oxford Instruments). The EDXS shows the atom % ratio for S:Ca:La:Bi to be 48.23: 6.94: 24.36: 20.48. O and F could not be determined precisely. Magnetic properties were measured on a multifunctional physical properties measurement system (PPMS, Quantum Design).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The La, Bi, S and O atoms were located in difference maps and their positions were freely refined. Ca was assumed at La sites at first, but the refinement show no reducing occupancy of La. The partial occupancy of Bi indicates a mixed occupancy with Ca. Ca and Bi were refined together later. EDXS measurements could not determine occupancies of O and F precisely. If the occupancies of F and O are refined together, the obtained composition is La2Bi1.859 (4)Ca0.141 (4)O0.48 (14)F0.52 (14)S4 with high standard errors for O and F. In order to keep charge neutrality, the occupancy of F was fixed to be the same as Ca so the final composition of LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2 was obtained.

Table 1
Experimental details

Crystal data
Chemical formula LaCa0.143 (4)O0.857 (4)F0.143 (4)Bi0.857 (4)S2
Mr 404.26
Crystal system, space group Tetragonal, P4/nmm
Temperature (K) 300
a, c (Å) 4.0548 (9), 13.370 (3)
V3) 219.82 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 44.78
Crystal size (mm) 0.05 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.154, 0.511
No. of measured, independent and observed [I > 2σ(I)] reflections 3493, 191, 190
Rint 0.046
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.31
No. of reflections 191
No. of parameters 17
Δρmax, Δρmin (e Å−3) 1.48, −1.53
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick 2015); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Lanthanum calcium bismuth oxide fluoride disulfide top
Crystal data top
Bi0.857Ca0.143F0.143LaO0.857S2Dx = 6.108 Mg m3
Mr = 404.26Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nmmCell parameters from 189 reflections
a = 4.0548 (9) Åθ = 4.6–27.4°
c = 13.370 (3) ŵ = 44.78 mm1
V = 219.82 (11) Å3T = 300 K
Z = 2Block, blue
F(000) = 342.30.05 × 0.05 × 0.02 mm
Data collection top
Bruker D8 Quest
diffractometer
Rint = 0.046
Radiation source: fine-focus sealed tubeθmax = 27.4°, θmin = 4.6°
Profile fitted 2θ/ω scans (Clegg, 1981)h = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 54
Tmin = 0.154, Tmax = 0.511l = 1717
3493 measured reflections3 standard reflections every 90 reflections
191 independent reflections intensity decay: none
190 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0318P)2 + 0.5025P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.052Δρmax = 1.48 e Å3
S = 1.31Δρmin = 1.53 e Å3
191 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
17 parametersExtinction coefficient: 0.033 (3)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.75000.75000.89827 (6)0.0127 (3)
Ca10.25000.25000.62178 (4)0.0126 (3)0.143 (4)
Bi10.25000.25000.62178 (4)0.0126 (3)0.857 (4)
F10.75000.25001.00000.0079 (14)0.143 (4)
O10.75000.25001.00000.0079 (14)0.857 (4)
S10.25000.25000.8110 (2)0.0104 (6)
S20.75000.75000.6221 (3)0.0236 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0115 (4)0.0115 (4)0.0151 (5)0.0000.0000.000
Ca10.0146 (3)0.0146 (3)0.0087 (3)0.0000.0000.000
Bi10.0146 (3)0.0146 (3)0.0087 (3)0.0000.0000.000
F10.0087 (18)0.0087 (18)0.006 (3)0.0000.0000.000
O10.0087 (18)0.0087 (18)0.006 (3)0.0000.0000.000
S10.0101 (7)0.0101 (7)0.0109 (12)0.0000.0000.000
S20.0200 (10)0.0200 (10)0.0306 (18)0.0000.0000.000
Geometric parameters (Å, º) top
La1—O1i2.4414 (6)Ca1—Ca1v4.0548 (9)
La1—O1ii2.4414 (6)Ca1—Ca1viii4.0548 (9)
La1—F1i2.4414 (6)Ca1—Bi1ii4.0548 (9)
La1—F1ii2.4414 (6)Ca1—Bi1viii4.0548 (9)
La1—F12.4414 (6)F1—La1i2.4414 (6)
La1—O1iii2.4414 (6)F1—La1viii2.4414 (6)
La1—O12.4414 (6)F1—La1iii2.4414 (6)
La1—F1iii2.4414 (6)O1—La1i2.4414 (6)
La1—S13.0954 (13)O1—La1viii2.4414 (6)
La1—S1iv3.0954 (13)O1—La1iii2.4414 (6)
La1—S1ii3.0954 (13)S1—La1vi3.0954 (13)
La1—S1v3.0954 (13)S1—La1vii3.0954 (13)
Ca1—S12.530 (3)S1—La1viii3.0954 (13)
Ca1—S22.8672 (6)S2—Bi1iv2.8672 (6)
Ca1—S2vi2.8672 (6)S2—Ca1iv2.8672 (6)
Ca1—S2vii2.8672 (6)S2—Ca1v2.8672 (6)
Ca1—S2viii2.8672 (6)S2—Ca1ii2.8672 (6)
Ca1—S2ix3.261 (4)S2—Bi1ii2.8672 (6)
Ca1—Ca1ii4.0548 (9)S2—Bi1v2.8672 (6)
Ca1—Ca1vii4.0548 (9)S2—Ca1ix3.261 (4)
O1i—La1—O1ii71.917 (18)S2viii—Ca1—Ca1vii135.0
O1i—La1—F1i0.0S2ix—Ca1—Ca1vii90.0
O1ii—La1—F1i71.917 (18)Ca1ii—Ca1—Ca1vii90.0
O1i—La1—F1ii71.917 (18)S1—Ca1—Ca1v90.0
O1ii—La1—F1ii0.0S2—Ca1—Ca1v45.0
F1i—La1—F1ii71.917 (18)S2vi—Ca1—Ca1v135.0
O1i—La1—F171.917 (18)S2vii—Ca1—Ca1v135.0
O1ii—La1—F1112.29 (4)S2viii—Ca1—Ca1v45.0
F1i—La1—F171.917 (18)S2ix—Ca1—Ca1v90.0
F1ii—La1—F1112.29 (4)Ca1ii—Ca1—Ca1v90.0
O1i—La1—O1iii112.29 (4)Ca1vii—Ca1—Ca1v180.0
O1ii—La1—O1iii71.917 (18)S1—Ca1—Ca1viii90.0
F1i—La1—O1iii112.29 (4)S2—Ca1—Ca1viii135.0
F1ii—La1—O1iii71.917 (18)S2vi—Ca1—Ca1viii45.0
F1—La1—O1iii71.917 (18)S2vii—Ca1—Ca1viii135.0
O1i—La1—O171.917 (18)S2viii—Ca1—Ca1viii45.0
O1ii—La1—O1112.29 (4)S2ix—Ca1—Ca1viii90.0
F1i—La1—O171.917 (18)Ca1ii—Ca1—Ca1viii180.0
F1ii—La1—O1112.29 (4)Ca1vii—Ca1—Ca1viii90.0
F1—La1—O10.0Ca1v—Ca1—Ca1viii90.0
O1iii—La1—O171.917 (18)S1—Ca1—Bi1ii90.0
O1i—La1—F1iii112.29 (4)S2—Ca1—Bi1ii45.0
O1ii—La1—F1iii71.917 (18)S2vi—Ca1—Bi1ii135.0
F1i—La1—F1iii112.29 (4)S2vii—Ca1—Bi1ii45.0
F1ii—La1—F1iii71.917 (18)S2viii—Ca1—Bi1ii135.0
F1—La1—F1iii71.917 (18)S2ix—Ca1—Bi1ii90.0
O1iii—La1—F1iii0.0Ca1ii—Ca1—Bi1ii0.000 (15)
O1—La1—F1iii71.917 (18)Ca1vii—Ca1—Bi1ii90.0
O1i—La1—S1138.93 (2)Ca1v—Ca1—Bi1ii90.0
O1ii—La1—S1138.93 (3)Ca1viii—Ca1—Bi1ii180.0
F1i—La1—S1138.93 (2)S1—Ca1—Bi1viii90.0
F1ii—La1—S1138.93 (3)S2—Ca1—Bi1viii135.0
F1—La1—S170.49 (4)S2vi—Ca1—Bi1viii45.0
O1iii—La1—S170.49 (4)S2vii—Ca1—Bi1viii135.0
O1—La1—S170.49 (4)S2viii—Ca1—Bi1viii45.0
F1iii—La1—S170.49 (4)S2ix—Ca1—Bi1viii90.0
O1i—La1—S1iv70.49 (4)Ca1ii—Ca1—Bi1viii180.0
O1ii—La1—S1iv70.49 (4)Ca1vii—Ca1—Bi1viii90.0
F1i—La1—S1iv70.49 (4)Ca1v—Ca1—Bi1viii90.0
F1ii—La1—S1iv70.49 (4)Ca1viii—Ca1—Bi1viii0.000 (15)
F1—La1—S1iv138.93 (3)Bi1ii—Ca1—Bi1viii180.0
O1iii—La1—S1iv138.93 (2)La1i—F1—La1viii108.082 (18)
O1—La1—S1iv138.93 (3)La1i—F1—La1iii112.29 (4)
F1iii—La1—S1iv138.93 (2)La1viii—F1—La1iii108.082 (18)
S1—La1—S1iv135.72 (11)La1i—F1—La1108.082 (18)
O1i—La1—S1ii138.93 (3)La1viii—F1—La1112.29 (4)
O1ii—La1—S1ii70.49 (4)La1iii—F1—La1108.082 (18)
F1i—La1—S1ii138.93 (3)La1i—O1—La1viii108.082 (18)
F1ii—La1—S1ii70.49 (4)La1i—O1—La1iii112.29 (4)
F1—La1—S1ii138.93 (3)La1viii—O1—La1iii108.082 (18)
O1iii—La1—S1ii70.49 (4)La1i—O1—La1108.082 (18)
O1—La1—S1ii138.93 (3)La1viii—O1—La1112.29 (4)
F1iii—La1—S1ii70.49 (4)La1iii—O1—La1108.082 (18)
S1—La1—S1ii81.84 (4)Ca1—S1—La1112.14 (5)
S1iv—La1—S1ii81.84 (4)Ca1—S1—La1vi112.14 (5)
O1i—La1—S1v70.49 (4)La1—S1—La1vi135.72 (11)
O1ii—La1—S1v138.93 (3)Ca1—S1—La1vii112.14 (5)
F1i—La1—S1v70.49 (4)La1—S1—La1vii81.84 (4)
F1ii—La1—S1v138.93 (3)La1vi—S1—La1vii81.84 (4)
F1—La1—S1v70.49 (4)Ca1—S1—La1viii112.14 (5)
O1iii—La1—S1v138.93 (3)La1—S1—La1viii81.84 (4)
O1—La1—S1v70.49 (4)La1vi—S1—La1viii81.84 (4)
F1iii—La1—S1v138.93 (3)La1vii—S1—La1viii135.72 (11)
S1—La1—S1v81.84 (4)Ca1—S2—Bi1iv179.8
S1iv—La1—S1v81.84 (4)Ca1—S2—Ca1iv179.82 (17)
S1ii—La1—S1v135.72 (11)Bi1iv—S2—Ca1iv0.0
S1—Ca1—S289.91 (9)Ca1—S2—Ca1v90.0
S1—Ca1—S2vi89.91 (9)Bi1iv—S2—Ca1v90.0
S2—Ca1—S2vi179.82 (17)Ca1iv—S2—Ca1v90.0
S1—Ca1—S2vii89.91 (9)Ca1—S2—Ca1ii90.0
S2—Ca1—S2vii90.000 (1)Bi1iv—S2—Ca1ii90.0
S2vi—Ca1—S2vii90.000 (1)Ca1iv—S2—Ca1ii90.0
S1—Ca1—S2viii89.91 (9)Ca1v—S2—Ca1ii179.82 (17)
S2—Ca1—S2viii90.000 (1)Ca1—S2—Bi1ii90.0
S2vi—Ca1—S2viii90.0Bi1iv—S2—Bi1ii90.0
S2vii—Ca1—S2viii179.82 (17)Ca1iv—S2—Bi1ii90.0
S1—Ca1—S2ix180.0Ca1v—S2—Bi1ii179.82 (17)
S2—Ca1—S2ix90.09 (9)Ca1ii—S2—Bi1ii0.00 (2)
S2vi—Ca1—S2ix90.09 (9)Ca1—S2—Bi1v90.0
S2vii—Ca1—S2ix90.09 (9)Bi1iv—S2—Bi1v90.0
S2viii—Ca1—S2ix90.09 (9)Ca1iv—S2—Bi1v90.0
S1—Ca1—Ca1ii90.0Ca1v—S2—Bi1v0.00 (2)
S2—Ca1—Ca1ii45.0Ca1ii—S2—Bi1v179.82 (17)
S2vi—Ca1—Ca1ii135.0Bi1ii—S2—Bi1v179.82 (17)
S2vii—Ca1—Ca1ii45.0Ca1—S2—Ca1ix89.91 (9)
S2viii—Ca1—Ca1ii135.0Bi1iv—S2—Ca1ix89.9
S2ix—Ca1—Ca1ii90.0Ca1iv—S2—Ca1ix89.91 (9)
S1—Ca1—Ca1vii90.0Ca1v—S2—Ca1ix89.91 (9)
S2—Ca1—Ca1vii135.0Ca1ii—S2—Ca1ix89.91 (9)
S2vi—Ca1—Ca1vii45.0Bi1ii—S2—Ca1ix89.9
S2vii—Ca1—Ca1vii45.0Bi1v—S2—Ca1ix89.9
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x1, y1, z; (vii) x1, y, z; (viii) x, y1, z; (ix) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant No. XDB04040200).

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. H., Wu, T., Wu, G., Liu, R. H., Chen, H. & Fang, D. F. (2008). Nature, 453, 761–762.  CrossRef PubMed CAS Google Scholar
First citationDemura, S., Mizuguchi, Y., Deguchi, K., Okazaki, H., Hara, H., Watanabe, T., Denholme, S. J., Fujioka, M., Ozaki, T., Fujihisa, H., Gotoh, Y., Miura, O., Yamaguchi, T., Takeya, H. & Takano, Y. (2013). J. Phys. Soc. Jpn, 82, 033708.  CrossRef Google Scholar
First citationFang, A. H., Huang, F. Q., Xie, X. M. & Jiang, M. H. (2010). J. Am. Chem. Soc. 132, 3260–3261.  CrossRef CAS PubMed Google Scholar
First citationHan, F., Zhu, X., Mu, G., Cheng, P. & Wen, H. H. (2008). Phys. Rev. B, 78, 180503(R).  CrossRef Google Scholar
First citationKamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. (2008). J. Am. Chem. Soc. 130, 3296–3297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLei, H. C., Wang, K. F., Abeykoon, M., Bozin, E. S. & Petrovic, C. (2013). Inorg. Chem. 52, 10685–10689.  CSD CrossRef CAS PubMed Google Scholar
First citationLin, X., Ni, X., Chen, B., Xu, X., Yang, X., Dai, J., Li, Y., Yang, X., Luo, Y., Tao, Q., Cao, G. & Xu, Z. (2013). Phys. Rev. B, 87 020504(R).  CrossRef Google Scholar
First citationNagao, M., Demura, S., Deguchi, K., Miura, A., Watauchi, S., Takei, T., Takano, Y., Kumada, N. & Tanaka, I. (2013). J. Phys. Soc. Jpn, 82, 113701.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S. K., Kumar, A., Gahtori, B., Sharma, G., Patnaik, S. & Awana, V. P. S. (2012). J. Am. Chem. Soc. 134, 16504–16507.  CrossRef CAS PubMed Google Scholar
First citationVershinin, M., Misra, S., Ono, S., Abe, Y., Ando, Y. & Yazdani, A. (2004). Science, 303, 1995–1998.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds