research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (E)-3-(furan-2-yl)-2-phenyl-N-tosyl­acryl­amide and (E)-3-phenyl-2-(m-tol­yl)-N-tosyl­acryl­amide

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Materials Engineering, Chaohu College, Chaohu Anhui, People's Republic of China
*Correspondence e-mail: mxzcd79@163.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 April 2016; accepted 6 May 2016; online 10 May 2016)

In the title N-tosyl­acryl­amide compounds, C20H17NO4S, (I), and C23H21NO3S, (II), the conformation about the C=C bond is E. The acryl­amide groups, [–NH—C(=O)—C=C–], are almost planar, with the N—C—C=C torsion angle being −170.18 (14)° in (I) and −168.01 (17)° in (II). In (I), the furan, phenyl and 4-methyl­benzene rings are inclined to the acryl­amide mean plane by 26.47 (11), 69.01 (8) and 82.49 (9)°, respectively. In (II), the phenyl, 3-methyl­benzene and 4-methyl­benzene rings are inclined to the acryl­amide mean plane by 11.61 (10), 78.44 (10) and 78.24 (10)°, respectively. There is an intra­molecular C—H⋯π inter­action present in compound (II). In the crystals of both compounds, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. In (I), the dimers are reinforced by C—H⋯O hydrogen bonds and linked by C—H⋯π inter­actions, forming chains along [011]. In the crystal of (II), the dimers are linked via C—H⋯O hydrogen bonds, forming chains along [100]. The chains are further linked by C—H⋯π inter­actions, forming layers parallel to (010).

1. Chemical context

The Cu-catalysed azide-alkyne cyclo­addition (CuAAC) reaction constitutes one of the most inter­esting examples of the click reaction (Bae et al., 2005[Bae, I., Han, H. & Chang, S. (2005). J. Am. Chem. Soc. 127, 2038-2039.]; Cheng et al., 2012[Cheng, D., Ling, F., Li, Z. X., Yao, W. J. & Ma, C. (2012). Org. Lett. 14, 3146-3149.]; Mondal & Pan, 2015[Mondal, K. & Pan, S. C. (2015). Eur. J. Org. Chem. pp. 2129-2132.]). Trisubstituted alkenes are commonly found in the mol­ecular skeleton of natural products and bioactive substances, and they are important building blocks in organic chemistry (Zhu et al., 2012[Zhu, G., Chen, D., Wang, Y. & Zheng, R. (2012). Chem. Commun. 48, 5796-5798.]; Manikandan & Jeganmohan, 2015[Manikandan, R. & Jeganmohan, M. (2015). Org. Biomol. Chem. 13, 10420-10436.]). Therefore, it is highly desirable to develop new efficient and general methods for the stereoselective synthesis of tris­ubstituted alkenes (Ram & Tittal, 2014[Ram, R. N. & Tittal, R. K. (2014). Tetrahedron Lett. 55, 4448-4451.]; Bae et al., 2005[Bae, I., Han, H. & Chang, S. (2005). J. Am. Chem. Soc. 127, 2038-2039.]). As part of our work on the application of the CuAAC reaction (Cheng et al., 2012[Cheng, D., Ling, F., Li, Z. X., Yao, W. J. & Ma, C. (2012). Org. Lett. 14, 3146-3149.]), we report herein on the synthesis and crystal structures of the title compounds, (I)[link] and (II)[link].

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are illustrated in Figs. 1[link] and 2[link], respectively. Both mol­ecules adopt an E conformation about the C=C bonds; C9=C16 in (I)[link] and C9=C10 in (II)[link]. The acryl­amide groups, [–NH—C(=O)—C=C–], are almost planar with the N1—C8—C9=C16 torsion angle being −170.18 (14) ° in (I)[link], and the N1—C8—C9=C10 torsion angle being −168.01 (17)° in (II)[link]. The mol­ecular conformation of the two mol­ecules differ somewhat, as shown by the structure overlap illustrated in Fig. 3[link].

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯π inter­action is shown by the blue dashed arrow (see Table 2[link]).
[Figure 3]
Figure 3
A view of the overlap of mol­ecules (I)[link] (blue) and (II)[link] (red).

In (I)[link] the furan, phenyl and 4-methyl­benzene rings are inclined to the acryl­amide mean plane [N1/O3/C8/C9/C16; maximum deviation of 0.0779 (15) Å for atom C9] by 26.47 (11), 69.01 (8) and 82.49 (9)°, respectively. The 4-methyl­benzene ring is inclined to the furan and phenyl rings by 72.25 (11) and 19.00 (9)°, respectively, the latter two rings being inclined to one another by 66.28 (11)°. In (II)[link], the phenyl, 3-methyl­benzene and 4-methyl­benzene rings are inclined to the acryl­amide mean plane [N1/O3/C8/C9/C10; maximum deviation of 0.0998 (18) Å for atom C9] by 11.61 (10), 78.44 (10) and 78.24 (10)°, respectively. The 4-methyl­benzene ring is inclined to the phenyl and 3-methyl­benzene rings by dihedral angles of 78.33 (11) and 13.10 (11)°, respectively, the latter two rings being inclined to one another by 75.86 (11)°. There is an intra­molecular C—H⋯π inter­action present in compound (II)[link] involving the adjacent phenyl and 3-methyl­benzene rings (Table 2 and Fig. 2[link]).

3. Supra­molecular features

In the crystal of both compounds, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds (Tables 1[link] and 2[link]), forming inversion dimers with [R_{2}^{2}](8) ring motifs, as shown in Fig. 4[link] for (I)[link] and Fig. 5[link] for (II)[link]. In (I)[link], the dimers are reinforced by C—H⋯O hydrogen bonds and linked by C—H⋯π inter­actions (Table 1[link]), forming chains propagating along [011]. In the crystal of (II)[link], the dimers are linked via C—H⋯O hydrogen bonds, forming chains propagating along [100]. There is also a C—H⋯π inter­action present, linking the chains to form layers lying parallel to (010).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the furan ring, O4/C17–C20

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.30 2.904 (2) 127
C4—H4⋯O1i 0.93 2.55 3.427 (3) 158
C12—H12⋯Cg1ii 0.93 2.81 3.664 (2) 158
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 and Cg3 are the centroids of rings C11–C16 and C17–C22, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.31 3.038 (2) 143
C21—H21⋯O2ii 0.93 2.57 3.468 (4) 163
C16—H16⋯Cg3 0.93 2.88 3.617 (2) 137
C18—H18⋯Cg2iii 0.93 2.83 3.646 (2) 168
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
The crystal packing of compound (I)[link], viewed along the b-axis direction. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and for clarity only the H atoms involved in the various inter­actions have been included.
[Figure 5]
Figure 5
The crystal packing of compound (II)[link], viewed along the b-axis direction. The hydrogen bonds are shown as dashed lines (see Table 2[link]), and for clarity only the H atoms involved in the various inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the substructure N-(phenyl­sulfon­yl)acryl­amide yielded five hits. Four of these compounds involve the 4-methyl­benzene­sulfonyl group and one compound involves a phenyl­sulfonyl group. This later compound, 2-(4-chloro­phen­yl)-3-(2-fur­yl)-N-(phenyl­sulfon­yl)acryl­amide (BIZGOI; Yu & Cao, 2014[Yu, L. & Cao, J. (2014). Org. Biomol. Chem. 12, 3986-3990.]), is very similar to compound (I)[link]. The principal difference in the conformation of this mol­ecule with respect to that of compound (I)[link] is the dihedral angle involving the pyran ring and the adjacent aromatic ring, a phenyl ring in (I)[link] and a chloro­benzene ring in BIZGOI; this angle is 66.18 (11)° in (I)[link] but 88.84 (13)° in BIZGOI. In the crystal of BIZGOI, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](8) ring motif, similar to the arrangement in the crystals of compounds (I)[link] and (II)[link].

5. Synthesis and crystallization

Compound (I): 4-methyl­benzene­sulfonyl azide (4.5 mmol), CuI (5.7 mg, 0.03 mmol), Et4NI (7.7 mg, 0.03 mmol), ethynyl­benzene (4.5 mmol), and furan-2-carbaldehyde (3 mmol) were suspended in CH2Cl2 (5 ml) in a 10 mL Schlenk tube under nitro­gen at rt. LiOH (8.64 mg, 3.6mmol) was then added, and the resulting solution was stirred at this temperature. Upon full consumption of furan-2-carbaldehyde, the reaction was quenched by saturated aqueous NH4Cl (5 ml) and extracted with CH2Cl2 (10 ml × 3). The combined organic layers were dried over anhydrous Na2SO4 and concentrated in vacuo. The crude residue was purified by column chroma­tography on silica gel (n-hexa­ne/EtOAc 5:1 v/v) to afford compound (I)[link] as a white solid (yield: 0.79 g, 72%). Part of the purified product was redissolved in n-hexa­ne/EtOAc and after slow evaporation over several days, colourless crystals suitable for analysis by X-ray diffraction were formed.

Compound (II): 4-methyl­benzene­sulfonyl azide (4.5 mmol), CuI (5.7 mg, 0.03 mmol), Et4NI (7.7 mg, 0.03 mmol), 1-eth­yn­yl-3-methyl­benzene (4.5 mmol), and benzaldehyde (3 mmol) were suspended in CH2Cl2 (5 ml) in a 10 mL Schlenk tube under nitro­gen at rt. LiOH (8.64 mg, 3.6mmol) was then added, and the resulting solution was stirred at this temperature. Upon full consumption of benzaldehyde, the reaction was quenched by saturated aqueous NH4Cl (5 ml) and extracted with CH2Cl2 (3 × 10 ml). The combined organic layers were dried over anhydrous Na2SO4 and concentrated in vacuo. The crude residue was purified by column chroma­tography on silica gel (n-hexa­ne/EtOAc 5:1 v/v) to afford compound (II)[link] as a white solid (0.82, 70%). Part of the purified product was redissolved in n-hexa­ne/EtOAc and after slow evaporation over several days, colourless block-like crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in geom­etrically idealized positions and constrained to ride on their parent atoms: C—H = 0.93–0.96 Å and N—H = 0.86 Å, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C,N) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C20H17NO4S C23H21NO3S
Mr 367.41 391.47
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 10.309 (2), 10.391 (2), 10.566 (2) 9.2595 (10), 10.1158 (11), 11.9271 (12)
α, β, γ (°) 69.598 (2), 75.790 (2), 61.445 (2) 72.396 (1), 67.518 (1), 79.346 (1)
V3) 927.5 (3) 980.89 (18)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.20 0.19
Crystal size (mm) 0.21 × 0.20 × 0.19 0.23 × 0.22 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD area-detector Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.959, 0.963 0.958, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 8964, 3258, 3012 7136, 3422, 3082
Rint 0.024 0.020
(sin θ/λ)max−1) 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.04 0.040, 0.103, 1.00
No. of reflections 3258 3422
No. of parameters 237 255
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.31 0.24, −0.35
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(I) (E)-3-(Furan-2-yl)-N-(4-methylphenylsulfonyl)-2-phenylacrylamide top
Crystal data top
C20H17NO4SZ = 2
Mr = 367.41F(000) = 384
Triclinic, P1Dx = 1.316 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.309 (2) ÅCell parameters from 8167 reflections
b = 10.391 (2) Åθ = 2.3–27.5°
c = 10.566 (2) ŵ = 0.20 mm1
α = 69.598 (2)°T = 293 K
β = 75.790 (2)°Block, colorless
γ = 61.445 (2)°0.21 × 0.20 × 0.19 mm
V = 927.5 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3258 independent reflections
Radiation source: fine-focus sealed tube3012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 18.4 pixels mm-1θmax = 25.0°, θmin = 2.1°
phi and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1212
Tmin = 0.959, Tmax = 0.963l = 1212
8964 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.056P)2 + 0.266P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.029
3258 reflectionsΔρmax = 0.30 e Å3
237 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (4)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31262 (4)0.04942 (4)0.99847 (4)0.0398 (1)
O10.44114 (12)0.12030 (13)1.07038 (11)0.0504 (4)
O20.25505 (13)0.14223 (13)0.98347 (12)0.0505 (4)
O30.14722 (12)0.13779 (14)0.75876 (12)0.0566 (4)
O40.14941 (14)0.51936 (14)0.33592 (12)0.0600 (4)
N10.36504 (13)0.03957 (14)0.84691 (12)0.0412 (4)
C10.1644 (3)0.4486 (3)1.2413 (3)0.1107 (11)
C20.0458 (2)0.3231 (2)1.1810 (2)0.0702 (7)
C30.0932 (3)0.3215 (3)1.1313 (2)0.0737 (8)
C40.2016 (2)0.2091 (2)1.0754 (2)0.0599 (6)
C50.17206 (17)0.09570 (18)1.06750 (15)0.0433 (5)
C60.03613 (18)0.0933 (2)1.11682 (17)0.0529 (6)
C70.0712 (2)0.2073 (3)1.1735 (2)0.0659 (7)
C80.27179 (16)0.12761 (16)0.74414 (15)0.0397 (5)
C90.33631 (16)0.20731 (16)0.61840 (14)0.0374 (4)
C100.49564 (16)0.17520 (16)0.60270 (14)0.0379 (4)
C110.53485 (19)0.28623 (19)0.60036 (17)0.0496 (5)
C120.6822 (2)0.2583 (2)0.58483 (19)0.0595 (7)
C130.7919 (2)0.1204 (2)0.5697 (2)0.0634 (7)
C140.7551 (2)0.0091 (2)0.5724 (2)0.0636 (6)
C150.60774 (18)0.03538 (19)0.59019 (17)0.0489 (5)
C160.24031 (17)0.31073 (16)0.52654 (15)0.0418 (5)
C170.27222 (18)0.39778 (17)0.39410 (16)0.0459 (5)
C180.3932 (2)0.3905 (2)0.30719 (18)0.0635 (6)
C190.3424 (3)0.5141 (2)0.18957 (19)0.0735 (8)
C200.1978 (3)0.5878 (2)0.2122 (2)0.0683 (7)
H10.454400.030800.831100.0490*
H1A0.132500.444601.321200.1660*
H1B0.254400.435801.264800.1660*
H1C0.181900.545301.176200.1660*
H30.112600.398301.136100.0880*
H40.294100.209001.043100.0720*
H60.017200.016201.112000.0630*
H70.162900.206001.207500.0790*
H110.461200.380600.609300.0600*
H120.707100.333400.584600.0710*
H130.890900.102500.557700.0760*
H140.829300.084500.562200.0760*
H150.583800.041600.593800.0590*
H160.141600.328000.551700.0500*
H180.490700.319100.320900.0760*
H190.400800.538300.111300.0880*
H200.137300.674500.151900.0820*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0370 (2)0.0433 (2)0.0375 (2)0.0226 (2)0.0060 (2)0.0002 (2)
O10.0430 (6)0.0558 (7)0.0455 (6)0.0249 (5)0.0132 (5)0.0052 (5)
O20.0530 (7)0.0483 (6)0.0544 (7)0.0305 (5)0.0088 (5)0.0036 (5)
O30.0423 (6)0.0675 (8)0.0527 (7)0.0300 (6)0.0106 (5)0.0053 (6)
O40.0613 (8)0.0502 (7)0.0535 (7)0.0213 (6)0.0173 (6)0.0067 (5)
N10.0351 (6)0.0488 (7)0.0370 (7)0.0225 (6)0.0040 (5)0.0017 (5)
C10.113 (2)0.0914 (19)0.101 (2)0.0286 (17)0.0316 (17)0.0472 (16)
C20.0717 (13)0.0694 (13)0.0546 (11)0.0226 (11)0.0076 (10)0.0209 (9)
C30.0871 (15)0.0661 (12)0.0762 (14)0.0420 (12)0.0087 (12)0.0271 (11)
C40.0568 (10)0.0622 (11)0.0676 (12)0.0359 (9)0.0055 (9)0.0184 (9)
C50.0421 (8)0.0516 (9)0.0358 (7)0.0249 (7)0.0034 (6)0.0047 (6)
C60.0457 (9)0.0704 (11)0.0483 (9)0.0318 (8)0.0001 (7)0.0157 (8)
C70.0484 (10)0.0895 (14)0.0567 (11)0.0302 (10)0.0091 (8)0.0254 (10)
C80.0380 (8)0.0397 (8)0.0393 (8)0.0181 (6)0.0044 (6)0.0061 (6)
C90.0389 (8)0.0341 (7)0.0370 (7)0.0154 (6)0.0015 (6)0.0093 (6)
C100.0402 (8)0.0404 (8)0.0303 (7)0.0185 (6)0.0004 (6)0.0068 (6)
C110.0504 (9)0.0458 (9)0.0537 (10)0.0237 (8)0.0026 (7)0.0156 (7)
C120.0609 (11)0.0707 (12)0.0611 (11)0.0436 (10)0.0024 (9)0.0173 (9)
C130.0422 (9)0.0825 (14)0.0635 (11)0.0311 (10)0.0037 (8)0.0175 (10)
C140.0418 (9)0.0593 (11)0.0755 (13)0.0117 (8)0.0034 (8)0.0231 (9)
C150.0451 (9)0.0437 (8)0.0551 (10)0.0175 (7)0.0012 (7)0.0152 (7)
C160.0415 (8)0.0380 (8)0.0413 (8)0.0160 (6)0.0030 (6)0.0078 (6)
C170.0503 (9)0.0379 (8)0.0431 (8)0.0169 (7)0.0090 (7)0.0037 (6)
C180.0633 (11)0.0609 (11)0.0488 (10)0.0233 (9)0.0028 (9)0.0057 (8)
C190.0955 (17)0.0690 (13)0.0431 (10)0.0414 (12)0.0043 (10)0.0004 (9)
C200.0847 (15)0.0572 (11)0.0510 (10)0.0331 (11)0.0186 (10)0.0107 (9)
Geometric parameters (Å, º) top
S1—O11.4305 (14)C13—C141.369 (3)
S1—O21.4168 (15)C14—C151.384 (3)
S1—N11.6529 (13)C16—C171.436 (2)
S1—C51.7506 (18)C17—C181.342 (3)
O3—C81.212 (2)C18—C191.426 (3)
O4—C171.374 (2)C19—C201.314 (4)
O4—C201.354 (3)C1—H1A0.9600
N1—C81.385 (2)C1—H1B0.9600
C1—C21.508 (4)C1—H1C0.9600
N1—H10.8600C3—H30.9300
C2—C31.394 (4)C4—H40.9300
C2—C71.379 (3)C6—H60.9300
C3—C41.368 (3)C7—H70.9300
C4—C51.383 (3)C11—H110.9300
C5—C61.379 (3)C12—H120.9300
C6—C71.379 (3)C13—H130.9300
C8—C91.490 (2)C14—H140.9300
C9—C101.489 (3)C15—H150.9300
C9—C161.343 (2)C16—H160.9300
C10—C151.385 (2)C18—H180.9300
C10—C111.384 (3)C19—H190.9300
C11—C121.381 (3)C20—H200.9300
C12—C131.371 (3)
O1—S1—O2118.76 (8)O4—C17—C16114.34 (16)
O1—S1—N1103.46 (8)C17—C18—C19106.2 (2)
O1—S1—C5109.41 (8)C18—C19—C20107.4 (2)
O2—S1—N1109.21 (7)O4—C20—C19110.31 (19)
O2—S1—C5110.00 (9)C2—C1—H1A110.00
N1—S1—C5104.98 (7)C2—C1—H1B109.00
C17—O4—C20107.00 (17)C2—C1—H1C109.00
S1—N1—C8123.08 (13)H1A—C1—H1B109.00
S1—N1—H1118.00H1A—C1—H1C109.00
C8—N1—H1118.00H1B—C1—H1C109.00
C3—C2—C7118.2 (2)C2—C3—H3119.00
C1—C2—C7121.3 (2)C4—C3—H3119.00
C1—C2—C3120.5 (2)C3—C4—H4120.00
C2—C3—C4121.2 (3)C5—C4—H4120.00
C3—C4—C5119.2 (2)C5—C6—H6121.00
S1—C5—C4118.85 (15)C7—C6—H6121.00
S1—C5—C6120.12 (14)C2—C7—H7119.00
C4—C5—C6120.99 (17)C6—C7—H7119.00
C5—C6—C7118.76 (19)C10—C11—H11120.00
C2—C7—C6121.6 (2)C12—C11—H11120.00
O3—C8—C9123.90 (15)C11—C12—H12120.00
N1—C8—C9114.94 (15)C13—C12—H12120.00
O3—C8—N1121.15 (15)C12—C13—H13120.00
C10—C9—C16124.12 (14)C14—C13—H13120.00
C8—C9—C10120.46 (13)C13—C14—H14120.00
C8—C9—C16115.38 (16)C15—C14—H14120.00
C11—C10—C15118.34 (18)C10—C15—H15120.00
C9—C10—C15121.55 (16)C14—C15—H15120.00
C9—C10—C11120.11 (15)C9—C16—H16116.00
C10—C11—C12120.69 (17)C17—C16—H16116.00
C11—C12—C13120.3 (2)C17—C18—H18127.00
C12—C13—C14119.8 (2)C19—C18—H18127.00
C13—C14—C15120.26 (18)C18—C19—H19126.00
C10—C15—C14120.62 (18)C20—C19—H19126.00
C9—C16—C17127.63 (18)O4—C20—H20125.00
O4—C17—C18109.06 (15)C19—C20—H20125.00
C16—C17—C18136.58 (17)
O1—S1—N1—C8178.32 (12)O3—C8—C9—C10173.10 (15)
O2—S1—N1—C854.28 (14)O3—C8—C9—C169.3 (2)
C5—S1—N1—C863.63 (14)N1—C8—C9—C107.5 (2)
O1—S1—C5—C455.32 (16)N1—C8—C9—C16170.18 (14)
O2—S1—C5—C4172.53 (14)C16—C9—C10—C15114.84 (18)
N1—S1—C5—C455.15 (16)C8—C9—C16—C17176.14 (15)
O1—S1—C5—C6122.64 (14)C10—C9—C16—C176.3 (3)
O2—S1—C5—C69.51 (16)C8—C9—C10—C1567.7 (2)
N1—S1—C5—C6126.88 (14)C8—C9—C10—C11112.25 (17)
C17—O4—C20—C191.2 (3)C16—C9—C10—C1165.2 (2)
C20—O4—C17—C180.8 (2)C9—C10—C15—C14178.43 (15)
C20—O4—C17—C16179.35 (17)C9—C10—C11—C12179.51 (15)
S1—N1—C8—O33.6 (2)C15—C10—C11—C120.5 (2)
S1—N1—C8—C9175.84 (11)C11—C10—C15—C141.6 (2)
C3—C2—C7—C61.0 (3)C10—C11—C12—C130.9 (3)
C1—C2—C7—C6179.1 (2)C11—C12—C13—C141.1 (3)
C1—C2—C3—C4179.5 (2)C12—C13—C14—C150.1 (3)
C7—C2—C3—C40.6 (3)C13—C14—C15—C101.3 (3)
C2—C3—C4—C50.4 (3)C9—C16—C17—O4165.28 (16)
C3—C4—C5—S1178.90 (16)C9—C16—C17—C1816.7 (3)
C3—C4—C5—C61.0 (3)O4—C17—C18—C190.1 (2)
S1—C5—C6—C7178.49 (14)C16—C17—C18—C19178.2 (2)
C4—C5—C6—C70.6 (3)C17—C18—C19—C200.6 (3)
C5—C6—C7—C20.4 (3)C18—C19—C20—O41.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the furan ring, O4/C17–C20
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.302.904 (2)127
C4—H4···O1i0.932.553.427 (3)158
C12—H12···Cg1ii0.932.813.664 (2)158
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1.
(II) (E)-2-(3-Methylphenyl)-N-(4-methylphenylsulfonyl)-3-phenylacrylamide top
Crystal data top
C23H21NO3SZ = 2
Mr = 391.47F(000) = 412
Triclinic, P1Dx = 1.325 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2595 (10) ÅCell parameters from 5782 reflections
b = 10.1158 (11) Åθ = 2.4–27.5°
c = 11.9271 (12) ŵ = 0.19 mm1
α = 72.396 (1)°T = 293 K
β = 67.518 (1)°Block, colorless
γ = 79.346 (1)°0.23 × 0.22 × 0.19 mm
V = 980.89 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3422 independent reflections
Radiation source: fine-focus sealed tube3082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 18.4 pixels mm-1θmax = 25.0°, θmin = 1.9°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1112
Tmin = 0.958, Tmax = 0.965l = 1314
7136 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.4517P]
where P = (Fo2 + 2Fc2)/3
3422 reflections(Δ/σ)max = 0.020
255 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.95790 (5)0.26449 (4)0.05551 (4)0.0436 (1)
O11.04900 (15)0.37065 (13)0.04088 (12)0.0547 (4)
O20.90276 (16)0.16492 (14)0.02290 (13)0.0569 (5)
O30.68817 (16)0.16464 (13)0.28061 (14)0.0597 (5)
N10.80466 (16)0.35319 (15)0.13653 (14)0.0451 (5)
C11.3053 (3)0.0307 (3)0.4111 (2)0.0727 (9)
C21.2199 (2)0.0429 (2)0.32171 (19)0.0528 (6)
C31.1116 (3)0.0221 (2)0.3086 (3)0.0722 (8)
C41.0318 (3)0.0434 (2)0.2278 (2)0.0675 (8)
C51.05970 (19)0.17789 (17)0.15828 (17)0.0428 (5)
C61.1700 (3)0.2442 (2)0.1675 (2)0.0633 (8)
C71.2484 (3)0.1761 (2)0.2490 (2)0.0693 (8)
C80.68331 (19)0.28973 (18)0.24058 (16)0.0428 (5)
C90.55006 (18)0.38643 (17)0.29569 (16)0.0386 (5)
C100.44805 (19)0.32908 (18)0.40848 (16)0.0426 (5)
C110.3048 (2)0.39036 (19)0.48921 (16)0.0429 (5)
C120.1949 (2)0.2998 (2)0.57903 (18)0.0562 (7)
C130.0586 (3)0.3480 (3)0.6607 (2)0.0681 (8)
C140.0297 (2)0.4866 (3)0.6551 (2)0.0658 (8)
C150.1372 (3)0.5781 (2)0.5689 (2)0.0640 (7)
C160.2740 (2)0.5309 (2)0.48597 (18)0.0543 (6)
C170.52982 (18)0.53233 (17)0.22211 (15)0.0394 (5)
C180.60582 (19)0.63895 (17)0.22063 (16)0.0419 (5)
C190.5787 (2)0.77626 (19)0.15814 (18)0.0526 (6)
C200.4696 (3)0.8034 (2)0.0996 (2)0.0756 (8)
C210.3957 (3)0.6992 (3)0.0975 (3)0.0837 (10)
C220.4264 (2)0.5634 (2)0.1573 (2)0.0606 (7)
C230.6632 (3)0.8906 (2)0.1559 (2)0.0737 (8)
H10.800200.442600.113000.0540*
H1A1.234800.037800.495800.1090*
H1B1.391500.020900.394900.1090*
H1C1.344300.122200.399600.1090*
H31.091700.112900.355800.0870*
H40.959400.003000.220200.0810*
H61.191500.334300.119000.0760*
H71.322800.221500.255000.0830*
H100.472000.235200.440700.0510*
H120.213800.205000.584000.0670*
H130.013700.286000.719600.0820*
H140.062800.519200.709700.0790*
H150.118000.672300.566300.0770*
H160.345700.593700.427600.0650*
H180.676900.618200.262500.0500*
H200.445700.894800.060400.0910*
H210.324500.720200.055700.1000*
H220.377800.492600.154200.0730*
H23A0.744800.915800.075700.1100*
H23B0.708300.859000.220600.1100*
H23C0.590600.970000.169800.1100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0405 (2)0.0405 (2)0.0452 (3)0.0018 (2)0.0106 (2)0.0112 (2)
O10.0506 (7)0.0506 (7)0.0466 (7)0.0047 (6)0.0035 (6)0.0068 (6)
O20.0592 (8)0.0539 (8)0.0666 (9)0.0005 (6)0.0276 (7)0.0231 (7)
O30.0540 (8)0.0372 (7)0.0687 (9)0.0055 (6)0.0057 (7)0.0057 (6)
N10.0395 (8)0.0350 (7)0.0501 (9)0.0023 (6)0.0074 (6)0.0071 (6)
C10.0784 (15)0.0720 (15)0.0750 (15)0.0034 (12)0.0401 (13)0.0171 (12)
C20.0521 (11)0.0516 (11)0.0550 (11)0.0029 (8)0.0188 (9)0.0178 (9)
C30.0748 (14)0.0441 (11)0.0995 (18)0.0114 (10)0.0474 (14)0.0052 (11)
C40.0659 (13)0.0444 (11)0.0996 (17)0.0145 (9)0.0470 (13)0.0009 (11)
C50.0381 (9)0.0391 (9)0.0479 (10)0.0021 (7)0.0104 (7)0.0132 (7)
C60.0806 (15)0.0465 (11)0.0705 (14)0.0199 (10)0.0357 (12)0.0049 (10)
C70.0858 (16)0.0602 (13)0.0792 (15)0.0231 (11)0.0462 (13)0.0091 (11)
C80.0392 (9)0.0405 (9)0.0462 (10)0.0066 (7)0.0135 (7)0.0072 (8)
C90.0353 (8)0.0389 (9)0.0424 (9)0.0058 (7)0.0150 (7)0.0080 (7)
C100.0421 (9)0.0403 (9)0.0451 (10)0.0073 (7)0.0159 (8)0.0072 (7)
C110.0410 (9)0.0501 (10)0.0359 (9)0.0088 (7)0.0120 (7)0.0075 (7)
C120.0557 (11)0.0594 (12)0.0504 (11)0.0194 (9)0.0073 (9)0.0154 (9)
C130.0538 (12)0.0868 (16)0.0556 (12)0.0284 (11)0.0036 (10)0.0227 (11)
C140.0470 (11)0.0891 (17)0.0547 (12)0.0032 (11)0.0042 (9)0.0280 (12)
C150.0663 (13)0.0598 (12)0.0554 (12)0.0057 (10)0.0132 (10)0.0167 (10)
C160.0537 (11)0.0515 (11)0.0453 (10)0.0060 (9)0.0068 (9)0.0074 (8)
C170.0324 (8)0.0425 (9)0.0369 (8)0.0024 (7)0.0082 (7)0.0067 (7)
C180.0389 (9)0.0418 (9)0.0403 (9)0.0023 (7)0.0119 (7)0.0067 (7)
C190.0506 (10)0.0417 (10)0.0511 (11)0.0034 (8)0.0076 (9)0.0048 (8)
C200.0734 (15)0.0528 (13)0.0834 (16)0.0018 (11)0.0364 (13)0.0165 (11)
C210.0796 (16)0.0807 (17)0.0924 (18)0.0071 (13)0.0594 (15)0.0143 (14)
C220.0561 (12)0.0641 (13)0.0659 (13)0.0120 (10)0.0339 (10)0.0019 (10)
C230.0822 (16)0.0438 (11)0.0838 (16)0.0112 (10)0.0195 (13)0.0091 (11)
Geometric parameters (Å, º) top
S1—O21.4161 (16)C18—C191.391 (3)
S1—O11.4258 (14)C19—C201.380 (3)
S1—N11.6605 (16)C19—C231.500 (3)
S1—C51.7571 (19)C20—C211.370 (4)
O3—C81.209 (2)C21—C221.377 (4)
N1—C81.390 (2)C1—H1A0.9600
C1—C21.504 (3)C1—H1B0.9600
N1—H10.8600C1—H1C0.9600
C2—C31.374 (4)C3—H30.9300
C2—C71.374 (3)C4—H40.9300
C3—C41.375 (4)C6—H60.9300
C4—C51.374 (3)C7—H70.9300
C5—C61.374 (3)C10—H100.9300
C6—C71.377 (4)C12—H120.9300
C8—C91.495 (3)C13—H130.9300
C9—C101.341 (2)C14—H140.9300
C9—C171.491 (2)C15—H150.9300
C10—C111.467 (3)C16—H160.9300
C11—C161.389 (3)C18—H180.9300
C11—C121.393 (3)C20—H200.9300
C12—C131.378 (3)C21—H210.9300
C13—C141.364 (4)C22—H220.9300
C14—C151.374 (3)C23—H23A0.9600
C15—C161.384 (3)C23—H23B0.9600
C17—C221.386 (3)C23—H23C0.9600
C17—C181.385 (3)
O2—S1—O1119.71 (8)C20—C21—C22120.2 (3)
O2—S1—N1108.68 (9)C17—C22—C21119.9 (2)
O2—S1—C5109.20 (9)C2—C1—H1A110.00
O1—S1—N1103.40 (8)C2—C1—H1B109.00
O1—S1—C5109.12 (9)C2—C1—H1C109.00
N1—S1—C5105.77 (8)H1A—C1—H1B109.00
S1—N1—C8123.08 (13)H1A—C1—H1C109.00
S1—N1—H1118.00H1B—C1—H1C109.00
C8—N1—H1118.00C2—C3—H3119.00
C1—C2—C3120.9 (2)C4—C3—H3119.00
C1—C2—C7121.6 (2)C3—C4—H4120.00
C3—C2—C7117.5 (2)C5—C4—H4120.00
C2—C3—C4121.8 (2)C5—C6—H6120.00
C3—C4—C5119.5 (2)C7—C6—H6120.00
C4—C5—C6119.8 (2)C2—C7—H7119.00
S1—C5—C4120.43 (17)C6—C7—H7119.00
S1—C5—C6119.78 (15)C9—C10—H10115.00
C5—C6—C7119.5 (2)C11—C10—H10115.00
C2—C7—C6121.9 (2)C11—C12—H12119.00
N1—C8—C9115.33 (15)C13—C12—H12119.00
O3—C8—N1120.79 (17)C12—C13—H13120.00
O3—C8—C9123.88 (17)C14—C13—H13120.00
C10—C9—C17124.16 (16)C13—C14—H14120.00
C8—C9—C10115.24 (16)C15—C14—H14120.00
C8—C9—C17120.42 (15)C14—C15—H15120.00
C9—C10—C11130.45 (17)C16—C15—H15120.00
C12—C11—C16117.83 (18)C11—C16—H16120.00
C10—C11—C12117.32 (17)C15—C16—H16120.00
C10—C11—C16124.79 (17)C17—C18—H18119.00
C11—C12—C13121.2 (2)C19—C18—H18119.00
C12—C13—C14120.0 (2)C19—C20—H20119.00
C13—C14—C15120.0 (2)C21—C20—H20119.00
C14—C15—C16120.4 (2)C20—C21—H21120.00
C11—C16—C15120.46 (19)C22—C21—H21120.00
C18—C17—C22118.86 (17)C17—C22—H22120.00
C9—C17—C18122.21 (16)C21—C22—H22120.00
C9—C17—C22118.87 (17)C19—C23—H23A109.00
C17—C18—C19121.81 (17)C19—C23—H23B109.00
C18—C19—C23121.31 (19)C19—C23—H23C109.00
C20—C19—C23121.30 (19)H23A—C23—H23B109.00
C18—C19—C20117.38 (18)H23A—C23—H23C109.00
C19—C20—C21121.7 (2)H23B—C23—H23C110.00
O2—S1—N1—C851.45 (17)C17—C9—C10—C114.3 (3)
O1—S1—N1—C8179.65 (15)C8—C9—C17—C1885.9 (2)
C5—S1—N1—C865.69 (17)C8—C9—C17—C2296.9 (2)
O2—S1—C5—C422.48 (19)C10—C9—C17—C1899.4 (2)
O1—S1—C5—C4155.02 (16)C10—C9—C17—C2277.8 (2)
N1—S1—C5—C494.32 (17)C9—C10—C11—C12158.7 (2)
O2—S1—C5—C6156.34 (16)C9—C10—C11—C1624.1 (3)
O1—S1—C5—C623.79 (19)C10—C11—C12—C13178.6 (2)
N1—S1—C5—C686.87 (18)C16—C11—C12—C131.1 (3)
S1—N1—C8—C9175.81 (13)C10—C11—C16—C15177.9 (2)
S1—N1—C8—O33.5 (3)C12—C11—C16—C150.8 (3)
C1—C2—C3—C4179.8 (2)C11—C12—C13—C140.4 (4)
C3—C2—C7—C61.3 (3)C12—C13—C14—C150.7 (4)
C1—C2—C7—C6179.7 (2)C13—C14—C15—C161.1 (4)
C7—C2—C3—C41.2 (4)C14—C15—C16—C110.3 (3)
C2—C3—C4—C50.4 (4)C9—C17—C18—C19175.89 (17)
C3—C4—C5—C61.8 (3)C22—C17—C18—C191.3 (3)
C3—C4—C5—S1179.38 (19)C9—C17—C22—C21174.5 (2)
S1—C5—C6—C7179.47 (17)C18—C17—C22—C212.8 (3)
C4—C5—C6—C71.7 (3)C17—C18—C19—C201.5 (3)
C5—C6—C7—C20.2 (3)C17—C18—C19—C23179.25 (18)
O3—C8—C9—C1012.7 (3)C18—C19—C20—C213.0 (3)
O3—C8—C9—C17162.47 (18)C23—C19—C20—C21177.8 (2)
N1—C8—C9—C10168.01 (17)C19—C20—C21—C221.6 (4)
N1—C8—C9—C1716.8 (2)C20—C21—C22—C171.4 (4)
C8—C9—C10—C11179.30 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings C11–C16 and C17–C22, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.313.038 (2)143
C21—H21···O2ii0.932.573.468 (4)163
C16—H16···Cg30.932.883.617 (2)137
C18—H18···Cg2iii0.932.833.646 (2)168
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

We acknowledge the support of the Natural Science Foundation of Anhui Higher Education Institution (No. KJ2013B166), and the Chaohu College Foundation for Doctors in China, Project of Undergraduate Innovative Training (No. 201410380018).

References

First citationBae, I., Han, H. & Chang, S. (2005). J. Am. Chem. Soc. 127, 2038–2039.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, D., Ling, F., Li, Z. X., Yao, W. J. & Ma, C. (2012). Org. Lett. 14, 3146–3149.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManikandan, R. & Jeganmohan, M. (2015). Org. Biomol. Chem. 13, 10420–10436.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMondal, K. & Pan, S. C. (2015). Eur. J. Org. Chem. pp. 2129–2132.  Web of Science CSD CrossRef Google Scholar
First citationRam, R. N. & Tittal, R. K. (2014). Tetrahedron Lett. 55, 4448–4451.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, L. & Cao, J. (2014). Org. Biomol. Chem. 12, 3986–3990.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, G., Chen, D., Wang, Y. & Zheng, R. (2012). Chem. Commun. 48, 5796–5798.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds