research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of phenyl 2,4,5-tri­chloro­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 27 April 2016; accepted 2 May 2016; online 6 May 2016)

The title compound, C12H7Cl3O3S, was synthesized via a nucleophilic substitution reaction between phenol and 2,4,5-tri­chloro­benzene­sulfonyl chloride. The two aryl rings are oriented gauche to one another around the sulfonate S—O bond, with a C—S—O—C torsion angle of −70.68 (16)°, and the two rings are inclined to one another by 72.40 (7)°. In the crystal, mol­ecules are linked via various C—Cl⋯π inter­actions, forming ribbons propagating along [100]. Neighboring ribbons are linked by a weak C—Cl⋯π inter­action, forming layers parallel to (010).

1. Chemical context

The use of arene-sulfonates as leaving groups has been explored in synthetic organic chemistry for quite some time (Crossland et al., 1971[Crossland, R. K., Wells, W. E. & Shiner, V. J. Jr (1971). J. Am. Chem. Soc. 93, 4217-4219.]; Klán et al., 2013[Klán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A. & Wirz, J. (2013). Chem. Rev. 113, 119-191.]; Sardzinski et al., 2015[Sardzinski, L. W., Wertjes, W. C., Schnaith, A. M. & Kalyani, D. (2015). Org. Lett. 17, 1256-1259.]). The stability of sulfonate ester leaving groups and the identi­fication of suitable protecting groups for sulfonates has been reported (Miller, 2010[Miller, S. C. (2010). J. Org. Chem. 75, 4632-4635.]). A competitive C—O and S—O bond fission has been reported in the reaction of amine nucleophiles with arene-sulfonates (Um et al., 2004[Um, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166-3172.]). The basicity of the amine nucleophile and the electronic nature of the substituent on the sulfonyl moiety are responsible for the difference in regioselectivity. We have synthesized various arene-sulfonate analogues in order to investigate the factors responsible for the competition between C—O and S—O bond fission in the reaction with nitro­gen nucleophiles (Atanasova et al., 2015[Atanasova, T. P., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1045-1047.]; Cooley et al., 2015[Cooley, T. A., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1085-1088.]).

[Scheme 1]

The sulfonamide moiety has found many useful applications in medicinal chemistry (Navia, 2000[Navia, M. A. (2000). Science, 288, 2132-2133.]). Sulfonamides can be synthesized conveniently from the corresponding sulfonyl chloride and amine nucleophiles. In our recent work, we reported on the synthesis and crystal structure of a chiral sulfonamide (Ngassa et al., 2015[Ngassa, F. N., Biros, S. M. & Staples, R. J. (2015). Acta Cryst. E71, 1521-1524.]). The direct synthesis of sulfonamides from arene-sulfonates has been reported (Caddick et al., 2004[Caddick, S., Wilden, J. D. & Judd, D. B. (2004). J. Am. Chem. Soc. 126, 1024-1025.]). Taking advantage of the regioselectivity of C—O vs S—O bond fission, we have explored the use of arene-sulfonates as electrophilic substrates in the synthesis of sulfonamides. We are inter­ested in the role of the substituent on the sulfonyl moiety and the basicity of the amine nucleophile on the nucleophilic substitution. As the title compound is of inter­est in our ongoing effort to investigate the role of the substituent on the sulfonyl moiety in nucleophilic substitution reactions with nitro­gen- and oxygen-nucleophiles, we report herein on the synthesis and crystal structure of this electrophilic arene-sulfonate.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The two aryl rings are oriented gauche to one another around the sulfonate S1—O1 bond, with a C1—S1—O1—C7 torsion angle of −70.68 (16)°. The two rings (C1–C6 and C7–C12) are inclined to one another by 72.40 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by Cl⋯π inter­actions (Table 1[link] and Fig. 2[link]). These inter­molecular inter­actions range in Cl⋯ring centroid distances from 3.525 (1) to 3.972 (1) Å (Table 1[link]). This distance falls near the accepted average as previously noted (Imai, et al., 2008[Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129-1137.]), and all inter­actions have a `face-on' geometry. The two strong inter­actions involving atoms Cl1 and Cl2 with the centroid of ring C7–C12 form ribbons propagating along the a-axis direction. Within the ribbon there is also a weaker Cl⋯π inter­action involving atom Cl3 and the centroid of ring C1–C6. Neighbouring ribbons are linked by a second weak Cl1⋯π inter­action (Table 1[link] and Fig. 2[link]), forming layers parallel to the ac plane. There are no other significant inter­molecular inter­actions present in the crystal.

Table 1
Geometric parameters (Å, °) for C—Cl⋯π contacts in the title compound.

Cg 1 and Cg2 are the centroids of rings C1–C6 and C7–C12, respectively.

C—Cl⋯Cg C—Cl Cl⋯Cg C⋯Cg C—Cl⋯Cg
C2—Cl1⋯Cg2i 1.727 (2) 3.5250 (10) 5.028 (2) 144.23 (7)
C4—Cl2⋯Cg2ii 1.721 (2) 3.7914 (11) 5.160 (2) 135.37 (7)
C5—Cl3⋯Cg1ii 1.725 (2) 3.6298 (10) 4.211 (2) 97.25 (7)
C2—Cl1..Cg1iii 1.727 (2) 3.9722 (10) 4.989 (2) 116.56 (7)
Symmetry codes:(i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 2, −z + 1; (iii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}].
[Figure 2]
Figure 2
A view of the various C—Cl⋯π inter­actions (blue dashed lines; see Table 1[link]) present in the crystal lattice of the title compound. H atoms have been omitted for clarity [symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 2, −z + 1; (iii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]].

4. Database survey

The Cambridge Structural Database (CSD, Version 5.37, February 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains eight structures of phenyl sulfonates where the group bonded directly to the sulfur atom is an aromatic ring. Other substituents on this ring include p-tolyl (FIQCIS: Manivannan et al., 2005[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Linden, A. (2005). Acta Cryst. E61, o690-o692.]), nitro (AJIWUL: Vembu et al., 2003[Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003). Acta Cryst. E59, o1213-o1215.]; XUKBOV: Vembu & Fronczek, 2009[Vembu, N. & Fronczek, F. R. (2009). J. Chem. Crystallogr. 39, 515-518.]), napthyl (VOJBOM: Vennila et al., 2008[Vennila, J. P., Kavitha, H. P., Thiruvadigal, D. J. & Manivannan, V. (2008). Acta Cryst. E64, o2304.]) and amino-napthyl (LEZWAP: Beyeh et al., 2007[Beyeh, N. K., Aumanen, J., Åhman, A., Luostarinen, M., Mansikkamäki, H., Nissinen, M., Korppi-Tommola, J. & Rissanen, K. (2007). New J. Chem. 31, 370-376.]). Of particular inter­est is the structure JEGWEY (Wright et al., 2006[Wright, M. E., Gorish, C. E., Shen, Z. & McHugh, M. A. (2006). J. Fluor. Chem. 127, 330-336.]) where the substituted aromatic ring bears chlorine atoms in the 2- and 5-positions. The torsion angle around the sulfonate S—O bond is 73.15 (19)°, similar to that seen in the title compound [70.68 (16)°]. In the crystal of this compound, one C—Cl⋯π inter­action is present [Cl⋯π distance: 3.4187 (16) Å] along with C—H⋯O hydrogen bonds.

Two recent publications describing the crystal structures of benzopyrimidoazepine derivatives have also noted C—Cl⋯π inter­actions present in the lattice (Acosta et al., 2015[Acosta, L. M., Jurado, J., Palma, A., Cobo, J. & Glidewell, C. (2015). Acta Cryst. C71, 1062-1068.]; Acosta Qu­intero et al., 2016[Acosta Quintero, L. M., Burgos, I., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 52-56.]). In these examples, the C—Cl⋯π inter­actions are complemented by either C—H⋯π or ππ inter­actions between mol­ecules in the solid state.

5. Synthesis and crystallization

Phenol (0.941g, 10 mmol) was dissolved in 10 ml of chilled di­chloro­methane. This was followed by the addition of pyridine (1.6 ml, 20 mmol). The resulting solution was cooled in an ice bath under an N2 atmosphere, followed by the addition of 2,4,5-tri­chloro­benzene­sulfonyl chloride (1.91 g, 10 mmol) portion-wise. The mixture was stirred at 273 K for 30 min and then at room temperature for 12 h. Reaction completion was verified by using TLC analysis. After dilution with 15 ml of CH2Cl2, the organic phase was washed with H2O, brine, and dried over anhydrous Na2SO4. After the solvent was evaporated the crude product was obtained as a tan solid. The title compound was recrystallized from CH2Cl2/hexa­nes to afford colourless needle-like crystals (56% yield, m.p. 380–381 K) suitable for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The positions of all hydrogen atoms were calculated geometrically and refined to ride on their parent atoms: C—H = 0. 95 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C12H7Cl3O3S
Mr 337.59
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 12.3401 (11), 6.5421 (6), 16.1350 (14)
β (°) 92.1159 (10)
V3) 1301.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.86
Crystal size (mm) 0.24 × 0.18 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.689, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 10912, 2568, 2172
Rint 0.029
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.06
No. of reflections 2568
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.28
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

Phenyl 2,4,5-trichlorobenzenesulfonate top
Crystal data top
C12H7Cl3O3SF(000) = 680
Mr = 337.59Dx = 1.723 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.3401 (11) ÅCell parameters from 5969 reflections
b = 6.5421 (6) Åθ = 2.5–26.0°
c = 16.1350 (14) ŵ = 0.86 mm1
β = 92.1159 (10)°T = 173 K
V = 1301.7 (2) Å3Needle, colourless
Z = 40.24 × 0.18 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2172 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 26.1°, θmin = 2.0°
Tmin = 0.689, Tmax = 0.745h = 1515
10912 measured reflectionsk = 88
2568 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.7507P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2568 reflectionsΔρmax = 0.26 e Å3
172 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl30.40330 (4)0.76082 (9)0.56242 (3)0.03498 (15)
Cl20.43839 (5)1.20119 (9)0.64173 (4)0.04126 (17)
Cl10.86246 (4)1.05869 (8)0.68164 (3)0.03599 (16)
S10.83040 (4)0.61521 (8)0.58959 (3)0.02676 (14)
O20.78797 (12)0.4493 (2)0.54149 (9)0.0322 (3)
O30.88861 (13)0.5784 (2)0.66557 (9)0.0367 (4)
C10.72261 (16)0.7865 (3)0.60570 (12)0.0250 (4)
C120.86103 (16)0.9951 (3)0.43502 (13)0.0297 (5)
H120.85681.09400.47790.036*
O10.91219 (11)0.7437 (2)0.53709 (8)0.0283 (3)
C30.64884 (17)1.1015 (3)0.65532 (12)0.0287 (5)
H30.65871.23170.68060.034*
C60.61918 (16)0.7233 (3)0.58012 (12)0.0260 (4)
H60.60930.59470.55350.031*
C80.89316 (17)0.6461 (3)0.39295 (13)0.0309 (5)
H80.91070.50880.40720.037*
C50.53069 (16)0.8467 (3)0.59320 (12)0.0267 (4)
C40.54605 (17)1.0382 (3)0.62926 (12)0.0285 (5)
C20.73697 (17)0.9755 (3)0.64467 (12)0.0273 (4)
C70.88520 (16)0.7940 (3)0.45289 (12)0.0256 (4)
C100.84980 (18)0.9035 (4)0.29115 (13)0.0352 (5)
H100.83710.94150.23480.042*
C110.84316 (18)1.0485 (3)0.35269 (14)0.0345 (5)
H110.82621.18600.33850.041*
C90.87469 (18)0.7041 (4)0.31090 (14)0.0359 (5)
H90.87930.60530.26800.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl30.0269 (3)0.0401 (3)0.0379 (3)0.0003 (2)0.0017 (2)0.0008 (2)
Cl20.0432 (3)0.0361 (3)0.0451 (3)0.0146 (2)0.0111 (3)0.0001 (2)
Cl10.0383 (3)0.0317 (3)0.0375 (3)0.0058 (2)0.0056 (2)0.0032 (2)
S10.0288 (3)0.0241 (3)0.0275 (3)0.0027 (2)0.0018 (2)0.0006 (2)
O20.0345 (8)0.0237 (8)0.0386 (8)0.0003 (6)0.0043 (6)0.0037 (6)
O30.0419 (9)0.0386 (9)0.0295 (8)0.0100 (7)0.0021 (7)0.0046 (7)
C10.0287 (11)0.0228 (10)0.0235 (10)0.0032 (8)0.0033 (8)0.0015 (8)
C120.0290 (11)0.0256 (11)0.0347 (11)0.0001 (9)0.0044 (9)0.0039 (9)
O10.0244 (7)0.0334 (8)0.0271 (7)0.0018 (6)0.0002 (6)0.0006 (6)
C30.0420 (12)0.0232 (10)0.0210 (10)0.0007 (9)0.0046 (9)0.0001 (8)
C60.0296 (11)0.0245 (10)0.0241 (10)0.0000 (8)0.0042 (8)0.0001 (8)
C80.0299 (11)0.0287 (11)0.0344 (11)0.0034 (9)0.0048 (9)0.0034 (9)
C50.0281 (10)0.0285 (11)0.0236 (10)0.0006 (8)0.0035 (8)0.0029 (8)
C40.0354 (11)0.0266 (11)0.0239 (10)0.0073 (9)0.0088 (8)0.0042 (8)
C20.0347 (11)0.0247 (10)0.0226 (10)0.0043 (9)0.0011 (8)0.0006 (8)
C70.0212 (10)0.0305 (11)0.0251 (10)0.0006 (8)0.0022 (8)0.0005 (8)
C100.0323 (12)0.0458 (14)0.0275 (11)0.0051 (10)0.0022 (9)0.0029 (10)
C110.0339 (12)0.0301 (12)0.0394 (12)0.0003 (9)0.0001 (10)0.0066 (10)
C90.0371 (12)0.0393 (13)0.0316 (11)0.0027 (10)0.0055 (9)0.0108 (10)
Geometric parameters (Å, º) top
Cl3—C51.725 (2)C3—C41.385 (3)
Cl2—C41.721 (2)C3—C21.380 (3)
Cl1—C21.727 (2)C6—H60.9500
S1—O21.4229 (15)C6—C51.380 (3)
S1—O31.4184 (15)C8—H80.9500
S1—C11.766 (2)C8—C71.374 (3)
S1—O11.5828 (15)C8—C91.388 (3)
C1—C61.390 (3)C5—C41.391 (3)
C1—C21.395 (3)C10—H100.9500
C12—H120.9500C10—C111.378 (3)
C12—C71.377 (3)C10—C91.375 (3)
C12—C111.383 (3)C11—H110.9500
O1—C71.425 (2)C9—H90.9500
C3—H30.9500
O2—S1—C1107.48 (9)C6—C5—Cl3118.90 (16)
O2—S1—O1110.01 (8)C6—C5—C4119.61 (19)
O3—S1—O2120.41 (9)C4—C5—Cl3121.47 (16)
O3—S1—C1109.92 (9)C3—C4—Cl2118.78 (16)
O3—S1—O1103.89 (9)C3—C4—C5120.35 (19)
O1—S1—C1103.92 (9)C5—C4—Cl2120.87 (17)
C6—C1—S1117.13 (15)C1—C2—Cl1122.17 (16)
C6—C1—C2119.83 (19)C3—C2—Cl1117.99 (16)
C2—C1—S1123.01 (16)C3—C2—C1119.84 (19)
C7—C12—H12121.1C12—C7—O1117.49 (18)
C7—C12—C11117.9 (2)C8—C7—C12123.09 (19)
C11—C12—H12121.1C8—C7—O1119.19 (18)
C7—O1—S1120.10 (12)C11—C10—H10119.8
C4—C3—H3120.0C9—C10—H10119.8
C2—C3—H3120.0C9—C10—C11120.3 (2)
C2—C3—C4120.04 (19)C12—C11—H11119.8
C1—C6—H6119.9C10—C11—C12120.4 (2)
C5—C6—C1120.24 (19)C10—C11—H11119.8
C5—C6—H6119.9C8—C9—H9119.7
C7—C8—H8121.1C10—C9—C8120.5 (2)
C7—C8—C9117.7 (2)C10—C9—H9119.7
C9—C8—H8121.1
Cl3—C5—C4—Cl22.0 (2)C6—C1—C2—Cl1177.38 (15)
Cl3—C5—C4—C3178.38 (15)C6—C1—C2—C32.0 (3)
S1—C1—C6—C5177.92 (15)C6—C5—C4—Cl2176.71 (15)
S1—C1—C2—Cl10.5 (3)C6—C5—C4—C32.9 (3)
S1—C1—C2—C3179.86 (15)C4—C3—C2—Cl1177.78 (15)
S1—O1—C7—C12109.03 (18)C4—C3—C2—C11.6 (3)
S1—O1—C7—C876.3 (2)C2—C1—C6—C50.1 (3)
O2—S1—C1—C67.64 (18)C2—C3—C4—Cl2178.78 (15)
O2—S1—C1—C2174.44 (16)C2—C3—C4—C50.8 (3)
O2—S1—O1—C744.13 (16)C7—C12—C11—C100.1 (3)
O3—S1—C1—C6125.09 (16)C7—C8—C9—C100.3 (3)
O3—S1—C1—C252.8 (2)C11—C12—C7—O1174.98 (18)
O3—S1—O1—C7174.30 (14)C11—C12—C7—C80.6 (3)
C1—S1—O1—C770.68 (16)C11—C10—C9—C80.2 (3)
C1—C6—C5—Cl3178.73 (15)C9—C8—C7—C120.6 (3)
C1—C6—C5—C42.5 (3)C9—C8—C7—O1174.96 (18)
O1—S1—C1—C6124.24 (15)C9—C10—C11—C120.2 (3)
O1—S1—C1—C257.85 (18)
Geometric parameters (Å, °) for C—Cl···π contacts in the title compound. top
Cg 1 and Cg2 are the centroids of rings C1–C6 and C7–C12, respectively.
C—Cl···CgC—ClCl···CgC···CgC—Cl···Cg
C2—Cl1···Cg2i1.727 (2)3.5250 (10)5.028 (2)144.23 (7)
C4—Cl2···Cg2ii1.721 (2)3.7914 (11)5.160 (2)135.37 (7)
C5—Cl3···Cg1ii1.725 (2)3.6298 (10)4.211 (2)97.25 (7)
C2—Cl1..Cg1iii1.727 (2)3.9722 (10)4.989 (2)116.56 (7)
Symmetry codes:(i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 3/2, y + 1/2, -z + 3/2.
 

Acknowledgements

The authors thank GVSU for financial support (Weldon Fund, CSCE), the NSF for a 300 MHz Jeol FT–NMR (CCLI-0087655) and Pfizer, Inc. for the donation of a Varian Inova 400 F T NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

References

First citationAcosta, L. M., Jurado, J., Palma, A., Cobo, J. & Glidewell, C. (2015). Acta Cryst. C71, 1062–1068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAcosta Quintero, L. M., Burgos, I., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 52–56.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtanasova, T. P., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1045–1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeyeh, N. K., Aumanen, J., Åhman, A., Luostarinen, M., Mansikkamäki, H., Nissinen, M., Korppi-Tommola, J. & Rissanen, K. (2007). New J. Chem. 31, 370–376.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaddick, S., Wilden, J. D. & Judd, D. B. (2004). J. Am. Chem. Soc. 126, 1024–1025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCooley, T. A., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1085–1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrossland, R. K., Wells, W. E. & Shiner, V. J. Jr (1971). J. Am. Chem. Soc. 93, 4217–4219.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationImai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A. & Wirz, J. (2013). Chem. Rev. 113, 119–191.  Web of Science PubMed Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Linden, A. (2005). Acta Cryst. E61, o690–o692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiller, S. C. (2010). J. Org. Chem. 75, 4632–4635.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNavia, M. A. (2000). Science, 288, 2132–2133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNgassa, F. N., Biros, S. M. & Staples, R. J. (2015). Acta Cryst. E71, 1521–1524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationSardzinski, L. W., Wertjes, W. C., Schnaith, A. M. & Kalyani, D. (2015). Org. Lett. 17, 1256–1259.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUm, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166–3172.  CAS Google Scholar
First citationVembu, N. & Fronczek, F. R. (2009). J. Chem. Crystallogr. 39, 515–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationVembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003). Acta Cryst. E59, o1213–o1215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVennila, J. P., Kavitha, H. P., Thiruvadigal, D. J. & Manivannan, V. (2008). Acta Cryst. E64, o2304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWright, M. E., Gorish, C. E., Shen, Z. & McHugh, M. A. (2006). J. Fluor. Chem. 127, 330–336.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds