research communications
of phenyl 2,4,5-trichlorobenzenesulfonate
aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu
The title compound, C12H7Cl3O3S, was synthesized via a nucleophilic between phenol and 2,4,5-trichlorobenzenesulfonyl chloride. The two aryl rings are oriented gauche to one another around the sulfonate S—O bond, with a C—S—O—C torsion angle of −70.68 (16)°, and the two rings are inclined to one another by 72.40 (7)°. In the crystal, molecules are linked via various C—Cl⋯π interactions, forming ribbons propagating along [100]. Neighboring ribbons are linked by a weak C—Cl⋯π interaction, forming layers parallel to (010).
Keywords: crystal structure; sulfonate; C—Cl⋯π interactions.
CCDC reference: 1477649
1. Chemical context
The use of arene-sulfonates as leaving groups has been explored in synthetic organic chemistry for quite some time (Crossland et al., 1971; Klán et al., 2013; Sardzinski et al., 2015). The stability of sulfonate ester leaving groups and the identification of suitable protecting groups for sulfonates has been reported (Miller, 2010). A competitive C—O and S—O bond fission has been reported in the reaction of amine nucleophiles with arene-sulfonates (Um et al., 2004). The basicity of the amine and the electronic nature of the substituent on the sulfonyl moiety are responsible for the difference in regioselectivity. We have synthesized various arene-sulfonate analogues in order to investigate the factors responsible for the competition between C—O and S—O bond fission in the reaction with nitrogen nucleophiles (Atanasova et al., 2015; Cooley et al., 2015).
The sulfonamide moiety has found many useful applications in medicinal chemistry (Navia, 2000). can be synthesized conveniently from the corresponding sulfonyl chloride and amine nucleophiles. In our recent work, we reported on the synthesis and of a chiral sulfonamide (Ngassa et al., 2015). The direct synthesis of from arene-sulfonates has been reported (Caddick et al., 2004). Taking advantage of the regioselectivity of C—O vs S—O bond fission, we have explored the use of arene-sulfonates as electrophilic substrates in the synthesis of We are interested in the role of the substituent on the sulfonyl moiety and the basicity of the amine on the nucleophilic substitution. As the title compound is of interest in our ongoing effort to investigate the role of the substituent on the sulfonyl moiety in nucleophilic substitution reactions with nitrogen- and oxygen-nucleophiles, we report herein on the synthesis and of this electrophilic arene-sulfonate.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The two aryl rings are oriented gauche to one another around the sulfonate S1—O1 bond, with a C1—S1—O1—C7 torsion angle of −70.68 (16)°. The two rings (C1–C6 and C7–C12) are inclined to one another by 72.40 (7)°.
3. Supramolecular features
In the crystal, molecules are linked by Cl⋯π interactions (Table 1 and Fig. 2). These intermolecular interactions range in Cl⋯ring centroid distances from 3.525 (1) to 3.972 (1) Å (Table 1). This distance falls near the accepted average as previously noted (Imai, et al., 2008), and all interactions have a `face-on' geometry. The two strong interactions involving atoms Cl1 and Cl2 with the centroid of ring C7–C12 form ribbons propagating along the a-axis direction. Within the ribbon there is also a weaker Cl⋯π interaction involving atom Cl3 and the centroid of ring C1–C6. Neighbouring ribbons are linked by a second weak Cl1⋯π interaction (Table 1 and Fig. 2), forming layers parallel to the ac plane. There are no other significant intermolecular interactions present in the crystal.
4. Database survey
The Cambridge Structural Database (CSD, Version 5.37, February 2016; Groom et al., 2016) contains eight structures of phenyl sulfonates where the group bonded directly to the sulfur atom is an aromatic ring. Other substituents on this ring include p-tolyl (FIQCIS: Manivannan et al., 2005), nitro (AJIWUL: Vembu et al., 2003; XUKBOV: Vembu & Fronczek, 2009), napthyl (VOJBOM: Vennila et al., 2008) and amino-napthyl (LEZWAP: Beyeh et al., 2007). Of particular interest is the structure JEGWEY (Wright et al., 2006) where the substituted aromatic ring bears chlorine atoms in the 2- and 5-positions. The torsion angle around the sulfonate S—O bond is 73.15 (19)°, similar to that seen in the title compound [70.68 (16)°]. In the crystal of this compound, one C—Cl⋯π interaction is present [Cl⋯π distance: 3.4187 (16) Å] along with C—H⋯O hydrogen bonds.
Two recent publications describing the crystal structures of benzopyrimidoazepine derivatives have also noted C—Cl⋯π interactions present in the lattice (Acosta et al., 2015; Acosta Quintero et al., 2016). In these examples, the C—Cl⋯π interactions are complemented by either C—H⋯π or π–π interactions between molecules in the solid state.
5. Synthesis and crystallization
Phenol (0.941g, 10 mmol) was dissolved in 10 ml of chilled dichloromethane. This was followed by the addition of pyridine (1.6 ml, 20 mmol). The resulting solution was cooled in an ice bath under an N2 atmosphere, followed by the addition of 2,4,5-trichlorobenzenesulfonyl chloride (1.91 g, 10 mmol) portion-wise. The mixture was stirred at 273 K for 30 min and then at room temperature for 12 h. Reaction completion was verified by using TLC analysis. After dilution with 15 ml of CH2Cl2, the organic phase was washed with H2O, brine, and dried over anhydrous Na2SO4. After the solvent was evaporated the crude product was obtained as a tan solid. The title compound was recrystallized from CH2Cl2/hexanes to afford colourless needle-like crystals (56% yield, m.p. 380–381 K) suitable for X-ray diffraction analysis.
6. Refinement
Crystal data, data collection and structure . The positions of all hydrogen atoms were calculated geometrically and refined to ride on their parent atoms: C—H = 0. 95 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1477649
https://doi.org/10.1107/S2056989016007325/su5297sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016007325/su5297Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016007325/su5297Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).C12H7Cl3O3S | F(000) = 680 |
Mr = 337.59 | Dx = 1.723 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.3401 (11) Å | Cell parameters from 5969 reflections |
b = 6.5421 (6) Å | θ = 2.5–26.0° |
c = 16.1350 (14) Å | µ = 0.86 mm−1 |
β = 92.1159 (10)° | T = 173 K |
V = 1301.7 (2) Å3 | Needle, colourless |
Z = 4 | 0.24 × 0.18 × 0.10 mm |
Bruker APEXII CCD diffractometer | 2172 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.029 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 26.1°, θmin = 2.0° |
Tmin = 0.689, Tmax = 0.745 | h = −15→15 |
10912 measured reflections | k = −8→8 |
2568 independent reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0396P)2 + 0.7507P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2568 reflections | Δρmax = 0.26 e Å−3 |
172 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl3 | 0.40330 (4) | 0.76082 (9) | 0.56242 (3) | 0.03498 (15) | |
Cl2 | 0.43839 (5) | 1.20119 (9) | 0.64173 (4) | 0.04126 (17) | |
Cl1 | 0.86246 (4) | 1.05869 (8) | 0.68164 (3) | 0.03599 (16) | |
S1 | 0.83040 (4) | 0.61521 (8) | 0.58959 (3) | 0.02676 (14) | |
O2 | 0.78797 (12) | 0.4493 (2) | 0.54149 (9) | 0.0322 (3) | |
O3 | 0.88861 (13) | 0.5784 (2) | 0.66557 (9) | 0.0367 (4) | |
C1 | 0.72261 (16) | 0.7865 (3) | 0.60570 (12) | 0.0250 (4) | |
C12 | 0.86103 (16) | 0.9951 (3) | 0.43502 (13) | 0.0297 (5) | |
H12 | 0.8568 | 1.0940 | 0.4779 | 0.036* | |
O1 | 0.91219 (11) | 0.7437 (2) | 0.53709 (8) | 0.0283 (3) | |
C3 | 0.64884 (17) | 1.1015 (3) | 0.65532 (12) | 0.0287 (5) | |
H3 | 0.6587 | 1.2317 | 0.6806 | 0.034* | |
C6 | 0.61918 (16) | 0.7233 (3) | 0.58012 (12) | 0.0260 (4) | |
H6 | 0.6093 | 0.5947 | 0.5535 | 0.031* | |
C8 | 0.89316 (17) | 0.6461 (3) | 0.39295 (13) | 0.0309 (5) | |
H8 | 0.9107 | 0.5088 | 0.4072 | 0.037* | |
C5 | 0.53069 (16) | 0.8467 (3) | 0.59320 (12) | 0.0267 (4) | |
C4 | 0.54605 (17) | 1.0382 (3) | 0.62926 (12) | 0.0285 (5) | |
C2 | 0.73697 (17) | 0.9755 (3) | 0.64467 (12) | 0.0273 (4) | |
C7 | 0.88520 (16) | 0.7940 (3) | 0.45289 (12) | 0.0256 (4) | |
C10 | 0.84980 (18) | 0.9035 (4) | 0.29115 (13) | 0.0352 (5) | |
H10 | 0.8371 | 0.9415 | 0.2348 | 0.042* | |
C11 | 0.84316 (18) | 1.0485 (3) | 0.35269 (14) | 0.0345 (5) | |
H11 | 0.8262 | 1.1860 | 0.3385 | 0.041* | |
C9 | 0.87469 (18) | 0.7041 (4) | 0.31090 (14) | 0.0359 (5) | |
H9 | 0.8793 | 0.6053 | 0.2680 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl3 | 0.0269 (3) | 0.0401 (3) | 0.0379 (3) | 0.0003 (2) | 0.0017 (2) | 0.0008 (2) |
Cl2 | 0.0432 (3) | 0.0361 (3) | 0.0451 (3) | 0.0146 (2) | 0.0111 (3) | 0.0001 (2) |
Cl1 | 0.0383 (3) | 0.0317 (3) | 0.0375 (3) | −0.0058 (2) | −0.0056 (2) | −0.0032 (2) |
S1 | 0.0288 (3) | 0.0241 (3) | 0.0275 (3) | 0.0027 (2) | 0.0018 (2) | 0.0006 (2) |
O2 | 0.0345 (8) | 0.0237 (8) | 0.0386 (8) | −0.0003 (6) | 0.0043 (6) | −0.0037 (6) |
O3 | 0.0419 (9) | 0.0386 (9) | 0.0295 (8) | 0.0100 (7) | −0.0021 (7) | 0.0046 (7) |
C1 | 0.0287 (11) | 0.0228 (10) | 0.0235 (10) | 0.0032 (8) | 0.0033 (8) | 0.0015 (8) |
C12 | 0.0290 (11) | 0.0256 (11) | 0.0347 (11) | −0.0001 (9) | 0.0044 (9) | −0.0039 (9) |
O1 | 0.0244 (7) | 0.0334 (8) | 0.0271 (7) | −0.0018 (6) | 0.0002 (6) | 0.0006 (6) |
C3 | 0.0420 (12) | 0.0232 (10) | 0.0210 (10) | 0.0007 (9) | 0.0046 (9) | 0.0001 (8) |
C6 | 0.0296 (11) | 0.0245 (10) | 0.0241 (10) | 0.0000 (8) | 0.0042 (8) | 0.0001 (8) |
C8 | 0.0299 (11) | 0.0287 (11) | 0.0344 (11) | 0.0034 (9) | 0.0048 (9) | −0.0034 (9) |
C5 | 0.0281 (10) | 0.0285 (11) | 0.0236 (10) | 0.0006 (8) | 0.0035 (8) | 0.0029 (8) |
C4 | 0.0354 (11) | 0.0266 (11) | 0.0239 (10) | 0.0073 (9) | 0.0088 (8) | 0.0042 (8) |
C2 | 0.0347 (11) | 0.0247 (10) | 0.0226 (10) | −0.0043 (9) | 0.0011 (8) | 0.0006 (8) |
C7 | 0.0212 (10) | 0.0305 (11) | 0.0251 (10) | −0.0006 (8) | 0.0022 (8) | 0.0005 (8) |
C10 | 0.0323 (12) | 0.0458 (14) | 0.0275 (11) | −0.0051 (10) | 0.0022 (9) | 0.0029 (10) |
C11 | 0.0339 (12) | 0.0301 (12) | 0.0394 (12) | −0.0003 (9) | −0.0001 (10) | 0.0066 (10) |
C9 | 0.0371 (12) | 0.0393 (13) | 0.0316 (11) | −0.0027 (10) | 0.0055 (9) | −0.0108 (10) |
Cl3—C5 | 1.725 (2) | C3—C4 | 1.385 (3) |
Cl2—C4 | 1.721 (2) | C3—C2 | 1.380 (3) |
Cl1—C2 | 1.727 (2) | C6—H6 | 0.9500 |
S1—O2 | 1.4229 (15) | C6—C5 | 1.380 (3) |
S1—O3 | 1.4184 (15) | C8—H8 | 0.9500 |
S1—C1 | 1.766 (2) | C8—C7 | 1.374 (3) |
S1—O1 | 1.5828 (15) | C8—C9 | 1.388 (3) |
C1—C6 | 1.390 (3) | C5—C4 | 1.391 (3) |
C1—C2 | 1.395 (3) | C10—H10 | 0.9500 |
C12—H12 | 0.9500 | C10—C11 | 1.378 (3) |
C12—C7 | 1.377 (3) | C10—C9 | 1.375 (3) |
C12—C11 | 1.383 (3) | C11—H11 | 0.9500 |
O1—C7 | 1.425 (2) | C9—H9 | 0.9500 |
C3—H3 | 0.9500 | ||
O2—S1—C1 | 107.48 (9) | C6—C5—Cl3 | 118.90 (16) |
O2—S1—O1 | 110.01 (8) | C6—C5—C4 | 119.61 (19) |
O3—S1—O2 | 120.41 (9) | C4—C5—Cl3 | 121.47 (16) |
O3—S1—C1 | 109.92 (9) | C3—C4—Cl2 | 118.78 (16) |
O3—S1—O1 | 103.89 (9) | C3—C4—C5 | 120.35 (19) |
O1—S1—C1 | 103.92 (9) | C5—C4—Cl2 | 120.87 (17) |
C6—C1—S1 | 117.13 (15) | C1—C2—Cl1 | 122.17 (16) |
C6—C1—C2 | 119.83 (19) | C3—C2—Cl1 | 117.99 (16) |
C2—C1—S1 | 123.01 (16) | C3—C2—C1 | 119.84 (19) |
C7—C12—H12 | 121.1 | C12—C7—O1 | 117.49 (18) |
C7—C12—C11 | 117.9 (2) | C8—C7—C12 | 123.09 (19) |
C11—C12—H12 | 121.1 | C8—C7—O1 | 119.19 (18) |
C7—O1—S1 | 120.10 (12) | C11—C10—H10 | 119.8 |
C4—C3—H3 | 120.0 | C9—C10—H10 | 119.8 |
C2—C3—H3 | 120.0 | C9—C10—C11 | 120.3 (2) |
C2—C3—C4 | 120.04 (19) | C12—C11—H11 | 119.8 |
C1—C6—H6 | 119.9 | C10—C11—C12 | 120.4 (2) |
C5—C6—C1 | 120.24 (19) | C10—C11—H11 | 119.8 |
C5—C6—H6 | 119.9 | C8—C9—H9 | 119.7 |
C7—C8—H8 | 121.1 | C10—C9—C8 | 120.5 (2) |
C7—C8—C9 | 117.7 (2) | C10—C9—H9 | 119.7 |
C9—C8—H8 | 121.1 | ||
Cl3—C5—C4—Cl2 | −2.0 (2) | C6—C1—C2—Cl1 | 177.38 (15) |
Cl3—C5—C4—C3 | 178.38 (15) | C6—C1—C2—C3 | −2.0 (3) |
S1—C1—C6—C5 | 177.92 (15) | C6—C5—C4—Cl2 | 176.71 (15) |
S1—C1—C2—Cl1 | −0.5 (3) | C6—C5—C4—C3 | −2.9 (3) |
S1—C1—C2—C3 | −179.86 (15) | C4—C3—C2—Cl1 | −177.78 (15) |
S1—O1—C7—C12 | 109.03 (18) | C4—C3—C2—C1 | 1.6 (3) |
S1—O1—C7—C8 | −76.3 (2) | C2—C1—C6—C5 | −0.1 (3) |
O2—S1—C1—C6 | 7.64 (18) | C2—C3—C4—Cl2 | −178.78 (15) |
O2—S1—C1—C2 | −174.44 (16) | C2—C3—C4—C5 | 0.8 (3) |
O2—S1—O1—C7 | 44.13 (16) | C7—C12—C11—C10 | −0.1 (3) |
O3—S1—C1—C6 | −125.09 (16) | C7—C8—C9—C10 | 0.3 (3) |
O3—S1—C1—C2 | 52.8 (2) | C11—C12—C7—O1 | 174.98 (18) |
O3—S1—O1—C7 | 174.30 (14) | C11—C12—C7—C8 | 0.6 (3) |
C1—S1—O1—C7 | −70.68 (16) | C11—C10—C9—C8 | 0.2 (3) |
C1—C6—C5—Cl3 | −178.73 (15) | C9—C8—C7—C12 | −0.6 (3) |
C1—C6—C5—C4 | 2.5 (3) | C9—C8—C7—O1 | −174.96 (18) |
O1—S1—C1—C6 | 124.24 (15) | C9—C10—C11—C12 | −0.2 (3) |
O1—S1—C1—C2 | −57.85 (18) |
Cg 1 and Cg2 are the centroids of rings C1–C6 and C7–C12, respectively. |
C—Cl···Cg | C—Cl | Cl···Cg | C···Cg | C—Cl···Cg |
C2—Cl1···Cg2i | 1.727 (2) | 3.5250 (10) | 5.028 (2) | 144.23 (7) |
C4—Cl2···Cg2ii | 1.721 (2) | 3.7914 (11) | 5.160 (2) | 135.37 (7) |
C5—Cl3···Cg1ii | 1.725 (2) | 3.6298 (10) | 4.211 (2) | 97.25 (7) |
C2—Cl1..Cg1iii | 1.727 (2) | 3.9722 (10) | 4.989 (2) | 116.56 (7) |
Symmetry codes:(i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 3/2, y + 1/2, -z + 3/2. |
Acknowledgements
The authors thank GVSU for financial support (Weldon Fund, CSCE), the NSF for a 300 MHz Jeol FT–NMR (CCLI-0087655) and Pfizer, Inc. for the donation of a Varian Inova 400 F T NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.
References
Acosta, L. M., Jurado, J., Palma, A., Cobo, J. & Glidewell, C. (2015). Acta Cryst. C71, 1062–1068. Web of Science CSD CrossRef IUCr Journals Google Scholar
Acosta Quintero, L. M., Burgos, I., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 52–56. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atanasova, T. P., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1045–1047. Web of Science CSD CrossRef IUCr Journals Google Scholar
Beyeh, N. K., Aumanen, J., Åhman, A., Luostarinen, M., Mansikkamäki, H., Nissinen, M., Korppi-Tommola, J. & Rissanen, K. (2007). New J. Chem. 31, 370–376. Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caddick, S., Wilden, J. D. & Judd, D. B. (2004). J. Am. Chem. Soc. 126, 1024–1025. Web of Science CrossRef PubMed CAS Google Scholar
Cooley, T. A., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1085–1088. Web of Science CSD CrossRef IUCr Journals Google Scholar
Crossland, R. K., Wells, W. E. & Shiner, V. J. Jr (1971). J. Am. Chem. Soc. 93, 4217–4219. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137. Web of Science CrossRef PubMed CAS Google Scholar
Klán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A. & Wirz, J. (2013). Chem. Rev. 113, 119–191. Web of Science PubMed Google Scholar
Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Linden, A. (2005). Acta Cryst. E61, o690–o692. Web of Science CSD CrossRef IUCr Journals Google Scholar
Miller, S. C. (2010). J. Org. Chem. 75, 4632–4635. Web of Science CrossRef CAS PubMed Google Scholar
Navia, M. A. (2000). Science, 288, 2132–2133. Web of Science CrossRef PubMed CAS Google Scholar
Ngassa, F. N., Biros, S. M. & Staples, R. J. (2015). Acta Cryst. E71, 1521–1524. Web of Science CSD CrossRef IUCr Journals Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England. Google Scholar
Sardzinski, L. W., Wertjes, W. C., Schnaith, A. M. & Kalyani, D. (2015). Org. Lett. 17, 1256–1259. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Um, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166–3172. CAS Google Scholar
Vembu, N. & Fronczek, F. R. (2009). J. Chem. Crystallogr. 39, 515–518. Web of Science CSD CrossRef CAS Google Scholar
Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003). Acta Cryst. E59, o1213–o1215. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vennila, J. P., Kavitha, H. P., Thiruvadigal, D. J. & Manivannan, V. (2008). Acta Cryst. E64, o2304. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wright, M. E., Gorish, C. E., Shen, Z. & McHugh, M. A. (2006). J. Fluor. Chem. 127, 330–336. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.