research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 3-fluoro-N-[2-(tri­fluoro­meth­yl)phen­yl]benzamide, 3-bromo-N-[2-(tri­fluoro­meth­yl)phen­yl]benzamide and 3-iodo-N-[2-(tri­fluoro­meth­yl)phen­yl]benzamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 May 2016; accepted 13 May 2016; online 17 May 2016)

In the title compounds, C14H9F4NO, (I), C14H9BrF3NO, (II), and C14H9F3INO, (III), the two benzene rings are inclined to one another by 43.94 (8)° in mol­ecule A and 55.66 (7)° in mol­ecule B of compound (I), which crystallizes with two independent mol­ecules in the asymmetric unit, but by only 10.40 (12)° in compound (II) and 12.5 (2)° in compound (III). In the crystals of all three compounds, N—H⋯O hydrogen bonds link the mol­ecules to form chains propagating along the a-axis direction for (I), and along the b-axis direction for (II) and (III). In the crystal of (I), –ABAB– chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to (010). Within the layers there are weak offset ππ inter­actions present [inter­centroid distances = 3.868 (1) and 3.855 (1) Å]. In the crystals of (II) and (III), the chains are linked via short halogen–halogen contacts [Br⋯Br = 3.6141 (4) Å in (II) and I⋯I = 3.7797 (5) Å in (III)], resulting in the formation of ribbons propagating along the b-axis direction.

1. Chemical context

Amides are very common in nature, and are easily synthesized and provide structural rigidity to various mol­ecules (Gowda et al., 2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). Furthermore, N-aryl­amides show a broad spectrum of pharmacological properties, including anti­bacterial (Manojkumar et al., 2013a[Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem, 2, 730-737.]), anti­tumor (Abdou et al., 2004[Abdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). Molecules, 9, 109-116.]), anti­oxidant, analgesic and anti­viral activity (Manojkumar et al., 2013b[Manojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). Molbank, M803, doi: 10.3390/M803.]). In view of their importance, the title N-(2-tri­fluoro­methyl­phen­yl)benzamides (I)–(III) were synthesized and we report herein on their crystal structures.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is illustrated in Fig. 1[link]. It crystallizes with two independent mol­ecules (A and B) in the asymmetric unit, which slightly differ in their mol­ecular conformations, as shown in the AutoMolFit diagram (Fig. 2[link]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). In both mol­ecules, the 3-fluoro substituent on the benzoic acid ring and the 2-CF3 substituent on the aniline ring are anti to one another, and the 3-fluoro substituent is anti to the N—H bond in the central –Car—C(=O)—N—Car– (ar = aromatic) segment of the mol­ecules. The dihedral angle between the two benzene rings is 43.94 (8)° in mol­ecule A, while in mol­ecule B it is larger, being 55.66 (7)°. The torsion angle of the central –Car—C(=O)—N—Car– segment is 176.74 (12)° in mol­ecule A and −179.58 (12)° in mol­ecule B.

[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular fit of mol­ecules A (black) and B (red) of compound (I)[link].

The mol­ecular structures of compounds (II)[link] and (III)[link] are illustrated in Figs. 3[link] and 4[link], respectively. Here, the 3-bromo and 3-iodo substituents on the benzoic acid ring and the 2-CF3 substitution on the aniline ring are anti to one another, and the 3-bromo and 3-iodo substituents are anti to the N—H bond in the central –Car—C(=O)—N—Car– segment of the mol­ecules, similar to situation observed in (I)[link]. The dihedral angle between the two benzene rings is 10.40 (12)° in (II)[link] and 12.5 (2)° in (III)[link], which is much less than observed for mol­ecules A and B of compound (I)[link]. The torsion angle of the central –Car—C(=O)—N—Car– segment is −175.5 (2)° in (II)[link] and 174.8 (3)° in (III)[link], again similar to that in mol­ecules A and B of compound (I)[link].

[Figure 3]
Figure 3
A view of the mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
A view of the mol­ecular structure of compound (III)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of (I)[link], strong N1—H1⋯O2 and N2—H2⋯O1 hydrogen bonds link the mol­ecules to form –ABABC(4) chains running along the a-axis direction (Table 1[link] and Fig. 5[link]). Neighbouring chains are linked via C5—H5⋯O2 and C12—H12⋯O1 hydrogen bonds (Table 1[link]), forming layers lying parallel to the ac plane (Fig. 6[link]). Within the layers there are weak offset ππ inter­actions present involving the aniline and benzoic acid rings [Cg1⋯Cg4 = 3.8682 (9) Å and Cg2⋯Cg3i = 3.8553 (9) Å; Cg1 and Cg3 are the centroids of the aniline rings C1–C6 and C15–C20, respectively; Cg2 and Cg4 are the centroids of the benzoic acid rings C8–C13 and C22–C27, respectively; symmetry code (i) x − 1, y, z]. The crystal structure does not feature any C—H⋯F or F⋯F inter­actions (Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.87 (2) 2.01 (2) 2.8239 (16) 157 (1)
N2—H2⋯O1i 0.89 (2) 1.99 (2) 2.8303 (16) 158 (1)
C5—H5⋯O2ii 0.95 2.35 3.2861 (18) 167
C12—H12⋯O1iii 0.95 2.45 3.3172 (17) 152
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z-1.
[Figure 5]
Figure 5
A view along the c axis of the crystal packing of compound (I)[link]. The N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 6]
Figure 6
A view along the b axis of the crystal packing of compound (I)[link]. The C—H⋯O (see Table 1[link]) and ππ inter­actions are shown as dashed lines.

The crystal structure of (II)[link], features strong N1—H1⋯O1 hydrogen bonds (Fig. 7[link] and Table 2[link]) similar to those observed in (I)[link], linking the mol­ecules into C(4) chains running parallel to the b axis (Fig. 7[link]). Adjacent chains are connected via short Br⋯Br contacts [3.6141 (4) Å], forming ribbons along [010]; see Fig. 7[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 (2) 2.00 (2) 2.835 (2) 156 (3)
Symmetry code: (i) x, y-1, z.
[Figure 7]
Figure 7
A view along the b axis of the crystal packing of compound (II)[link]. The N—H⋯O hydrogen bonds (see Table 2[link]) and the Br⋯Br contacts are shown as dashed lines.

The crystal structure of (III)[link], features similar characteristics to that of (II)[link]. Strong N1—H1⋯O1 hydrogen bonds link the mol­ecules into C(4) chains running parallel to the b axis (Table 3[link] and Fig. 8[link]). Adjacent chains are linked via short I⋯I contacts [3.7797 (5) Å], forming ribbons along [010]; see Fig. 8[link].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.89 (3) 1.99 (4) 2.826 (5) 156 (5)
Symmetry code: (i) x, y+1, z.
[Figure 8]
Figure 8
A view along the b axis of the crystal packing of compound (III)[link]. The N—H⋯O hydrogen bonds (see Table 3[link]) and the I⋯I contacts are shown as dashed lines.

From the above observations, it can be concluded that the bromo and iodo substitutions on the meta position of the benzoic acid ring have a similar effect on the mol­ecular conformations and the supra­molecular architectures exhibited by this class of compounds, whereas the fluoro substitution has a very different influence. For instance, there are two mol­ecules in the asymmetric unit of (I)[link] compared to one mol­ecules in those of (II)[link] and (III)[link]. Also, the dihedral angle between the two benzene rings is much larger in the two mol­ecules (A and B) of (I)[link], compared to the values observed in (II)[link] and (III)[link]. Furthermore, the crystal structures of both (II)[link] and (III)[link] feature short halogen⋯halogen contacts, in addition to the N—H⋯O hydrogen bonds, resulting in one-dimensional structures, whereas in (I)[link], in the absence of F⋯F contacts, C—H⋯O hydrogen bonds and ππ inter­actions are observed, in addition to the strong N—H⋯O hydrogen bonds, resulting in a two-dimensional architecture.

4. Database survey

A search of the Cambridge Structural Database (CSD; Version 5.37, update February 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar compounds viz. N-(2-(tri­fluoro­meth­yl)phen­yl)aryl­amides, gave four hits. They include N-(2-(tri­fluoro­meth­yl)phen­yl)benzamide, for which there are three reports: JOZFUB and JOZFUB01 in space group P43 (Hathwar et al., 2014[Hathwar, V. R., Chopra, D., Panini, P. & Guru Row, T. N. (2014). Cryst. Growth Des. 14, 5366-5369.]) and LASHOE in space group P41 (Panini & Chopra, 2012[Panini, P. & Chopra, D. (2012). CrystEngComm, 14, 1972-1989.]), and 2-(tri­fluoro­meth­yl)-N-(2-(tri­fluoro­meth­yl)phen­yl)benzamide (LASKAT; Panini & Chopra, 2012[Panini, P. & Chopra, D. (2012). CrystEngComm, 14, 1972-1989.]). In compounds LASHOE and LASKAT, the 2-CF3 group in the aniline ring is nearly syn to the N—H bond in the central amide segment of the mol­ecule, as observed in the title compounds. In LASHOE (Panini & Chopra, 2012[Panini, P. & Chopra, D. (2012). CrystEngComm, 14, 1972-1989.]), the dihedral angle between the two benzene rings is 41.3 (1)°, and the torsion angle of the central –Car—N—C(=O)—Car– segment is 175.1 (5)°, which is very close to the values observed for the two independent mol­ecules in compound (I)[link]. This shows that introducing a fluorine atom into the meta position of the benzoyl ring, as in compound (I)[link], has little effect on the mol­ecular conformation of this class of compounds.

5. Synthesis and crystallization

The different substituted benzoic acids (3 mmol) were dissolved in phospho­rous oxychloride taken in a 250 ml round-bottomed flask. The mixtures were refluxed for an hour and later cooled to 273 K. An equimolar amount of 2-(tri­fluoro­meth­yl)aniline was added dropwise to these mixtures with continuous stirring. After completion of the addition, the reaction mixtures were brought to room temperature and stirring was continued for 1 h. The reaction mixtures were poured into ice-cold water. The solids that separated were washed thoroughly with water, followed by washing with dilute hydro­chloric acid, water, aqueous sodium hydrogen carbonate solution and again with water. The compounds were filtered under suction, dried and recrystallized from aqueous ethanol to constant melting points. Prismatic colourless single crystals of all three compounds were obtained by slow evaporation of solutions in methanol, with a few drops of water.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In all three compounds the NH H atoms were located in difference Fourier maps and refined with a distance restraint: N—H = 0.90 (4) Å. The C-bound H atoms were positioned with idealized geometry and refined using a riding model: C—H = 0.95 Å, with Uiso = 1.2Ueq(C). In the final cycles of refinement of compound (III)[link], a bad reflection ([\overline{4}] 2 2) was omitted, which lead to an improvement in the values of R1, wR2, and GOF.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C14H9F4NO C14H9BrF3NO C14H9F3INO
Mr 283.22 344.13 391.12
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 173 173 173
a, b, c (Å) 8.0258 (2), 39.7598 (12), 7.8932 (2) 12.9456 (6), 4.7377 (2), 21.9025 (10) 13.3358 (6), 4.7471 (2), 22.3558 (10)
β (°) 103.937 (1) 104.770 (2) 105.848 (2)
V3) 2444.60 (11) 1298.94 (10) 1361.47 (10)
Z 8 4 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 1.22 4.63 18.78
Crystal size (mm) 0.29 × 0.22 × 0.19 0.28 × 0.24 × 0.20 0.27 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.760, 0.793 0.315, 0.396 0.081, 0.133
No. of measured, independent and observed [I > 2σ(I)] reflections 13874, 3997, 3816 8466, 2114, 1986 7120, 2223, 2124
Rint 0.034 0.039 0.053
(sin θ/λ)max−1) 0.584 0.585 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.06 0.034, 0.090, 1.05 0.043, 0.109, 1.09
No. of reflections 3997 2114 2223
No. of parameters 369 185 185
No. of restraints 2 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.17 0.62, −0.34 1.84, −1.41
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(I) 3-Fluoro-N-[2-(trifluoromethyl)phenyl]benzamide top
Crystal data top
C14H9F4NOPrism
Mr = 283.22Dx = 1.539 Mg m3
Monoclinic, P21/cMelting point: 377 K
a = 8.0258 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 39.7598 (12) ÅCell parameters from 143 reflections
c = 7.8932 (2) Åθ = 2.2–64.2°
β = 103.937 (1)°µ = 1.22 mm1
V = 2444.60 (11) Å3T = 173 K
Z = 8Prism, colourless
F(000) = 11520.29 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3997 independent reflections
Radiation source: fine-focus sealed tube3816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and φ scansθmax = 64.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 97
Tmin = 0.760, Tmax = 0.793k = 4445
13874 measured reflectionsl = 69
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.8967P]
where P = (Fo2 + 2Fc2)/3
3997 reflections(Δ/σ)max < 0.001
369 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H20.667 (2)0.1103 (4)0.558 (2)0.034 (5)*
H10.140 (2)0.1376 (4)0.456 (2)0.029 (4)*
F50.33100 (11)0.07085 (2)0.60352 (10)0.0292 (2)
F60.35108 (12)0.01935 (2)0.52831 (11)0.0329 (2)
F70.57809 (11)0.04694 (2)0.65368 (10)0.0292 (2)
O20.35341 (12)0.15177 (2)0.38529 (12)0.0247 (2)
N20.56532 (16)0.11452 (3)0.48712 (15)0.0222 (3)
F80.45852 (14)0.24815 (2)0.79593 (13)0.0436 (3)
C210.48174 (17)0.14343 (3)0.49780 (17)0.0198 (3)
C220.54636 (17)0.16483 (3)0.65650 (17)0.0210 (3)
C280.42663 (18)0.04946 (3)0.53435 (18)0.0234 (3)
C150.51404 (17)0.09248 (3)0.34014 (17)0.0209 (3)
C200.53464 (19)0.10260 (4)0.17839 (19)0.0254 (3)
H200.57750.12440.16440.030*
C230.47773 (19)0.19705 (4)0.65248 (18)0.0252 (3)
H230.39960.20520.55060.030*
C270.66387 (18)0.15357 (4)0.80616 (18)0.0238 (3)
H270.71320.13180.80830.029*
C240.5257 (2)0.21680 (4)0.7997 (2)0.0291 (3)
C260.70845 (19)0.17425 (4)0.95187 (19)0.0280 (3)
H260.78790.16641.05370.034*
C250.6385 (2)0.20607 (4)0.95048 (19)0.0291 (3)
H250.66750.22011.05060.035*
C190.49280 (19)0.08093 (4)0.03697 (18)0.0280 (3)
H190.50840.08780.07340.034*
C180.4285 (2)0.04928 (4)0.05599 (19)0.0283 (3)
H180.39970.03450.04130.034*
C170.40585 (19)0.03907 (4)0.21705 (18)0.0254 (3)
H170.36130.01730.23000.030*
C160.44841 (17)0.06066 (4)0.35957 (18)0.0212 (3)
F10.01785 (11)0.19821 (2)0.34114 (10)0.0316 (2)
F30.21044 (11)0.17739 (2)0.39516 (11)0.0316 (2)
F20.14591 (13)0.22917 (2)0.45373 (12)0.0392 (2)
O10.08868 (12)0.09581 (2)0.62751 (12)0.0247 (2)
F40.13792 (16)0.00092 (3)0.21276 (14)0.0509 (3)
N10.07498 (16)0.13350 (3)0.52692 (15)0.0227 (3)
C70.01510 (17)0.10475 (3)0.51462 (17)0.0211 (3)
C130.00037 (19)0.09805 (4)0.19810 (19)0.0263 (3)
H130.03400.12090.19520.032*
C80.02734 (17)0.08437 (4)0.35245 (18)0.0223 (3)
C140.07845 (19)0.19824 (4)0.45914 (18)0.0243 (3)
C10.09082 (18)0.15641 (4)0.66916 (18)0.0221 (3)
C20.02149 (18)0.18867 (4)0.63846 (18)0.0223 (3)
C60.17972 (19)0.14752 (4)0.83585 (19)0.0291 (3)
H60.22540.12550.85770.035*
C90.07529 (19)0.05080 (4)0.3572 (2)0.0275 (3)
H90.09450.04110.46100.033*
C120.0237 (2)0.07837 (4)0.04937 (19)0.0310 (3)
H120.00680.08790.05570.037*
C30.0453 (2)0.21184 (4)0.7738 (2)0.0300 (3)
H30.00090.23390.75280.036*
C100.0941 (2)0.03200 (4)0.2076 (2)0.0325 (4)
C110.0716 (2)0.04501 (4)0.0527 (2)0.0334 (4)
H110.08860.03140.04900.040*
C50.2025 (2)0.17060 (5)0.9713 (2)0.0357 (4)
H50.26330.16431.08560.043*
C40.1367 (2)0.20270 (4)0.9394 (2)0.0364 (4)
H40.15430.21861.03180.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F50.0319 (5)0.0342 (5)0.0230 (4)0.0058 (4)0.0097 (3)0.0001 (3)
F60.0415 (5)0.0273 (5)0.0320 (5)0.0069 (4)0.0132 (4)0.0028 (4)
F70.0296 (5)0.0343 (5)0.0208 (4)0.0041 (4)0.0002 (3)0.0055 (3)
O20.0234 (5)0.0309 (6)0.0180 (5)0.0025 (4)0.0015 (4)0.0013 (4)
N20.0225 (6)0.0228 (6)0.0182 (6)0.0006 (5)0.0009 (5)0.0026 (5)
F80.0592 (7)0.0246 (5)0.0447 (6)0.0047 (4)0.0078 (5)0.0076 (4)
C210.0200 (7)0.0234 (7)0.0170 (6)0.0028 (5)0.0061 (5)0.0024 (5)
C220.0216 (7)0.0234 (7)0.0190 (7)0.0043 (5)0.0070 (5)0.0002 (5)
C280.0243 (7)0.0229 (7)0.0223 (7)0.0008 (6)0.0042 (6)0.0006 (5)
C150.0197 (7)0.0230 (7)0.0182 (7)0.0010 (5)0.0011 (5)0.0014 (5)
C200.0272 (8)0.0250 (7)0.0236 (7)0.0005 (6)0.0055 (6)0.0022 (6)
C230.0275 (7)0.0247 (7)0.0230 (7)0.0017 (6)0.0057 (6)0.0013 (6)
C270.0246 (7)0.0258 (7)0.0204 (7)0.0018 (6)0.0041 (6)0.0001 (6)
C240.0357 (8)0.0209 (7)0.0328 (8)0.0026 (6)0.0124 (7)0.0031 (6)
C260.0298 (8)0.0331 (8)0.0196 (7)0.0053 (6)0.0032 (6)0.0007 (6)
C250.0345 (8)0.0308 (8)0.0227 (7)0.0105 (6)0.0081 (6)0.0072 (6)
C190.0309 (8)0.0346 (8)0.0180 (7)0.0021 (6)0.0053 (6)0.0020 (6)
C180.0327 (8)0.0294 (8)0.0210 (7)0.0032 (6)0.0029 (6)0.0055 (6)
C170.0267 (8)0.0238 (7)0.0241 (7)0.0002 (6)0.0030 (6)0.0027 (6)
C160.0199 (7)0.0235 (7)0.0193 (7)0.0023 (5)0.0028 (5)0.0008 (6)
F10.0357 (5)0.0376 (5)0.0238 (4)0.0038 (4)0.0115 (4)0.0090 (4)
F30.0284 (5)0.0391 (5)0.0241 (4)0.0029 (4)0.0002 (3)0.0043 (4)
F20.0486 (6)0.0281 (5)0.0412 (5)0.0161 (4)0.0112 (4)0.0085 (4)
O10.0253 (5)0.0299 (5)0.0187 (5)0.0009 (4)0.0051 (4)0.0028 (4)
F40.0739 (8)0.0355 (6)0.0510 (6)0.0214 (5)0.0300 (6)0.0176 (5)
N10.0272 (6)0.0217 (6)0.0213 (6)0.0022 (5)0.0096 (5)0.0012 (5)
C70.0187 (7)0.0241 (7)0.0194 (7)0.0062 (5)0.0025 (5)0.0046 (5)
C130.0262 (7)0.0295 (8)0.0230 (7)0.0023 (6)0.0054 (6)0.0037 (6)
C80.0186 (7)0.0265 (7)0.0213 (7)0.0027 (5)0.0038 (5)0.0014 (6)
C140.0271 (7)0.0221 (7)0.0246 (7)0.0033 (6)0.0081 (6)0.0025 (6)
C10.0219 (7)0.0251 (7)0.0197 (7)0.0002 (6)0.0061 (5)0.0009 (5)
C20.0234 (7)0.0232 (7)0.0214 (7)0.0005 (6)0.0072 (5)0.0005 (6)
C60.0267 (8)0.0348 (8)0.0247 (8)0.0019 (6)0.0040 (6)0.0072 (6)
C90.0284 (8)0.0295 (8)0.0258 (7)0.0019 (6)0.0088 (6)0.0003 (6)
C120.0288 (8)0.0437 (9)0.0203 (7)0.0016 (7)0.0057 (6)0.0014 (6)
C30.0359 (9)0.0274 (8)0.0287 (8)0.0034 (6)0.0115 (7)0.0060 (6)
C100.0325 (8)0.0307 (8)0.0357 (9)0.0069 (7)0.0112 (7)0.0077 (7)
C110.0298 (8)0.0444 (10)0.0264 (8)0.0021 (7)0.0074 (6)0.0112 (7)
C50.0318 (8)0.0542 (11)0.0191 (7)0.0077 (8)0.0022 (6)0.0032 (7)
C40.0410 (9)0.0450 (10)0.0244 (8)0.0117 (8)0.0100 (7)0.0115 (7)
Geometric parameters (Å, º) top
F5—C281.3462 (16)F1—C141.3459 (17)
F6—C281.3377 (16)F3—C141.3440 (17)
F7—C281.3503 (17)F2—C141.3403 (17)
O2—C211.2324 (17)O1—C71.2338 (17)
N2—H20.889 (18)F4—C101.3583 (19)
N2—C211.3438 (18)N1—H10.868 (18)
N2—C151.4327 (18)N1—C71.3437 (19)
F8—C241.3557 (18)N1—C11.4273 (18)
C21—C221.4998 (19)C7—C81.498 (2)
C22—C231.392 (2)C13—H130.9500
C22—C271.396 (2)C13—C81.398 (2)
C28—C161.4993 (19)C13—C121.385 (2)
C15—C201.386 (2)C8—C91.392 (2)
C15—C161.393 (2)C14—C21.498 (2)
C20—H200.9500C1—C21.396 (2)
C20—C191.386 (2)C1—C61.383 (2)
C23—H230.9500C2—C31.388 (2)
C23—C241.378 (2)C6—H60.9500
C27—H270.9500C6—C51.387 (2)
C27—C261.389 (2)C9—H90.9500
C24—C251.378 (2)C9—C101.375 (2)
C26—H260.9500C12—H120.9500
C26—C251.383 (2)C12—C111.383 (2)
C25—H250.9500C3—H30.9500
C19—H190.9500C3—C41.385 (2)
C19—C181.382 (2)C10—C111.378 (2)
C18—H180.9500C11—H110.9500
C18—C171.387 (2)C5—H50.9500
C17—H170.9500C5—C41.381 (3)
C17—C161.391 (2)C4—H40.9500
C21—N2—H2121.3 (12)C7—N1—H1120.6 (11)
C21—N2—C15121.57 (12)C7—N1—C1122.97 (12)
C15—N2—H2115.8 (12)C1—N1—H1115.8 (11)
O2—C21—N2121.88 (12)O1—C7—N1122.38 (13)
O2—C21—C22120.67 (12)O1—C7—C8121.14 (13)
N2—C21—C22117.41 (12)N1—C7—C8116.45 (12)
C23—C22—C21116.60 (12)C8—C13—H13120.0
C23—C22—C27119.84 (13)C12—C13—H13120.0
C27—C22—C21123.51 (13)C12—C13—C8120.07 (14)
F5—C28—F7105.63 (11)C13—C8—C7122.83 (13)
F5—C28—C16112.95 (11)C9—C8—C7117.21 (12)
F6—C28—F5106.38 (11)C9—C8—C13119.90 (13)
F6—C28—F7106.41 (11)F1—C14—C2112.80 (12)
F6—C28—C16112.65 (11)F3—C14—F1105.76 (11)
F7—C28—C16112.27 (11)F3—C14—C2113.12 (11)
C20—C15—N2119.58 (12)F2—C14—F1105.87 (11)
C20—C15—C16119.81 (13)F2—C14—F3106.14 (11)
C16—C15—N2120.58 (12)F2—C14—C2112.54 (12)
C15—C20—H20119.9C2—C1—N1119.57 (12)
C19—C20—C15120.13 (13)C6—C1—N1120.87 (13)
C19—C20—H20119.9C6—C1—C2119.52 (13)
C22—C23—H23120.8C1—C2—C14119.84 (12)
C24—C23—C22118.46 (13)C3—C2—C14120.09 (13)
C24—C23—H23120.8C3—C2—C1120.06 (13)
C22—C27—H27120.1C1—C6—H6119.8
C26—C27—C22119.85 (14)C1—C6—C5120.40 (15)
C26—C27—H27120.1C5—C6—H6119.8
F8—C24—C23118.46 (14)C8—C9—H9120.9
F8—C24—C25118.60 (13)C10—C9—C8118.16 (14)
C25—C24—C23122.93 (14)C10—C9—H9120.9
C27—C26—H26119.6C13—C12—H12119.8
C25—C26—C27120.80 (14)C11—C12—C13120.45 (14)
C25—C26—H26119.6C11—C12—H12119.8
C24—C25—C26118.10 (13)C2—C3—H3120.1
C24—C25—H25121.0C4—C3—C2119.71 (15)
C26—C25—H25121.0C4—C3—H3120.1
C20—C19—H19119.9F4—C10—C9118.27 (14)
C18—C19—C20120.20 (13)F4—C10—C11118.59 (14)
C18—C19—H19119.9C9—C10—C11123.14 (15)
C19—C18—H18120.0C12—C11—H11120.9
C19—C18—C17120.04 (13)C10—C11—C12118.26 (14)
C17—C18—H18120.0C10—C11—H11120.9
C18—C17—H17120.0C6—C5—H5120.1
C18—C17—C16119.99 (14)C4—C5—C6119.84 (14)
C16—C17—H17120.0C4—C5—H5120.1
C15—C16—C28120.12 (12)C3—C4—H4119.8
C17—C16—C28120.05 (13)C5—C4—C3120.45 (14)
C17—C16—C15119.82 (13)C5—C4—H4119.8
F5—C28—C16—C1554.98 (17)F1—C14—C2—C164.46 (17)
F5—C28—C16—C17126.11 (14)F1—C14—C2—C3115.45 (14)
F6—C28—C16—C15175.54 (12)F3—C14—C2—C155.52 (17)
F6—C28—C16—C175.54 (18)F3—C14—C2—C3124.56 (14)
F7—C28—C16—C1564.33 (16)F2—C14—C2—C1175.83 (12)
F7—C28—C16—C17114.58 (14)F2—C14—C2—C34.26 (19)
O2—C21—C22—C2312.78 (18)O1—C7—C8—C13157.12 (13)
O2—C21—C22—C27164.63 (13)O1—C7—C8—C919.98 (19)
N2—C21—C22—C23169.55 (12)F4—C10—C11—C12178.75 (14)
N2—C21—C22—C2713.04 (19)N1—C7—C8—C1320.83 (19)
N2—C15—C20—C19177.07 (13)N1—C7—C8—C9162.08 (13)
N2—C15—C16—C281.5 (2)N1—C1—C2—C143.9 (2)
N2—C15—C16—C17177.37 (13)N1—C1—C2—C3176.01 (13)
F8—C24—C25—C26178.96 (13)N1—C1—C6—C5176.39 (14)
C21—N2—C15—C2068.06 (18)C7—N1—C1—C2115.64 (15)
C21—N2—C15—C16113.80 (15)C7—N1—C1—C666.89 (19)
C21—C22—C23—C24176.07 (13)C7—C8—C9—C10177.40 (13)
C21—C22—C27—C26175.71 (13)C13—C8—C9—C100.2 (2)
C22—C23—C24—F8179.84 (13)C13—C12—C11—C100.4 (2)
C22—C23—C24—C250.0 (2)C8—C13—C12—C110.8 (2)
C22—C27—C26—C250.4 (2)C8—C9—C10—F4178.85 (14)
C15—N2—C21—O22.8 (2)C8—C9—C10—C111.5 (2)
C15—N2—C21—C22179.58 (12)C14—C2—C3—C4179.50 (14)
C15—C20—C19—C180.8 (2)C1—N1—C7—O11.2 (2)
C20—C15—C16—C28179.68 (13)C1—N1—C7—C8176.74 (12)
C20—C15—C16—C170.8 (2)C1—C2—C3—C40.6 (2)
C20—C19—C18—C170.1 (2)C1—C6—C5—C40.3 (2)
C23—C22—C27—C261.6 (2)C2—C1—C6—C51.1 (2)
C23—C24—C25—C261.2 (2)C2—C3—C4—C50.8 (2)
C27—C22—C23—C241.4 (2)C6—C1—C2—C14178.59 (13)
C27—C26—C25—C241.0 (2)C6—C1—C2—C31.5 (2)
C19—C18—C17—C160.2 (2)C6—C5—C4—C31.2 (2)
C18—C17—C16—C28179.05 (13)C9—C10—C11—C121.6 (3)
C18—C17—C16—C150.1 (2)C12—C13—C8—C7176.08 (13)
C16—C15—C20—C191.1 (2)C12—C13—C8—C90.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.87 (2)2.01 (2)2.8239 (16)157 (1)
N2—H2···O1i0.89 (2)1.99 (2)2.8303 (16)158 (1)
C5—H5···O2ii0.952.353.2861 (18)167
C12—H12···O1iii0.952.453.3172 (17)152
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z1.
(II) 3-Bromo-N-[2-(trifluoromethyl)phenyl]benzamide top
Crystal data top
C14H9BrF3NOPrism
Mr = 344.13Dx = 1.760 Mg m3
Monoclinic, P21/nMelting point: 369 K
a = 12.9456 (6) ÅCu Kα radiation, λ = 1.54178 Å
b = 4.7377 (2) ÅCell parameters from 132 reflections
c = 21.9025 (10) Åθ = 6.4–64.4°
β = 104.770 (2)°µ = 4.63 mm1
V = 1298.94 (10) Å3T = 173 K
Z = 4Prism, colourless
F(000) = 6800.28 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
2114 independent reflections
Radiation source: fine-focus sealed tube1986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and φ scansθmax = 64.4°, θmin = 6.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1415
Tmin = 0.315, Tmax = 0.396k = 54
8466 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.3564P]
where P = (Fo2 + 2Fc2)/3
2114 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.62 e Å3
1 restraintΔρmin = 0.34 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H11.167 (2)0.262 (5)0.0800 (14)0.022 (7)*
Br10.85044 (2)0.78177 (6)0.240898 (12)0.02952 (16)
F31.32385 (11)0.0139 (3)0.09354 (7)0.0309 (4)
F11.46295 (12)0.0991 (4)0.06107 (8)0.0414 (4)
O11.10042 (14)0.8797 (4)0.07865 (8)0.0262 (4)
C121.1116 (2)0.2628 (5)0.25054 (12)0.0254 (6)
H121.15000.12310.27840.031*
F21.41294 (13)0.3932 (3)0.12181 (7)0.0379 (4)
C141.3768 (2)0.2193 (5)0.07210 (13)0.0249 (6)
C131.1429 (2)0.3313 (5)0.19641 (12)0.0240 (5)
H131.20160.23640.18690.029*
C31.3518 (2)0.4176 (6)0.03571 (12)0.0285 (6)
H31.41760.33210.03710.034*
N11.16903 (15)0.4434 (4)0.07018 (9)0.0210 (4)
C91.0021 (2)0.6762 (5)0.17009 (12)0.0232 (5)
H90.96490.82050.14310.028*
C81.08811 (17)0.5397 (5)0.15593 (11)0.0199 (5)
C11.21188 (18)0.4948 (5)0.01743 (11)0.0207 (5)
C111.0248 (2)0.3955 (5)0.26468 (11)0.0267 (5)
H111.00300.34680.30160.032*
C61.1575 (2)0.6606 (5)0.03303 (12)0.0254 (5)
H61.09080.74340.03280.030*
C100.97086 (18)0.6007 (5)0.22362 (11)0.0232 (5)
C51.2015 (2)0.7035 (6)0.08358 (13)0.0297 (6)
H51.16460.81800.11780.036*
C21.31040 (18)0.3751 (5)0.01629 (11)0.0217 (5)
C41.2976 (2)0.5838 (6)0.08530 (12)0.0317 (6)
H41.32640.61550.12050.038*
C71.11912 (18)0.6373 (5)0.09788 (11)0.0201 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0248 (2)0.0363 (2)0.0329 (2)0.00046 (9)0.01727 (14)0.00145 (10)
F30.0284 (7)0.0269 (8)0.0370 (8)0.0009 (6)0.0073 (6)0.0084 (6)
F10.0305 (8)0.0536 (11)0.0446 (9)0.0194 (8)0.0177 (7)0.0089 (8)
O10.0314 (9)0.0173 (9)0.0350 (10)0.0019 (7)0.0179 (7)0.0024 (7)
C120.0288 (15)0.0243 (13)0.0234 (14)0.0018 (10)0.0071 (11)0.0019 (9)
F20.0466 (9)0.0294 (8)0.0297 (8)0.0022 (7)0.0048 (7)0.0037 (6)
C140.0235 (13)0.0246 (13)0.0281 (14)0.0012 (10)0.0093 (11)0.0042 (9)
C130.0218 (12)0.0228 (12)0.0286 (13)0.0004 (10)0.0085 (10)0.0024 (10)
C30.0260 (12)0.0333 (15)0.0295 (13)0.0006 (11)0.0134 (10)0.0044 (11)
N10.0236 (10)0.0167 (10)0.0262 (10)0.0021 (8)0.0130 (8)0.0024 (8)
C90.0239 (12)0.0191 (11)0.0283 (13)0.0015 (9)0.0100 (10)0.0013 (9)
C80.0180 (11)0.0183 (11)0.0250 (12)0.0041 (9)0.0085 (9)0.0012 (9)
C10.0223 (11)0.0181 (11)0.0234 (11)0.0035 (9)0.0093 (9)0.0035 (9)
C110.0305 (13)0.0291 (14)0.0207 (12)0.0075 (11)0.0066 (10)0.0018 (10)
C60.0247 (12)0.0238 (12)0.0278 (13)0.0004 (10)0.0069 (10)0.0005 (10)
C100.0204 (11)0.0241 (13)0.0281 (12)0.0037 (10)0.0117 (10)0.0042 (10)
C50.0359 (16)0.0322 (14)0.0207 (14)0.0005 (11)0.0066 (11)0.0026 (10)
C20.0211 (11)0.0214 (12)0.0235 (12)0.0008 (10)0.0076 (9)0.0037 (9)
C40.0349 (14)0.0394 (15)0.0249 (13)0.0041 (12)0.0151 (11)0.0005 (11)
C70.0176 (11)0.0176 (12)0.0264 (12)0.0039 (9)0.0077 (9)0.0016 (9)
Geometric parameters (Å, º) top
Br1—C101.900 (2)N1—C11.424 (3)
F3—C141.342 (3)N1—H10.89 (3)
F1—C141.328 (3)C9—C101.381 (3)
O1—C71.226 (3)C9—C81.390 (3)
C12—C131.386 (4)C9—H90.9500
C12—C111.389 (4)C8—C71.500 (3)
C12—H120.9500C1—C61.392 (3)
F2—C141.350 (3)C1—C21.402 (3)
C14—C21.497 (4)C11—C101.386 (4)
C13—C81.394 (3)C11—H110.9500
C13—H130.9500C6—C51.383 (4)
C3—C41.380 (4)C6—H60.9500
C3—C21.392 (3)C5—C41.376 (4)
C3—H30.9500C5—H50.9500
N1—C71.353 (3)C4—H40.9500
C13—C12—C11121.0 (2)C6—C1—C2119.5 (2)
C13—C12—H12119.5C6—C1—N1121.2 (2)
C11—C12—H12119.5C2—C1—N1119.3 (2)
F1—C14—F3106.3 (2)C10—C11—C12118.4 (2)
F1—C14—F2105.9 (2)C10—C11—H11120.8
F3—C14—F2105.3 (2)C12—C11—H11120.8
F1—C14—C2113.4 (2)C5—C6—C1119.4 (2)
F3—C14—C2113.9 (2)C5—C6—H6120.3
F2—C14—C2111.5 (2)C1—C6—H6120.3
C12—C13—C8119.8 (2)C9—C10—C11121.6 (2)
C12—C13—H13120.1C9—C10—Br1118.99 (19)
C8—C13—H13120.1C11—C10—Br1119.40 (18)
C4—C3—C2120.1 (2)C4—C5—C6121.4 (2)
C4—C3—H3119.9C4—C5—H5119.3
C2—C3—H3119.9C6—C5—H5119.3
C7—N1—C1125.2 (2)C3—C2—C1119.9 (2)
C7—N1—H1120 (2)C3—C2—C14118.6 (2)
C1—N1—H1114 (2)C1—C2—C14121.4 (2)
C10—C9—C8119.6 (2)C5—C4—C3119.7 (2)
C10—C9—H9120.2C5—C4—H4120.1
C8—C9—H9120.2C3—C4—H4120.1
C9—C8—C13119.6 (2)O1—C7—N1123.9 (2)
C9—C8—C7116.6 (2)O1—C7—C8120.5 (2)
C13—C8—C7123.7 (2)N1—C7—C8115.6 (2)
C11—C12—C13—C81.2 (4)N1—C1—C2—C3178.3 (2)
C10—C9—C8—C131.0 (3)C6—C1—C2—C14173.9 (2)
C10—C9—C8—C7178.6 (2)N1—C1—C2—C146.4 (3)
C12—C13—C8—C90.3 (4)F1—C14—C2—C310.1 (3)
C12—C13—C8—C7177.1 (2)F3—C14—C2—C3131.8 (2)
C7—N1—C1—C640.8 (3)F2—C14—C2—C3109.3 (3)
C7—N1—C1—C2139.5 (2)F1—C14—C2—C1174.5 (2)
C13—C12—C11—C100.7 (4)F3—C14—C2—C152.8 (3)
C2—C1—C6—C50.2 (4)F2—C14—C2—C166.1 (3)
N1—C1—C6—C5179.5 (2)C6—C5—C4—C30.1 (4)
C8—C9—C10—C111.5 (4)C2—C3—C4—C51.1 (4)
C8—C9—C10—Br1178.14 (17)C1—N1—C7—O13.6 (4)
C12—C11—C10—C90.6 (4)C1—N1—C7—C8175.5 (2)
C12—C11—C10—Br1178.98 (18)C9—C8—C7—O127.0 (3)
C1—C6—C5—C40.5 (4)C13—C8—C7—O1150.5 (2)
C4—C3—C2—C11.8 (4)C9—C8—C7—N1153.9 (2)
C4—C3—C2—C14173.6 (2)C13—C8—C7—N128.5 (3)
C6—C1—C2—C31.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (2)2.00 (2)2.835 (2)156 (3)
Symmetry code: (i) x, y1, z.
(III) 3-Iodo-N-[2-(trifluoromethyl)phenyl]benzamide top
Crystal data top
C14H9F3INOPrism
Mr = 391.12Dx = 1.908 Mg m3
Monoclinic, P21/nMelting point: 393 K
a = 13.3358 (6) ÅCu Kα radiation, λ = 1.54178 Å
b = 4.7471 (2) ÅCell parameters from 131 reflections
c = 22.3558 (10) Åθ = 6.2–64.3°
β = 105.848 (2)°µ = 18.78 mm1
V = 1361.47 (10) Å3T = 173 K
Z = 4Prism, colourless
F(000) = 7520.27 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2223 independent reflections
Radiation source: fine-focus sealed tube2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
phi and φ scansθmax = 64.3°, θmin = 6.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1514
Tmin = 0.081, Tmax = 0.133k = 55
7120 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0788P)2]
where P = (Fo2 + 2Fc2)/3
2223 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 1.84 e Å3
1 restraintΔρmin = 1.41 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C121.1208 (4)0.7461 (9)0.2483 (2)0.0187 (10)
H121.15930.88420.27600.022*
H11.167 (4)0.751 (7)0.081 (2)0.017 (13)*
I10.85495 (2)0.21117 (7)0.240621 (11)0.02136 (18)
F11.32578 (18)0.9967 (6)0.09091 (11)0.0280 (6)
F31.4613 (2)0.8794 (9)0.06351 (14)0.0448 (8)
C131.1487 (4)0.6826 (9)0.19429 (19)0.0196 (9)
H131.20470.77940.18470.024*
O11.1058 (2)0.1341 (7)0.07951 (13)0.0225 (7)
C31.3480 (3)0.5671 (12)0.03282 (19)0.0270 (11)
H31.41360.64250.03350.032*
F21.4039 (2)0.6087 (7)0.12348 (11)0.0360 (6)
C91.0116 (3)0.3381 (9)0.16847 (18)0.0177 (8)
H90.97450.19500.14170.021*
C81.0943 (3)0.4774 (9)0.15463 (16)0.0147 (8)
C141.3742 (4)0.7780 (9)0.0729 (2)0.0202 (10)
N11.1697 (2)0.5723 (8)0.06981 (14)0.0165 (7)
C111.0390 (3)0.6134 (10)0.26236 (17)0.0204 (9)
H111.02030.65940.29920.025*
C61.1542 (3)0.3508 (10)0.03154 (19)0.0216 (9)
H61.08770.27760.03200.026*
C71.1231 (3)0.3789 (10)0.09730 (18)0.0165 (9)
C100.9841 (3)0.4115 (9)0.22197 (17)0.0167 (8)
C11.2104 (3)0.5142 (9)0.01811 (16)0.0154 (8)
C51.1976 (5)0.2967 (10)0.0806 (2)0.0277 (11)
H51.16020.18260.11430.033*
C21.3078 (3)0.6222 (10)0.01769 (17)0.0184 (8)
C41.2923 (4)0.4035 (12)0.08166 (18)0.0302 (11)
H41.31970.36510.11580.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.016 (2)0.022 (3)0.017 (2)0.0021 (16)0.0033 (19)0.0030 (16)
I10.0206 (2)0.0284 (3)0.0216 (2)0.00032 (9)0.01687 (16)0.00060 (9)
F10.0282 (13)0.0237 (15)0.0317 (12)0.0011 (11)0.0074 (11)0.0056 (11)
F30.0302 (15)0.067 (2)0.0431 (16)0.0210 (16)0.0205 (13)0.0115 (17)
C130.027 (2)0.018 (3)0.017 (2)0.0013 (18)0.0107 (18)0.0035 (16)
O10.0341 (17)0.0156 (17)0.0265 (15)0.0004 (14)0.0233 (13)0.0033 (13)
C30.025 (2)0.044 (3)0.0185 (19)0.008 (2)0.0166 (17)0.006 (2)
F20.0484 (16)0.0305 (17)0.0216 (12)0.0002 (13)0.0034 (11)0.0045 (12)
C90.019 (2)0.019 (2)0.0179 (19)0.0030 (17)0.0096 (16)0.0005 (16)
C80.0173 (17)0.016 (2)0.0145 (16)0.0041 (16)0.0104 (14)0.0004 (15)
C140.020 (3)0.026 (3)0.017 (2)0.0005 (17)0.0094 (19)0.0018 (16)
N10.0217 (16)0.017 (2)0.0167 (15)0.0002 (14)0.0150 (13)0.0016 (14)
C110.022 (2)0.028 (3)0.0143 (18)0.0093 (19)0.0097 (16)0.0019 (18)
C60.024 (2)0.024 (3)0.0190 (19)0.0005 (19)0.0092 (17)0.0009 (18)
C70.0177 (19)0.017 (2)0.0181 (19)0.0047 (18)0.0108 (15)0.0015 (18)
C100.0164 (17)0.020 (2)0.0187 (18)0.0016 (17)0.0133 (15)0.0041 (17)
C10.0194 (18)0.017 (2)0.0130 (16)0.0061 (16)0.0099 (15)0.0036 (15)
C50.040 (3)0.033 (3)0.011 (2)0.004 (2)0.009 (2)0.0045 (17)
C20.024 (2)0.019 (2)0.0157 (18)0.0059 (18)0.0097 (16)0.0016 (17)
C40.037 (2)0.044 (3)0.0166 (19)0.010 (2)0.0203 (18)0.002 (2)
Geometric parameters (Å, º) top
C12—H120.9500C9—C101.387 (5)
C12—C131.390 (6)C8—C71.509 (5)
C12—C111.368 (7)C14—C21.502 (6)
I1—C102.106 (4)N1—H10.89 (3)
F1—C141.342 (5)N1—C71.348 (6)
F3—C141.326 (6)N1—C11.431 (4)
C13—H130.9500C11—H110.9500
C13—C81.382 (6)C11—C101.382 (6)
O1—C71.230 (6)C6—H60.9500
C3—H30.9500C6—C11.393 (6)
C3—C21.400 (5)C6—C51.397 (6)
C3—C41.380 (7)C1—C21.399 (6)
F2—C141.356 (5)C5—H50.9500
C9—H90.9500C5—C41.368 (8)
C9—C81.391 (6)C4—H40.9500
C13—C12—H12119.4C12—C11—H11120.6
C11—C12—H12119.4C12—C11—C10118.9 (3)
C11—C12—C13121.2 (5)C10—C11—H11120.6
C12—C13—H13120.3C1—C6—H6120.7
C8—C13—C12119.5 (4)C1—C6—C5118.7 (4)
C8—C13—H13120.3C5—C6—H6120.7
C2—C3—H3119.9O1—C7—C8119.9 (4)
C4—C3—H3119.9O1—C7—N1124.4 (3)
C4—C3—C2120.1 (4)N1—C7—C8115.6 (4)
C8—C9—H9120.5C9—C10—I1118.7 (3)
C10—C9—H9120.5C11—C10—I1120.0 (2)
C10—C9—C8119.0 (4)C11—C10—C9121.3 (4)
C13—C8—C9120.1 (3)C6—C1—N1120.7 (3)
C13—C8—C7123.5 (4)C6—C1—C2119.8 (3)
C9—C8—C7116.3 (4)C2—C1—N1119.5 (3)
F1—C14—F2105.2 (3)C6—C5—H5119.1
F1—C14—C2113.8 (4)C4—C5—C6121.9 (4)
F3—C14—F1106.3 (4)C4—C5—H5119.1
F3—C14—F2106.2 (4)C3—C2—C14119.0 (4)
F3—C14—C2113.2 (4)C1—C2—C3119.8 (4)
F2—C14—C2111.5 (4)C1—C2—C14121.0 (3)
C7—N1—H1117 (3)C3—C4—H4120.2
C7—N1—C1124.1 (4)C5—C4—C3119.7 (4)
C1—N1—H1118 (3)C5—C4—H4120.2
C12—C13—C8—C90.7 (6)N1—C1—C2—C145.1 (6)
C12—C13—C8—C7175.6 (4)C11—C12—C13—C81.4 (7)
C12—C11—C10—I1178.2 (3)C6—C1—C2—C30.4 (6)
C12—C11—C10—C91.2 (6)C6—C1—C2—C14174.7 (4)
F1—C14—C2—C3129.8 (4)C6—C5—C4—C30.7 (8)
F1—C14—C2—C155.0 (5)C7—N1—C1—C643.4 (6)
F3—C14—C2—C38.3 (6)C7—N1—C1—C2136.4 (4)
F3—C14—C2—C1176.5 (4)C10—C9—C8—C130.9 (6)
C13—C12—C11—C100.5 (7)C10—C9—C8—C7177.4 (4)
C13—C8—C7—O1148.7 (4)C1—N1—C7—O13.5 (6)
C13—C8—C7—N129.7 (6)C1—N1—C7—C8174.8 (3)
F2—C14—C2—C3111.3 (5)C1—C6—C5—C41.1 (7)
F2—C14—C2—C163.9 (5)C5—C6—C1—N1179.2 (4)
C9—C8—C7—O127.7 (5)C5—C6—C1—C20.6 (6)
C9—C8—C7—N1153.9 (4)C2—C3—C4—C50.4 (8)
C8—C9—C10—I1177.5 (3)C4—C3—C2—C14174.4 (4)
C8—C9—C10—C111.9 (6)C4—C3—C2—C10.9 (7)
N1—C1—C2—C3179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.89 (3)1.99 (4)2.826 (5)156 (5)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data.

References

First citationAbdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). Molecules, 9, 109–116.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Chopra, D., Panini, P. & Guru Row, T. N. (2014). Cryst. Growth Des. 14, 5366–5369.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem, 2, 730–737.  CAS Google Scholar
First citationManojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). Molbank, M803, doi: 10.3390/M803.  Google Scholar
First citationPanini, P. & Chopra, D. (2012). CrystEngComm, 14, 1972–1989.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds