research communications
μ2-bis(trimethylsilyl)amido]-μ4-oxido-dicobalt(II)disodium, [Co2Na2{μ2-N(SiMe3)2}4](μ4-O)
of the inverse crown ether tetrakis[aThe University of Chicago, Department of Chemistry, 5735 S Ellis Ave., Chicago, IL 60637, USA
*Correspondence e-mail: chansen6@uchicago.edu
The title compound, [Co2Na2{μ2-N(SiMe3)2}4](μ4-O), (I), represents a new entry in the class of inverse In the molecule, each Co atom is formally in the +II. The structure contains one half of a unique molecule per with the central μ4-oxido ligand residing on an inversion center, leading to a planar coordination to the Na and Co atoms. In the crystal, bulky trimethylsilyl substituents prevent additional interactions with cobalt. However, weak intermolecular Na⋯H3C—Si interactions form an infinite chain along [010]. The structure is isotypic with its Mg, Mn and Zn analogues.
Keywords: crystal structure; μ4-oxido ligand; cobalt; inverse crown ether.
CCDC reference: 1476068
1. Chemical context
Compounds that feature oxido-bridged cobalt clusters have been of great interest in recent years as active homogeneous (Blakemore et al., 2015) and heterogeneous (Kärkäs et al., 2014) oxygen-evolution catalysts. Bridging cobalt-oxido species also find applications in magnetic materials (Heering et al., 2013) and in hydrocarbon oxidation (Sumner & Steinmetz, 1985). In the course of studies of compounds with low-coordinate cobalt atoms (Hansen et al., 2015), we have isolated and structurally characterized a cobalt-containing tetranuclear compound featuring a central μ4-bridging oxido ligand, [Co2Na2(μ2-N(SiMe3)2)4](μ4-O) (I). Compound (I) fits into the larger class of `inverse illustrated in Fig. 1 (Mulvey, 2006).
Compound (I) is the first cobalt-based inverse crown ether. The majority of examples contain magnesium or zinc as M′, though manganese (Kennedy et al., 2008; Mulvey et al., 2010), aluminum (Wu et al., 2010), and ytterbium (Lu et al., 2010) complexes have been reported as well.
2. Structural commentary
Crystals of (I) suitable for X-ray diffraction were obtained as reaction by-products via crystallization from toluene at 238 K. Attempts at a rational synthesis were not successful. The molecular structure of compound (I) is shown in Fig. 2a and relevant bond lengths and angles are presented in Table 1. The contains half of a unique molecule comprised of an oxygen atom located on an inversion center, one cobalt atom, one sodium atom, and two –N(SiMe3)2 ligands with the remainder of the molecule being completed by application of inversion symmetry. Consequently, all opposing M—O—M angles (M = Co, Na) are crystallographically imposed to 180°. The four bridging nitrogen atoms lie slightly out of plane from the four metal atoms, exhibiting a dihedral angle of 8.1 (2)° between their respective planes as shown in Fig. 2b.
The majority of cobalt-bridging oxido compounds possess bent angles, so the μ4-oxido ligand in (I) is unusual in that it coordinates linearly to the opposing metal atoms. With a central oxido ligand, by charge balance each cobalt atom has formally an of +II. While the paramagnetic nature of (I) prevents confirmation by NMR studies, it is unlikely that the central O atom is actually a hydroxido ligand. The structurally related anionic compound [Na4(μ2-N(SiMe3)2)4(μ4-OH)]−, which bears a central μ4-OH ligand, is noticeably pyramidalized, possessing Na—O—Na angles of 140.1 (2) and 142.4 (2)° (Clark et al., 2009). Additionally, the Co1—O1 bond length of 1.8398 (9) Å in (I) is significantly shorter than those of other structurally characterized complexes of CoII bearing approximately linear bridging hydroxido ligands, which display bond lengths ranging from 1.975 (2) to 2.3766 (6) Å (Li et al., 2014; Reger et al., 2014; Wendelstorf & Krämer, 1997).
The structure of compound (I) is isotypic with magnesium-, manganese-, and zinc-containing analogues of the general formula [M′2Na2(μ2-N(SiMe3)2)4](μ4-O), all of which contain planar linear bridging oxido ligands. Among the four compounds, (I) has comparatively short bonds. For instance, (I) displays the shortest M′—O [1.8398 (9) Å in (I) versus 1.8575 (4), 1.9272 (2), 1.8733 (9) Å in magnesium, manganese, zinc representatives, respectively] and shortest M′—N, [1.977 (4) and 1.980 (4) Å in (I) versus 2.054 (1) and 2.049 (1) Å (magnesium), 2.0909 (12) and 2.0884 (12) Å (manganese), and 1.986 (2) and 1.983 (2) Å (zinc)] bond lengths. The short bond lengths and acute bond angles may enhance the torsion of the metal plane from the nitrogen plane.
3. Supramolecular features
In the solid state, the steric bulk of the trimethylsilylamide ligands prevents further intermolecular interactions of either the cobalt atoms or the oxido ligand, as can be observed in the space filling model of (I) presented in Fig. 3a. Some weak interactions can be noted for sodium, however, which is consistent with the open site around sodium visible in Fig. 3b. The sodium atoms and one –Si—CH3 group from each molecule coordinate to a neighboring –Si—CH3 group and sodium atom, respectively, forming an infinite chain extending along [010], as illustrated in Fig. 4. The two close Na⋯H contact distances of 2.961 and 2.886 Å fall within the range of previously structurally characterized literature examples of various molecules containing sodium bis(trimethylsilyl)amide moieties (2.55–3.0 Å). For selected examples, see: Driess et al. (1997); Sarazin et al. (2006); Kennedy et al. (2008). This type of intermolecular interaction has been previously noted in the solid state for related potassium-based inverse bearing bridging peroxido ligands (Kennedy et al., 1999), and in related sodium-containing precursors (Kennedy et al., 2008).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.37, last update Nov. 2015; Groom et al., 2016) reveals that structurally characterized oxido-centered inverse are rare. The first examples were prepared from magnesium [CSD refcodes: EJEKEJ (Kennedy et al., 2003); SUJQOD, SUJQUJ (Kennedy et al., 1998)]. Further examples focused on zinc [CSD refcode: WOQTIF (Forbes et al., 2000)], manganese [CSD refcodes: CIVRAB, CIVRIJ (Kennedy et al., 2008); WUVROV (Mulvey et al., 2010)], aluminum [CSD refcode: BABMEY (Wu et al., 2010)] and ytterbium [CSD refcodes: IMIBUC, IMICUJ (Lu et al., 2010)] complexes.
5. Synthesis and crystallization
Compound (I) was obtained as single crystals on multiple occasions as a side product of two different reactions; however, attempts at a rational synthesis were not successful. These reactions used conditions and reagents that were nominally free of oxygen and water. Nonetheless, trace oxygen or water are the likely sources of the bridging oxido ligand. Adventitious water (Lu et al., 2010) and oxygen (Kennedy et al., 2008) have both been shown to be potential oxygen-atom sources, and have been previously utilized to generate this type of structure. Additionally, fragmentation of tetrahydrofuran has also been identified as a potential oxygen-atom source in one case (Mulvey et al., 2010).
Method 1: In a glovebox [(IPr)CoCl2]2 (Matsubara et al., 2012; Przyojski et al., 2013) [IPr = 1,3-di(2,6-diisopropylphenyl)imidazolin-2-ylidene] (50 mg, 0.048 mmol, 1 equiv.) was dissolved in 3 ml toluene and cooled to 238 K. A 238 K solution of NaN(SiMe3)2 (Sigma–Aldrich, titrated to 0.844M in THF) (22.9 µL, 0.193 mmol, 4 equiv.) was added dropwise to the solution of [(IPr)CoCl2]2 with stirring. The reaction mixture rapidly changed color from blue to turquoise to green and became turbid. The solution was allowed to warm to ambient temperature and stirred for 1 h. The reaction was filtered through Celite and the filtrate reduced to dryness under vacuum. The resulting green solid was dissolved in a minimal volume of toluene, passed through a Pasteur pipette filter, and stored at 238 K for several days. The resulting precipitate primarily consisted of thin green plates of (IPr)CoCl(N(SiMe3)2) (Hansen et al., 2015), occasionally accompanied by a small number of dark green–blue blocks of (I).
Method 2: While attempting to prepare a compound of the type Na[Co(N(SiMe3)2)3], (I) was occasionally observed as a minor by-product during recrystallization attempts. In a typical reaction anhydrous CoCl2 (100 mg, 0.77 mmol, 1 equiv.) was suspended in 2 ml THF and cooled to 238 K. NaN(SiMe3)2 (423.6 mg, 2.31 mmol, 3 equiv.) was dissolved in 10 ml THF, cooled to 238 K, then added to the stirred slurry of CoCl2. The reaction mixture was allowed to warm to ambient temperature and stir overnight, over which time it slowly turned green and turbid. The reaction mixture was filtered through Celite and rinsed with additional THF until washings were colorless, leaving a white solid remaining on the Celite pad. The combined THF fractions were combined and concentrated under vacuum to a yield a waxy green solid. The resulting solid was recrystallized from a solution in a minimal volume of toluene cooled to 238 K. The title compound (I) was occasionally observed as blue–green blocks.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed at idealized positions with C—H = 0.98 Å, Uiso(H) set to 1.5Ueq(C). The initial structure solution and refinements had a goodness-of-fit of about 0.88 and many reflections with Fo > Fc suggesting possible The data reduction was revisited and the structure was refined under consideration as a two-component twin by non-merohedry. The second domain is rotated from the first domain by 3.3° about reciprocal axis [1 0 ½] as determined by CELL_NOW (Sheldrick, 2008). The twin ratio refined to a value of 0.88:0.12.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1476068
https://doi.org/10.1107/S2056989016006861/wm5287sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016006861/wm5287Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: APEX3 (Bruker, 2015) and OLEX2 (Dolomanov et al., 2009).[Co2Na2O(C6H18NSi2)4] | Z = 1 |
Mr = 821.41 | F(000) = 440 |
Triclinic, P1 | Dx = 1.243 Mg m−3 |
a = 8.8839 (18) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.591 (2) Å | Cell parameters from 1020 reflections |
c = 12.700 (3) Å | θ = 2.8–24.6° |
α = 96.75 (4)° | µ = 1.02 mm−1 |
β = 108.93 (3)° | T = 100 K |
γ = 99.15 (3)° | Block, green |
V = 1097.4 (5) Å3 | 0.3 × 0.24 × 0.2 mm |
Bruker SMART APEX CCD diffractometer | 4421 independent reflections |
Radiation source: sealed tube | 3107 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.089 |
ω scans | θmax = 26.5°, θmin = 1.7° |
Absorption correction: multi-scan (TWINABS; Bruker,2012) | h = −11→10 |
Tmin = 0.57, Tmax = 0.75 | k = −13→13 |
4421 measured reflections | l = 0→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0577P)2] where P = (Fo2 + 2Fc2)/3 |
4421 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 1.08 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
Experimental. Absorption correction: TWINABS2012/1 (Bruker, 2012) was used for absorption correction. For component 1: wR2(int) was 0.0813 before and 0.0454 after correction. The Ratio of minimum to maximum transmission is 0.77. Final HKLF 4 output contains 11962 reflections, Rint = 0.0892 (2973 with I > 3sig(I), Rint = 0.0335) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.61239 (8) | 0.48208 (7) | 0.64530 (5) | 0.0137 (2) | |
Si1 | 0.40656 (17) | 0.25144 (14) | 0.70655 (12) | 0.0174 (3) | |
Si2 | 0.71315 (17) | 0.21357 (14) | 0.66099 (12) | 0.0167 (3) | |
Si3 | 0.94365 (16) | 0.68550 (14) | 0.74896 (11) | 0.0165 (3) | |
Si4 | 0.68061 (16) | 0.70994 (14) | 0.84538 (11) | 0.0165 (3) | |
Na1 | 0.4185 (2) | 0.27679 (19) | 0.44187 (16) | 0.0222 (5) | |
O1 | 0.5000 | 0.5000 | 0.5000 | 0.0187 (11) | |
N1 | 0.5621 (5) | 0.2967 (4) | 0.6570 (3) | 0.0165 (9) | |
N2 | 0.7424 (5) | 0.6528 (4) | 0.7365 (3) | 0.0162 (9) | |
C1 | 0.3045 (6) | 0.3891 (5) | 0.7230 (4) | 0.0248 (13) | |
H1A | 0.2812 | 0.4278 | 0.6546 | 0.037* | |
H1B | 0.3762 | 0.4550 | 0.7884 | 0.037* | |
H1C | 0.2026 | 0.3571 | 0.7348 | 0.037* | |
C2 | 0.4707 (7) | 0.1928 (6) | 0.8440 (5) | 0.0312 (14) | |
H2A | 0.5074 | 0.1113 | 0.8336 | 0.047* | |
H2B | 0.3784 | 0.1780 | 0.8705 | 0.047* | |
H2C | 0.5600 | 0.2583 | 0.9001 | 0.047* | |
C3 | 0.2418 (6) | 0.1205 (5) | 0.6018 (5) | 0.0300 (14) | |
H3A | 0.1989 | 0.1514 | 0.5304 | 0.045* | |
H3B | 0.1540 | 0.0979 | 0.6315 | 0.045* | |
H3C | 0.2861 | 0.0435 | 0.5886 | 0.045* | |
C4 | 0.6502 (7) | 0.0351 (5) | 0.6561 (5) | 0.0255 (13) | |
H4A | 0.6269 | 0.0212 | 0.7247 | 0.038* | |
H4B | 0.7383 | −0.0080 | 0.6517 | 0.038* | |
H4C | 0.5523 | −0.0014 | 0.5895 | 0.038* | |
C5 | 0.8974 (6) | 0.2721 (6) | 0.7914 (4) | 0.0272 (14) | |
H5A | 0.9424 | 0.3638 | 0.7950 | 0.041* | |
H5B | 0.9791 | 0.2206 | 0.7893 | 0.041* | |
H5C | 0.8674 | 0.2625 | 0.8582 | 0.041* | |
C6 | 0.7720 (6) | 0.2294 (5) | 0.5334 (4) | 0.0233 (13) | |
H6A | 0.6872 | 0.1745 | 0.4663 | 0.035* | |
H6B | 0.8754 | 0.2018 | 0.5441 | 0.035* | |
H6C | 0.7843 | 0.3203 | 0.5232 | 0.035* | |
C7 | 0.9702 (6) | 0.5853 (5) | 0.6277 (4) | 0.0239 (13) | |
H7A | 0.9660 | 0.4953 | 0.6399 | 0.036* | |
H7B | 1.0758 | 0.6205 | 0.6222 | 0.036* | |
H7C | 0.8830 | 0.5874 | 0.5574 | 0.036* | |
C8 | 1.0834 (6) | 0.6525 (5) | 0.8841 (4) | 0.0249 (13) | |
H8A | 1.1074 | 0.7271 | 0.9448 | 0.037* | |
H8B | 1.1849 | 0.6385 | 0.8744 | 0.037* | |
H8C | 1.0310 | 0.5747 | 0.9038 | 0.037* | |
C9 | 1.0216 (6) | 0.8588 (5) | 0.7425 (5) | 0.0248 (13) | |
H9A | 0.9589 | 0.8788 | 0.6697 | 0.037* | |
H9B | 1.1367 | 0.8712 | 0.7503 | 0.037* | |
H9C | 1.0100 | 0.9168 | 0.8041 | 0.037* | |
C10 | 0.6827 (6) | 0.5923 (5) | 0.9438 (4) | 0.0242 (13) | |
H10A | 0.6380 | 0.5039 | 0.9000 | 0.036* | |
H10B | 0.6165 | 0.6131 | 0.9893 | 0.036* | |
H10C | 0.7949 | 0.5982 | 0.9939 | 0.036* | |
C11 | 0.4724 (6) | 0.7420 (5) | 0.7848 (4) | 0.0237 (13) | |
H11A | 0.4780 | 0.8203 | 0.7508 | 0.036* | |
H11B | 0.4269 | 0.7550 | 0.8450 | 0.036* | |
H11C | 0.4027 | 0.6677 | 0.7267 | 0.036* | |
C12 | 0.8079 (6) | 0.8685 (5) | 0.9344 (4) | 0.0232 (13) | |
H12A | 0.9202 | 0.8588 | 0.9700 | 0.035* | |
H12B | 0.7642 | 0.8948 | 0.9933 | 0.035* | |
H12C | 0.8060 | 0.9350 | 0.8868 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0137 (4) | 0.0132 (4) | 0.0111 (4) | 0.0022 (3) | 0.0014 (3) | 0.0003 (3) |
Si1 | 0.0189 (8) | 0.0167 (8) | 0.0177 (8) | 0.0036 (6) | 0.0077 (6) | 0.0030 (6) |
Si2 | 0.0149 (7) | 0.0165 (8) | 0.0177 (8) | 0.0037 (6) | 0.0041 (6) | 0.0032 (6) |
Si3 | 0.0142 (7) | 0.0180 (8) | 0.0137 (7) | 0.0021 (6) | 0.0015 (6) | 0.0007 (6) |
Si4 | 0.0153 (7) | 0.0170 (8) | 0.0140 (7) | 0.0007 (6) | 0.0034 (6) | −0.0014 (6) |
Na1 | 0.0268 (12) | 0.0176 (12) | 0.0171 (11) | 0.0030 (9) | 0.0018 (9) | 0.0027 (9) |
O1 | 0.022 (3) | 0.017 (3) | 0.014 (3) | 0.002 (2) | 0.003 (2) | 0.001 (2) |
N1 | 0.015 (2) | 0.017 (2) | 0.015 (2) | 0.0014 (18) | 0.0044 (18) | 0.0006 (18) |
N2 | 0.015 (2) | 0.020 (3) | 0.012 (2) | 0.0036 (19) | 0.0025 (17) | 0.0016 (18) |
C1 | 0.024 (3) | 0.020 (3) | 0.028 (3) | 0.002 (2) | 0.012 (2) | −0.004 (2) |
C2 | 0.044 (4) | 0.028 (4) | 0.030 (3) | 0.011 (3) | 0.020 (3) | 0.010 (3) |
C3 | 0.028 (3) | 0.024 (3) | 0.038 (4) | 0.002 (3) | 0.017 (3) | −0.007 (3) |
C4 | 0.028 (3) | 0.023 (3) | 0.030 (3) | 0.011 (3) | 0.013 (3) | 0.008 (2) |
C5 | 0.023 (3) | 0.032 (4) | 0.022 (3) | 0.009 (3) | 0.002 (2) | 0.001 (2) |
C6 | 0.025 (3) | 0.018 (3) | 0.021 (3) | 0.006 (2) | 0.002 (2) | −0.002 (2) |
C7 | 0.021 (3) | 0.022 (3) | 0.027 (3) | 0.003 (2) | 0.009 (2) | 0.000 (2) |
C8 | 0.021 (3) | 0.031 (4) | 0.019 (3) | 0.006 (3) | 0.003 (2) | 0.002 (2) |
C9 | 0.018 (3) | 0.025 (3) | 0.027 (3) | −0.003 (2) | 0.008 (2) | −0.004 (2) |
C10 | 0.024 (3) | 0.022 (3) | 0.023 (3) | 0.002 (2) | 0.006 (2) | 0.000 (2) |
C11 | 0.027 (3) | 0.018 (3) | 0.027 (3) | 0.005 (2) | 0.009 (2) | 0.005 (2) |
C12 | 0.024 (3) | 0.022 (3) | 0.023 (3) | 0.002 (2) | 0.012 (2) | −0.003 (2) |
Co1—Na1i | 2.918 (2) | C2—H2A | 0.9800 |
Co1—O1 | 1.8398 (9) | C2—H2B | 0.9800 |
Co1—N1 | 1.977 (4) | C2—H2C | 0.9800 |
Co1—N2 | 1.980 (4) | C3—H3A | 0.9800 |
Si1—N1 | 1.721 (4) | C3—H3B | 0.9800 |
Si1—C1 | 1.861 (5) | C3—H3C | 0.9800 |
Si1—C2 | 1.865 (6) | C4—H4A | 0.9800 |
Si1—C3 | 1.869 (5) | C4—H4B | 0.9800 |
Si2—N1 | 1.709 (4) | C4—H4C | 0.9800 |
Si2—C4 | 1.872 (6) | C5—H5A | 0.9800 |
Si2—C5 | 1.866 (5) | C5—H5B | 0.9800 |
Si2—C6 | 1.874 (5) | C5—H5C | 0.9800 |
Si3—Na1i | 3.458 (3) | C6—H6A | 0.9800 |
Si3—N2 | 1.717 (4) | C6—H6B | 0.9800 |
Si3—C7 | 1.867 (5) | C6—H6C | 0.9800 |
Si3—C8 | 1.872 (5) | C7—H7A | 0.9800 |
Si3—C9 | 1.877 (6) | C7—H7B | 0.9800 |
Si4—Na1i | 3.490 (3) | C7—H7C | 0.9800 |
Si4—N2 | 1.727 (4) | C8—H8A | 0.9800 |
Si4—C10 | 1.863 (6) | C8—H8B | 0.9800 |
Si4—C11 | 1.862 (5) | C8—H8C | 0.9800 |
Si4—C12 | 1.870 (5) | C9—H9A | 0.9800 |
Na1—Co1i | 2.918 (2) | C9—H9B | 0.9800 |
Na1—Si3i | 3.458 (3) | C9—H9C | 0.9800 |
Na1—Si4i | 3.490 (3) | C10—H10A | 0.9800 |
Na1—O1 | 2.314 (2) | C10—H10B | 0.9800 |
Na1—N1 | 2.579 (4) | C10—H10C | 0.9800 |
Na1—N2i | 2.523 (4) | C11—H11A | 0.9800 |
O1—Co1i | 1.8399 (9) | C11—H11B | 0.9800 |
O1—Na1i | 2.314 (2) | C11—H11C | 0.9800 |
N2—Na1i | 2.523 (4) | C12—H12A | 0.9800 |
C1—H1A | 0.9800 | C12—H12B | 0.9800 |
C1—H1B | 0.9800 | C12—H12C | 0.9800 |
C1—H1C | 0.9800 | ||
O1—Co1—Na1i | 52.46 (5) | Si1—C1—H1B | 109.5 |
O1—Co1—N1 | 108.39 (12) | Si1—C1—H1C | 109.5 |
O1—Co1—N2 | 110.26 (13) | H1A—C1—H1B | 109.5 |
N1—Co1—Na1i | 159.62 (12) | H1A—C1—H1C | 109.5 |
N1—Co1—N2 | 141.35 (17) | H1B—C1—H1C | 109.5 |
N2—Co1—Na1i | 58.31 (12) | Si1—C2—H2A | 109.5 |
N1—Si1—C1 | 110.5 (2) | Si1—C2—H2B | 109.5 |
N1—Si1—C2 | 114.4 (2) | Si1—C2—H2C | 109.5 |
N1—Si1—C3 | 111.2 (2) | H2A—C2—H2B | 109.5 |
C1—Si1—C2 | 108.3 (2) | H2A—C2—H2C | 109.5 |
C1—Si1—C3 | 104.4 (2) | H2B—C2—H2C | 109.5 |
C2—Si1—C3 | 107.5 (3) | Si1—C3—H3A | 109.5 |
N1—Si2—C4 | 113.5 (2) | Si1—C3—H3B | 109.5 |
N1—Si2—C5 | 113.1 (2) | Si1—C3—H3C | 109.5 |
N1—Si2—C6 | 108.9 (2) | H3A—C3—H3B | 109.5 |
C4—Si2—C6 | 106.2 (2) | H3A—C3—H3C | 109.5 |
C5—Si2—C4 | 105.5 (3) | H3B—C3—H3C | 109.5 |
C5—Si2—C6 | 109.2 (3) | Si2—C4—H4A | 109.5 |
N2—Si3—Na1i | 43.99 (14) | Si2—C4—H4B | 109.5 |
N2—Si3—C7 | 109.4 (2) | Si2—C4—H4C | 109.5 |
N2—Si3—C8 | 113.4 (2) | H4A—C4—H4B | 109.5 |
N2—Si3—C9 | 113.5 (2) | H4A—C4—H4C | 109.5 |
C7—Si3—Na1i | 86.99 (17) | H4B—C4—H4C | 109.5 |
C7—Si3—C8 | 108.6 (2) | Si2—C5—H5A | 109.5 |
C7—Si3—C9 | 105.5 (3) | Si2—C5—H5B | 109.5 |
C8—Si3—Na1i | 157.06 (18) | Si2—C5—H5C | 109.5 |
C8—Si3—C9 | 106.0 (3) | H5A—C5—H5B | 109.5 |
C9—Si3—Na1i | 84.84 (18) | H5A—C5—H5C | 109.5 |
N2—Si4—Na1i | 43.12 (14) | H5B—C5—H5C | 109.5 |
N2—Si4—C10 | 111.6 (2) | Si2—C6—H6A | 109.5 |
N2—Si4—C11 | 109.2 (2) | Si2—C6—H6B | 109.5 |
N2—Si4—C12 | 114.5 (2) | Si2—C6—H6C | 109.5 |
C10—Si4—Na1i | 141.68 (18) | H6A—C6—H6B | 109.5 |
C10—Si4—C12 | 106.4 (2) | H6A—C6—H6C | 109.5 |
C11—Si4—Na1i | 69.07 (18) | H6B—C6—H6C | 109.5 |
C11—Si4—C10 | 110.1 (2) | Si3—C7—H7A | 109.5 |
C11—Si4—C12 | 104.8 (2) | Si3—C7—H7B | 109.5 |
C12—Si4—Na1i | 110.76 (19) | Si3—C7—H7C | 109.5 |
Co1i—Na1—Si3i | 58.20 (6) | H7A—C7—H7B | 109.5 |
Co1i—Na1—Si4i | 57.47 (6) | H7A—C7—H7C | 109.5 |
Si3i—Na1—Si4i | 51.16 (5) | H7B—C7—H7C | 109.5 |
O1—Na1—Co1i | 39.08 (4) | Si3—C8—H8A | 109.5 |
O1—Na1—Si3i | 90.23 (8) | Si3—C8—H8B | 109.5 |
O1—Na1—Si4i | 94.36 (8) | Si3—C8—H8C | 109.5 |
O1—Na1—N1 | 78.30 (12) | H8A—C8—H8B | 109.5 |
O1—Na1—N2i | 80.67 (12) | H8A—C8—H8C | 109.5 |
N1—Na1—Co1i | 117.16 (12) | H8B—C8—H8C | 109.5 |
N1—Na1—Si3i | 139.95 (12) | Si3—C9—H9A | 109.5 |
N1—Na1—Si4i | 165.71 (12) | Si3—C9—H9B | 109.5 |
N2i—Na1—Co1i | 41.89 (10) | Si3—C9—H9C | 109.5 |
N2i—Na1—Si3i | 28.21 (10) | H9A—C9—H9B | 109.5 |
N2i—Na1—Si4i | 27.90 (9) | H9A—C9—H9C | 109.5 |
N2i—Na1—N1 | 155.82 (15) | H9B—C9—H9C | 109.5 |
Co1—O1—Co1i | 180.0 | Si4—C10—H10A | 109.5 |
Co1—O1—Na1i | 88.46 (7) | Si4—C10—H10B | 109.5 |
Co1—O1—Na1 | 91.54 (7) | Si4—C10—H10C | 109.5 |
Co1i—O1—Na1i | 91.54 (7) | H10A—C10—H10B | 109.5 |
Co1i—O1—Na1 | 88.46 (7) | H10A—C10—H10C | 109.5 |
Na1—O1—Na1i | 180.00 (3) | H10B—C10—H10C | 109.5 |
Co1—N1—Na1 | 81.02 (15) | Si4—C11—H11A | 109.5 |
Si1—N1—Co1 | 116.1 (2) | Si4—C11—H11B | 109.5 |
Si1—N1—Na1 | 104.36 (18) | Si4—C11—H11C | 109.5 |
Si2—N1—Co1 | 115.7 (2) | H11A—C11—H11B | 109.5 |
Si2—N1—Si1 | 124.7 (3) | H11A—C11—H11C | 109.5 |
Si2—N1—Na1 | 101.38 (18) | H11B—C11—H11C | 109.5 |
Co1—N2—Na1i | 79.79 (14) | Si4—C12—H12A | 109.5 |
Si3—N2—Co1 | 115.9 (2) | Si4—C12—H12B | 109.5 |
Si3—N2—Si4 | 121.2 (2) | Si4—C12—H12C | 109.5 |
Si3—N2—Na1i | 107.8 (2) | H12A—C12—H12B | 109.5 |
Si4—N2—Co1 | 114.6 (2) | H12A—C12—H12C | 109.5 |
Si4—N2—Na1i | 108.98 (19) | H12B—C12—H12C | 109.5 |
Si1—C1—H1A | 109.5 | ||
Na1i—Co1—O1—Na1 | 179.999 (1) | C5—Si2—N1—Na1 | 151.5 (2) |
Na1i—Si3—N2—Co1 | 87.1 (2) | C6—Si2—N1—Co1 | −55.6 (3) |
Na1i—Si3—N2—Si4 | −126.4 (4) | C6—Si2—N1—Si1 | 146.4 (3) |
Na1i—Si4—N2—Co1 | −87.2 (2) | C6—Si2—N1—Na1 | 29.8 (2) |
Na1i—Si4—N2—Si3 | 125.9 (4) | C7—Si3—N2—Co1 | 23.4 (3) |
N1—Co1—O1—Na1i | 172.03 (13) | C7—Si3—N2—Si4 | 170.0 (3) |
N1—Co1—O1—Na1 | −7.97 (13) | C7—Si3—N2—Na1i | −63.6 (3) |
N2—Co1—O1—Na1 | 171.82 (13) | C8—Si3—N2—Co1 | −98.0 (3) |
N2—Co1—O1—Na1i | −8.18 (13) | C8—Si3—N2—Si4 | 48.5 (4) |
C1—Si1—N1—Co1 | 6.4 (3) | C8—Si3—N2—Na1i | 174.9 (2) |
C1—Si1—N1—Si2 | 164.3 (3) | C9—Si3—N2—Co1 | 140.9 (2) |
C1—Si1—N1—Na1 | −80.6 (2) | C9—Si3—N2—Si4 | −72.6 (3) |
C2—Si1—N1—Co1 | −116.1 (3) | C9—Si3—N2—Na1i | 53.8 (3) |
C2—Si1—N1—Si2 | 41.8 (4) | C10—Si4—N2—Co1 | 57.1 (3) |
C2—Si1—N1—Na1 | 157.0 (2) | C10—Si4—N2—Si3 | −89.8 (3) |
C3—Si1—N1—Co1 | 121.8 (3) | C10—Si4—N2—Na1i | 144.3 (2) |
C3—Si1—N1—Si2 | −80.3 (3) | C11—Si4—N2—Co1 | −64.8 (3) |
C3—Si1—N1—Na1 | 34.9 (3) | C11—Si4—N2—Si3 | 148.2 (3) |
C4—Si2—N1—Co1 | −173.7 (2) | C11—Si4—N2—Na1i | 22.4 (3) |
C4—Si2—N1—Si1 | 28.3 (4) | C12—Si4—N2—Co1 | 178.0 (2) |
C4—Si2—N1—Na1 | −88.3 (2) | C12—Si4—N2—Si3 | 31.1 (4) |
C5—Si2—N1—Co1 | 66.1 (3) | C12—Si4—N2—Na1i | −94.8 (3) |
C5—Si2—N1—Si1 | −92.0 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Footnotes
‡Deceased.
Acknowledgements
This work was supported by the National Science Foundation through grants CHE-0957816 and CHE-1266281 (to GLH). The authors thank Professor Michael D. Hopkins for helpful discussions and assistance in manuscript preparation.
References
Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. (2015). Chem. Rev. 115, 12974–13005. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, N. M., García-Álvarez, P., Kennedy, A. R., O'Hara, C. T. & Robertson, G. M. (2009). Chem. Commun. pp. 5835–5837. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Driess, M., Pritzkow, H., Skipinski, M. & Winkler, U. (1997). Organometallics, 16, 5108–5112. CSD CrossRef CAS Web of Science Google Scholar
Forbes, G. C., Kennedy, A. R., Mulvey, R. E., Rowlings, R. B., Clegg, W., Liddle, S. T. & Wilson, C. C. (2000). Chem. Commun. pp. 1759–1760. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hansen, C. B., Jordan, R. F. & Hillhouse, G. H. (2015). Inorg. Chem. 54, 4603–4610. Web of Science CSD CrossRef CAS PubMed Google Scholar
Heering, C., Boldog, I., Vasylyeva, V., Sanchiz, J. & Janiak, C. (2013). CrystEngComm, 15, 9757–9768. Web of Science CSD CrossRef CAS Google Scholar
Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. (2014). Chem. Rev. 114, 11863–12001. Web of Science PubMed Google Scholar
Kennedy, A. R., Klett, J., Mulvey, R. E., Newton, S. & Wright, D. S. (2008). Chem. Commun. pp. 308–310. Web of Science CSD CrossRef Google Scholar
Kennedy, A. R., MacLellan, J. G. & Mulvey, R. E. (2003). Acta Cryst. C59, m302–m303. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kennedy, A. R., Mulvey, R. E., Roberts, B. A., Rowlings, R. B. & Raston, C. L. (1999). Chem. Commun. pp. 353–354. Web of Science CSD CrossRef Google Scholar
Kennedy, A. R., Mulvey, R. E. & Rowlings, R. B. (1998). Angew. Chem. Int. Ed. 37, 3180–3183. Web of Science CrossRef CAS Google Scholar
Li, Z.-Y., Dai, Y., Zhang, H., Zhu, J., Zhang, J.-J., Liu, S.-Q. & Duan, C.-Y. (2014). Eur. J. Inorg. Chem. pp. 384–391. Web of Science CSD CrossRef Google Scholar
Lu, X.-H., Ma, M.-T., Yao, Y.-M., Zhang, Y. & Shen, Q. (2010). Inorg. Chem. Commun. 13, 1566–1568. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matsubara, K., Sueyasu, T., Esaki, M., Kumamoto, A., Nagao, S., Yamamoto, H., Koga, Y., Kawata, S. & Matsumoto, T. (2012). Eur. J. Inorg. Chem. pp. 3079–3086. Web of Science CSD CrossRef Google Scholar
Mulvey, R. (2006). Organometallics, 25, 1060–1075. Web of Science CrossRef CAS Google Scholar
Mulvey, R. E., Blair, V. L., Clegg, W., Kennedy, A. R., Klett, J. & Russo, L. (2010). Nat. Chem. 2, 588–591. Web of Science CSD CrossRef CAS PubMed Google Scholar
Przyojski, J. A., Arman, H. D. & Tonzetich, Z. J. (2013). Organometallics, 32, 723–732. Web of Science CSD CrossRef CAS Google Scholar
Reger, D. L., Pascui, A. E., Foley, E. A., Smith, M. D., Jezierska, J. & Ozarowski, A. (2014). Inorg. Chem. 53, 1975–1988. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sarazin, Y., Coles, S. J., Hughes, D. L., Hursthouse, M. B. & Bochmann, M. (2006). Eur. J. Inorg. Chem. pp. 3211–3220. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). CELL_NOW. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sumner, C. E. & Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 6124–6126. CSD CrossRef CAS Web of Science Google Scholar
Wendelstorf, C. & Krämer, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 2791–2793. Web of Science CSD CrossRef CAS Google Scholar
Wu, J., Pan, X., Tang, N. & Lin, C.-C. (2010). Inorg. Chem. 49, 5362–5364. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.