research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the inverse crown ether tetra­kis­[μ2-bis­­(tri­methyl­sil­yl)amido]-μ4-oxido-dicobalt(II)disodium, [Co2Na2{μ2-N(SiMe3)2}4](μ4-O)

CROSSMARK_Color_square_no_text.svg

aThe University of Chicago, Department of Chemistry, 5735 S Ellis Ave., Chicago, IL 60637, USA
*Correspondence e-mail: chansen6@uchicago.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 April 2016; accepted 22 April 2016; online 4 May 2016)

The title compound, [Co2Na2{μ2-N(SiMe3)2}4](μ4-O), (I), represents a new entry in the class of inverse crown ethers. In the mol­ecule, each Co atom is formally in the oxidation state +II. The structure contains one half of a unique mol­ecule per asymmetric unit with the central μ4-oxido ligand residing on an inversion center, leading to a planar coordination to the Na and Co atoms. In the crystal, bulky tri­methyl­silyl substituents prevent additional inter­actions with cobalt. However, weak inter­molecular Na⋯H3C—Si inter­actions form an infinite chain along [010]. The structure is isotypic with its Mg, Mn and Zn analogues.

1. Chemical context

Compounds that feature oxido-bridged cobalt clusters have been of great inter­est in recent years as active homogeneous (Blakemore et al., 2015[Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. (2015). Chem. Rev. 115, 12974-13005.]) and heterogeneous (Kärkäs et al., 2014[Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. (2014). Chem. Rev. 114, 11863-12001.]) oxygen-evolution catalysts. Bridging cobalt-oxido species also find applications in magnetic materials (Heering et al., 2013[Heering, C., Boldog, I., Vasylyeva, V., Sanchiz, J. & Janiak, C. (2013). CrystEngComm, 15, 9757-9768.]) and in hydro­carbon oxidation (Sumner & Steinmetz, 1985[Sumner, C. E. & Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 6124-6126.]). In the course of studies of compounds with low-coordinate cobalt atoms (Hansen et al., 2015[Hansen, C. B., Jordan, R. F. & Hillhouse, G. H. (2015). Inorg. Chem. 54, 4603-4610.]), we have isolated and structurally characterized a cobalt-containing tetra­nuclear compound featuring a central μ4-bridging oxido ligand, [Co2Na2(μ2-N(SiMe3)2)4](μ4-O) (I)[link]. Compound (I)[link] fits into the larger class of `inverse crown ethers' illustrated in Fig. 1[link] (Mulvey, 2006[Mulvey, R. (2006). Organometallics, 25, 1060-1075.]).

[Scheme 1]
[Figure 1]
Figure 1
Schematic representation of inverse crown ethers that have previously been structurally characterized.

Compound (I)[link] is the first cobalt-based inverse crown ether. The majority of examples contain magnesium or zinc as M′, though manganese (Kennedy et al., 2008[Kennedy, A. R., Klett, J., Mulvey, R. E., Newton, S. & Wright, D. S. (2008). Chem. Commun. pp. 308-310.]; Mulvey et al., 2010[Mulvey, R. E., Blair, V. L., Clegg, W., Kennedy, A. R., Klett, J. & Russo, L. (2010). Nat. Chem. 2, 588-591.]), aluminum (Wu et al., 2010[Wu, J., Pan, X., Tang, N. & Lin, C.-C. (2010). Inorg. Chem. 49, 5362-5364.]), and ytterbium (Lu et al., 2010[Lu, X.-H., Ma, M.-T., Yao, Y.-M., Zhang, Y. & Shen, Q. (2010). Inorg. Chem. Commun. 13, 1566-1568.]) complexes have been reported as well.

2. Structural commentary

Crystals of (I)[link] suitable for X-ray diffraction were obtained as reaction by-products via crystallization from toluene at 238 K. Attempts at a rational synthesis were not successful. The mol­ecular structure of compound (I)[link] is shown in Fig. 2[link]a and relevant bond lengths and angles are presented in Table 1[link]. The asymmetric unit contains half of a unique mol­ecule comprised of an oxygen atom located on an inversion center, one cobalt atom, one sodium atom, and two –N(SiMe3)2 ligands with the remainder of the mol­ecule being completed by application of inversion symmetry. Consequently, all opposing M—O—M angles (M = Co, Na) are crystallographically imposed to 180°. The four bridging nitro­gen atoms lie slightly out of plane from the four metal atoms, exhibiting a dihedral angle of 8.1 (2)° between their respective planes as shown in Fig. 2[link]b.

Table 1
Selected geometric parameters (Å, °)

Co1—O1 1.8398 (9) Na1—O1 2.314 (2)
Co1—N1 1.977 (4) Na1—N1 2.579 (4)
Co1—N2 1.980 (4) Na1—N2i 2.523 (4)
       
N1—Co1—N2 141.35 (17) Co1—O1—Co1i 180.0
N2i—Na1—N1 155.82 (15) Na1—O1—Na1i 180.00 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
(a) The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 50% probability level. (b) An alternate view of (I)[link] down the Na—O—Na axis displaying ring offsets. H and C atoms were truncated for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

The majority of cobalt-bridging oxido compounds possess bent angles, so the μ4-oxido ligand in (I)[link] is unusual in that it coordinates linearly to the opposing metal atoms. With a central oxido ligand, by charge balance each cobalt atom has formally an oxidation state of +II. While the paramagnetic nature of (I)[link] prevents confirmation by NMR studies, it is unlikely that the central O atom is actually a hydroxido ligand. The structurally related anionic compound [Na4(μ2-N(SiMe3)2)4(μ4-OH)], which bears a central μ4-OH ligand, is noticeably pyramidalized, possessing Na—O—Na angles of 140.1 (2) and 142.4 (2)° (Clark et al., 2009[Clark, N. M., García-Álvarez, P., Kennedy, A. R., O'Hara, C. T. & Robertson, G. M. (2009). Chem. Commun. pp. 5835-5837.]). Additionally, the Co1—O1 bond length of 1.8398 (9) Å in (I)[link] is significantly shorter than those of other structurally characterized complexes of CoII bearing approximately linear bridging hydroxido ligands, which display bond lengths ranging from 1.975 (2) to 2.3766 (6) Å (Li et al., 2014[Li, Z.-Y., Dai, Y., Zhang, H., Zhu, J., Zhang, J.-J., Liu, S.-Q. & Duan, C.-Y. (2014). Eur. J. Inorg. Chem. pp. 384-391.]; Reger et al., 2014[Reger, D. L., Pascui, A. E., Foley, E. A., Smith, M. D., Jezierska, J. & Ozarowski, A. (2014). Inorg. Chem. 53, 1975-1988.]; Wendelstorf & Krämer, 1997[Wendelstorf, C. & Krämer, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 2791-2793.]).

The structure of compound (I)[link] is isotypic with magnesium-, manganese-, and zinc-containing analogues of the general formula [M2Na2(μ2-N(SiMe3)2)4](μ4-O), all of which contain planar linear bridging oxido ligands. Among the four compounds, (I)[link] has comparatively short bonds. For instance, (I)[link] displays the shortest M′—O [1.8398 (9) Å in (I)[link] versus 1.8575 (4), 1.9272 (2), 1.8733 (9) Å in magnesium, manganese, zinc representatives, respectively] and shortest M′—N, [1.977 (4) and 1.980 (4) Å in (I)[link] versus 2.054 (1) and 2.049 (1) Å (magnesium), 2.0909 (12) and 2.0884 (12) Å (manganese), and 1.986 (2) and 1.983 (2) Å (zinc)] bond lengths. The short bond lengths and acute bond angles may enhance the torsion of the metal plane from the nitro­gen plane.

3. Supra­molecular features

In the solid state, the steric bulk of the tri­methyl­silyl­amide ligands prevents further inter­molecular inter­actions of either the cobalt atoms or the oxido ligand, as can be observed in the space filling model of (I)[link] presented in Fig. 3[link]a. Some weak inter­actions can be noted for sodium, however, which is consistent with the open site around sodium visible in Fig. 3[link]b. The sodium atoms and one –Si—CH3 group from each mol­ecule coordinate to a neighboring –Si—CH3 group and sodium atom, respectively, forming an infinite chain extending along [010], as illustrated in Fig. 4[link]. The two close Na⋯H contact distances of 2.961 and 2.886 Å fall within the range of previously structurally characterized literature examples of various mol­ecules containing sodium bis­(tri­methyl­sil­yl)amide moieties (2.55–3.0 Å). For selected examples, see: Driess et al. (1997[Driess, M., Pritzkow, H., Skipinski, M. & Winkler, U. (1997). Organometallics, 16, 5108-5112.]); Sarazin et al. (2006[Sarazin, Y., Coles, S. J., Hughes, D. L., Hursthouse, M. B. & Bochmann, M. (2006). Eur. J. Inorg. Chem. pp. 3211-3220.]); Kennedy et al. (2008[Kennedy, A. R., Klett, J., Mulvey, R. E., Newton, S. & Wright, D. S. (2008). Chem. Commun. pp. 308-310.]). This type of inter­molecular inter­action has been previously noted in the solid state for related potassium-based inverse crown ethers bearing bridging peroxido ligands (Kennedy et al., 1999[Kennedy, A. R., Mulvey, R. E., Roberts, B. A., Rowlings, R. B. & Raston, C. L. (1999). Chem. Commun. pp. 353-354.]), and in related sodium-containing precursors (Kennedy et al., 2008[Kennedy, A. R., Klett, J., Mulvey, R. E., Newton, S. & Wright, D. S. (2008). Chem. Commun. pp. 308-310.]).

[Figure 3]
Figure 3
(a) Top view of a space-filling model of (I)[link], showing the sterically shielded CoII atoms. (b) Side-on view, displaying the open pocket around sodium that allows for weak inter­actions. [Color scheme: cobalt (green), sodium (violet), silicon (yellow), oxygen (red), carbon (gray), hydrogen (white)].
[Figure 4]
Figure 4
Packing diagram of (I)[link], showing Na⋯H contacts forming an infinite chain that extends along [010]. (Symmetry code: −x + 1, −y + 1, −z + 1.)

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update Nov. 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that structurally characterized oxido-centered inverse crown ethers are rare. The first examples were prepared from magnesium [CSD refcodes: EJEKEJ (Kennedy et al., 2003[Kennedy, A. R., MacLellan, J. G. & Mulvey, R. E. (2003). Acta Cryst. C59, m302-m303.]); SUJQOD, SUJQUJ (Kennedy et al., 1998[Kennedy, A. R., Mulvey, R. E. & Rowlings, R. B. (1998). Angew. Chem. Int. Ed. 37, 3180-3183.])]. Further examples focused on zinc [CSD refcode: WOQTIF (Forbes et al., 2000[Forbes, G. C., Kennedy, A. R., Mulvey, R. E., Rowlings, R. B., Clegg, W., Liddle, S. T. & Wilson, C. C. (2000). Chem. Commun. pp. 1759-1760.])], manganese [CSD refcodes: CIVRAB, CIVRIJ (Kennedy et al., 2008[Kennedy, A. R., Klett, J., Mulvey, R. E., Newton, S. & Wright, D. S. (2008). Chem. Commun. pp. 308-310.]); WUVROV (Mulvey et al., 2010[Mulvey, R. E., Blair, V. L., Clegg, W., Kennedy, A. R., Klett, J. & Russo, L. (2010). Nat. Chem. 2, 588-591.])], aluminum [CSD refcode: BABMEY (Wu et al., 2010[Wu, J., Pan, X., Tang, N. & Lin, C.-C. (2010). Inorg. Chem. 49, 5362-5364.])] and ytterbium [CSD refcodes: IMIBUC, IMICUJ (Lu et al., 2010[Lu, X.-H., Ma, M.-T., Yao, Y.-M., Zhang, Y. & Shen, Q. (2010). Inorg. Chem. Commun. 13, 1566-1568.])] complexes.

5. Synthesis and crystallization

Compound (I)[link] was obtained as single crystals on multiple occasions as a side product of two different reactions; however, attempts at a rational synthesis were not successful. These reactions used conditions and reagents that were nominally free of oxygen and water. Nonetheless, trace oxygen or water are the likely sources of the bridging oxido ligand. Adventitious water (Lu et al., 2010[Lu, X.-H., Ma, M.-T., Yao, Y.-M., Zhang, Y. & Shen, Q. (2010). Inorg. Chem. Commun. 13, 1566-1568.]) and oxygen (Kennedy et al., 2008[Kennedy, A. R., Klett, J., Mulvey, R. E., Newton, S. & Wright, D. S. (2008). Chem. Commun. pp. 308-310.]) have both been shown to be potential oxygen-atom sources, and have been previously utilized to generate this type of structure. Additionally, fragmentation of tetra­hydro­furan has also been identified as a potential oxygen-atom source in one case (Mulvey et al., 2010[Mulvey, R. E., Blair, V. L., Clegg, W., Kennedy, A. R., Klett, J. & Russo, L. (2010). Nat. Chem. 2, 588-591.]).

Method 1: In a glovebox [(IPr)CoCl2]2 (Matsubara et al., 2012[Matsubara, K., Sueyasu, T., Esaki, M., Kumamoto, A., Nagao, S., Yamamoto, H., Koga, Y., Kawata, S. & Matsumoto, T. (2012). Eur. J. Inorg. Chem. pp. 3079-3086.]; Przyojski et al., 2013[Przyojski, J. A., Arman, H. D. & Tonzetich, Z. J. (2013). Organometallics, 32, 723-732.]) [IPr = 1,3-di(2,6-diiso­propyl­phen­yl)imidazolin-2-yl­idene] (50 mg, 0.048 mmol, 1 equiv.) was dissolved in 3 ml toluene and cooled to 238 K. A 238 K solution of NaN(SiMe3)2 (Sigma–Aldrich, titrated to 0.844M in THF) (22.9 µL, 0.193 mmol, 4 equiv.) was added dropwise to the solution of [(IPr)CoCl2]2 with stirring. The reaction mixture rapidly changed color from blue to turquoise to green and became turbid. The solution was allowed to warm to ambient temperature and stirred for 1 h. The reaction was filtered through Celite and the filtrate reduced to dryness under vacuum. The resulting green solid was dissolved in a minimal volume of toluene, passed through a Pasteur pipette filter, and stored at 238 K for several days. The resulting precipitate primarily consisted of thin green plates of (IPr)CoCl(N(SiMe3)2) (Hansen et al., 2015[Hansen, C. B., Jordan, R. F. & Hillhouse, G. H. (2015). Inorg. Chem. 54, 4603-4610.]), occasionally accompanied by a small number of dark green–blue blocks of (I)[link].

Method 2: While attempting to prepare a compound of the type Na[Co(N(SiMe3)2)3], (I)[link] was occasionally observed as a minor by-product during recrystallization attempts. In a typical reaction anhydrous CoCl2 (100 mg, 0.77 mmol, 1 equiv.) was suspended in 2 ml THF and cooled to 238 K. NaN(SiMe3)2 (423.6 mg, 2.31 mmol, 3 equiv.) was dissolved in 10 ml THF, cooled to 238 K, then added to the stirred slurry of CoCl2. The reaction mixture was allowed to warm to ambient temperature and stir overnight, over which time it slowly turned green and turbid. The reaction mixture was filtered through Celite and rinsed with additional THF until washings were colorless, leaving a white solid remaining on the Celite pad. The combined THF fractions were combined and concentrated under vacuum to a yield a waxy green solid. The resulting solid was recrystallized from a solution in a minimal volume of toluene cooled to 238 K. The title compound (I)[link] was occasionally observed as blue–green blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed at idealized positions with C—H = 0.98 Å, Uiso(H) set to 1.5Ueq(C). The initial structure solution and refinements had a goodness-of-fit of about 0.88 and many reflections with Fo > Fc suggesting possible twinning. The data reduction was revisited and the structure was refined under consideration as a two-component twin by non-merohedry. The second domain is rotated from the first domain by 3.3° about reciprocal axis [1 0 ½] as determined by CELL_NOW (Sheldrick, 2008[Sheldrick, G. M. (2008). CELL_NOW. University of Göttingen, Germany.]). The twin ratio refined to a value of 0.88:0.12.

Table 2
Experimental details

Crystal data
Chemical formula [Co2Na2O(C6H18NSi2)4]
Mr 821.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.8839 (18), 10.591 (2), 12.700 (3)
α, β, γ (°) 96.75 (4), 108.93 (3), 99.15 (3)
V3) 1097.4 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.02
Crystal size (mm) 0.30 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Bruker,2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.57, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 4421, 4421, 3107
Rint 0.089
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.154, 1.03
No. of reflections 4421
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −0.54
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX3 (Bruker, 2015[Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: APEX3 (Bruker, 2015) and OLEX2 (Dolomanov et al., 2009).

Tetrakis[µ2-bis(trimethylsilyl)amido]-µ4-oxido-dicobalt(II)disodium top
Crystal data top
[Co2Na2O(C6H18NSi2)4]Z = 1
Mr = 821.41F(000) = 440
Triclinic, P1Dx = 1.243 Mg m3
a = 8.8839 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.591 (2) ÅCell parameters from 1020 reflections
c = 12.700 (3) Åθ = 2.8–24.6°
α = 96.75 (4)°µ = 1.02 mm1
β = 108.93 (3)°T = 100 K
γ = 99.15 (3)°Block, green
V = 1097.4 (5) Å30.3 × 0.24 × 0.2 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4421 independent reflections
Radiation source: sealed tube3107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 26.5°, θmin = 1.7°
Absorption correction: multi-scan
(TWINABS; Bruker,2012)
h = 1110
Tmin = 0.57, Tmax = 0.75k = 1313
4421 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0577P)2]
where P = (Fo2 + 2Fc2)/3
4421 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Experimental. Absorption correction: TWINABS2012/1 (Bruker, 2012) was used for absorption correction. For component 1: wR2(int) was 0.0813 before and 0.0454 after correction. The Ratio of minimum to maximum transmission is 0.77. Final HKLF 4 output contains 11962 reflections, Rint = 0.0892 (2973 with I > 3sig(I), Rint = 0.0335)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.61239 (8)0.48208 (7)0.64530 (5)0.0137 (2)
Si10.40656 (17)0.25144 (14)0.70655 (12)0.0174 (3)
Si20.71315 (17)0.21357 (14)0.66099 (12)0.0167 (3)
Si30.94365 (16)0.68550 (14)0.74896 (11)0.0165 (3)
Si40.68061 (16)0.70994 (14)0.84538 (11)0.0165 (3)
Na10.4185 (2)0.27679 (19)0.44187 (16)0.0222 (5)
O10.50000.50000.50000.0187 (11)
N10.5621 (5)0.2967 (4)0.6570 (3)0.0165 (9)
N20.7424 (5)0.6528 (4)0.7365 (3)0.0162 (9)
C10.3045 (6)0.3891 (5)0.7230 (4)0.0248 (13)
H1A0.28120.42780.65460.037*
H1B0.37620.45500.78840.037*
H1C0.20260.35710.73480.037*
C20.4707 (7)0.1928 (6)0.8440 (5)0.0312 (14)
H2A0.50740.11130.83360.047*
H2B0.37840.17800.87050.047*
H2C0.56000.25830.90010.047*
C30.2418 (6)0.1205 (5)0.6018 (5)0.0300 (14)
H3A0.19890.15140.53040.045*
H3B0.15400.09790.63150.045*
H3C0.28610.04350.58860.045*
C40.6502 (7)0.0351 (5)0.6561 (5)0.0255 (13)
H4A0.62690.02120.72470.038*
H4B0.73830.00800.65170.038*
H4C0.55230.00140.58950.038*
C50.8974 (6)0.2721 (6)0.7914 (4)0.0272 (14)
H5A0.94240.36380.79500.041*
H5B0.97910.22060.78930.041*
H5C0.86740.26250.85820.041*
C60.7720 (6)0.2294 (5)0.5334 (4)0.0233 (13)
H6A0.68720.17450.46630.035*
H6B0.87540.20180.54410.035*
H6C0.78430.32030.52320.035*
C70.9702 (6)0.5853 (5)0.6277 (4)0.0239 (13)
H7A0.96600.49530.63990.036*
H7B1.07580.62050.62220.036*
H7C0.88300.58740.55740.036*
C81.0834 (6)0.6525 (5)0.8841 (4)0.0249 (13)
H8A1.10740.72710.94480.037*
H8B1.18490.63850.87440.037*
H8C1.03100.57470.90380.037*
C91.0216 (6)0.8588 (5)0.7425 (5)0.0248 (13)
H9A0.95890.87880.66970.037*
H9B1.13670.87120.75030.037*
H9C1.01000.91680.80410.037*
C100.6827 (6)0.5923 (5)0.9438 (4)0.0242 (13)
H10A0.63800.50390.90000.036*
H10B0.61650.61310.98930.036*
H10C0.79490.59820.99390.036*
C110.4724 (6)0.7420 (5)0.7848 (4)0.0237 (13)
H11A0.47800.82030.75080.036*
H11B0.42690.75500.84500.036*
H11C0.40270.66770.72670.036*
C120.8079 (6)0.8685 (5)0.9344 (4)0.0232 (13)
H12A0.92020.85880.97000.035*
H12B0.76420.89480.99330.035*
H12C0.80600.93500.88680.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0137 (4)0.0132 (4)0.0111 (4)0.0022 (3)0.0014 (3)0.0003 (3)
Si10.0189 (8)0.0167 (8)0.0177 (8)0.0036 (6)0.0077 (6)0.0030 (6)
Si20.0149 (7)0.0165 (8)0.0177 (8)0.0037 (6)0.0041 (6)0.0032 (6)
Si30.0142 (7)0.0180 (8)0.0137 (7)0.0021 (6)0.0015 (6)0.0007 (6)
Si40.0153 (7)0.0170 (8)0.0140 (7)0.0007 (6)0.0034 (6)0.0014 (6)
Na10.0268 (12)0.0176 (12)0.0171 (11)0.0030 (9)0.0018 (9)0.0027 (9)
O10.022 (3)0.017 (3)0.014 (3)0.002 (2)0.003 (2)0.001 (2)
N10.015 (2)0.017 (2)0.015 (2)0.0014 (18)0.0044 (18)0.0006 (18)
N20.015 (2)0.020 (3)0.012 (2)0.0036 (19)0.0025 (17)0.0016 (18)
C10.024 (3)0.020 (3)0.028 (3)0.002 (2)0.012 (2)0.004 (2)
C20.044 (4)0.028 (4)0.030 (3)0.011 (3)0.020 (3)0.010 (3)
C30.028 (3)0.024 (3)0.038 (4)0.002 (3)0.017 (3)0.007 (3)
C40.028 (3)0.023 (3)0.030 (3)0.011 (3)0.013 (3)0.008 (2)
C50.023 (3)0.032 (4)0.022 (3)0.009 (3)0.002 (2)0.001 (2)
C60.025 (3)0.018 (3)0.021 (3)0.006 (2)0.002 (2)0.002 (2)
C70.021 (3)0.022 (3)0.027 (3)0.003 (2)0.009 (2)0.000 (2)
C80.021 (3)0.031 (4)0.019 (3)0.006 (3)0.003 (2)0.002 (2)
C90.018 (3)0.025 (3)0.027 (3)0.003 (2)0.008 (2)0.004 (2)
C100.024 (3)0.022 (3)0.023 (3)0.002 (2)0.006 (2)0.000 (2)
C110.027 (3)0.018 (3)0.027 (3)0.005 (2)0.009 (2)0.005 (2)
C120.024 (3)0.022 (3)0.023 (3)0.002 (2)0.012 (2)0.003 (2)
Geometric parameters (Å, º) top
Co1—Na1i2.918 (2)C2—H2A0.9800
Co1—O11.8398 (9)C2—H2B0.9800
Co1—N11.977 (4)C2—H2C0.9800
Co1—N21.980 (4)C3—H3A0.9800
Si1—N11.721 (4)C3—H3B0.9800
Si1—C11.861 (5)C3—H3C0.9800
Si1—C21.865 (6)C4—H4A0.9800
Si1—C31.869 (5)C4—H4B0.9800
Si2—N11.709 (4)C4—H4C0.9800
Si2—C41.872 (6)C5—H5A0.9800
Si2—C51.866 (5)C5—H5B0.9800
Si2—C61.874 (5)C5—H5C0.9800
Si3—Na1i3.458 (3)C6—H6A0.9800
Si3—N21.717 (4)C6—H6B0.9800
Si3—C71.867 (5)C6—H6C0.9800
Si3—C81.872 (5)C7—H7A0.9800
Si3—C91.877 (6)C7—H7B0.9800
Si4—Na1i3.490 (3)C7—H7C0.9800
Si4—N21.727 (4)C8—H8A0.9800
Si4—C101.863 (6)C8—H8B0.9800
Si4—C111.862 (5)C8—H8C0.9800
Si4—C121.870 (5)C9—H9A0.9800
Na1—Co1i2.918 (2)C9—H9B0.9800
Na1—Si3i3.458 (3)C9—H9C0.9800
Na1—Si4i3.490 (3)C10—H10A0.9800
Na1—O12.314 (2)C10—H10B0.9800
Na1—N12.579 (4)C10—H10C0.9800
Na1—N2i2.523 (4)C11—H11A0.9800
O1—Co1i1.8399 (9)C11—H11B0.9800
O1—Na1i2.314 (2)C11—H11C0.9800
N2—Na1i2.523 (4)C12—H12A0.9800
C1—H1A0.9800C12—H12B0.9800
C1—H1B0.9800C12—H12C0.9800
C1—H1C0.9800
O1—Co1—Na1i52.46 (5)Si1—C1—H1B109.5
O1—Co1—N1108.39 (12)Si1—C1—H1C109.5
O1—Co1—N2110.26 (13)H1A—C1—H1B109.5
N1—Co1—Na1i159.62 (12)H1A—C1—H1C109.5
N1—Co1—N2141.35 (17)H1B—C1—H1C109.5
N2—Co1—Na1i58.31 (12)Si1—C2—H2A109.5
N1—Si1—C1110.5 (2)Si1—C2—H2B109.5
N1—Si1—C2114.4 (2)Si1—C2—H2C109.5
N1—Si1—C3111.2 (2)H2A—C2—H2B109.5
C1—Si1—C2108.3 (2)H2A—C2—H2C109.5
C1—Si1—C3104.4 (2)H2B—C2—H2C109.5
C2—Si1—C3107.5 (3)Si1—C3—H3A109.5
N1—Si2—C4113.5 (2)Si1—C3—H3B109.5
N1—Si2—C5113.1 (2)Si1—C3—H3C109.5
N1—Si2—C6108.9 (2)H3A—C3—H3B109.5
C4—Si2—C6106.2 (2)H3A—C3—H3C109.5
C5—Si2—C4105.5 (3)H3B—C3—H3C109.5
C5—Si2—C6109.2 (3)Si2—C4—H4A109.5
N2—Si3—Na1i43.99 (14)Si2—C4—H4B109.5
N2—Si3—C7109.4 (2)Si2—C4—H4C109.5
N2—Si3—C8113.4 (2)H4A—C4—H4B109.5
N2—Si3—C9113.5 (2)H4A—C4—H4C109.5
C7—Si3—Na1i86.99 (17)H4B—C4—H4C109.5
C7—Si3—C8108.6 (2)Si2—C5—H5A109.5
C7—Si3—C9105.5 (3)Si2—C5—H5B109.5
C8—Si3—Na1i157.06 (18)Si2—C5—H5C109.5
C8—Si3—C9106.0 (3)H5A—C5—H5B109.5
C9—Si3—Na1i84.84 (18)H5A—C5—H5C109.5
N2—Si4—Na1i43.12 (14)H5B—C5—H5C109.5
N2—Si4—C10111.6 (2)Si2—C6—H6A109.5
N2—Si4—C11109.2 (2)Si2—C6—H6B109.5
N2—Si4—C12114.5 (2)Si2—C6—H6C109.5
C10—Si4—Na1i141.68 (18)H6A—C6—H6B109.5
C10—Si4—C12106.4 (2)H6A—C6—H6C109.5
C11—Si4—Na1i69.07 (18)H6B—C6—H6C109.5
C11—Si4—C10110.1 (2)Si3—C7—H7A109.5
C11—Si4—C12104.8 (2)Si3—C7—H7B109.5
C12—Si4—Na1i110.76 (19)Si3—C7—H7C109.5
Co1i—Na1—Si3i58.20 (6)H7A—C7—H7B109.5
Co1i—Na1—Si4i57.47 (6)H7A—C7—H7C109.5
Si3i—Na1—Si4i51.16 (5)H7B—C7—H7C109.5
O1—Na1—Co1i39.08 (4)Si3—C8—H8A109.5
O1—Na1—Si3i90.23 (8)Si3—C8—H8B109.5
O1—Na1—Si4i94.36 (8)Si3—C8—H8C109.5
O1—Na1—N178.30 (12)H8A—C8—H8B109.5
O1—Na1—N2i80.67 (12)H8A—C8—H8C109.5
N1—Na1—Co1i117.16 (12)H8B—C8—H8C109.5
N1—Na1—Si3i139.95 (12)Si3—C9—H9A109.5
N1—Na1—Si4i165.71 (12)Si3—C9—H9B109.5
N2i—Na1—Co1i41.89 (10)Si3—C9—H9C109.5
N2i—Na1—Si3i28.21 (10)H9A—C9—H9B109.5
N2i—Na1—Si4i27.90 (9)H9A—C9—H9C109.5
N2i—Na1—N1155.82 (15)H9B—C9—H9C109.5
Co1—O1—Co1i180.0Si4—C10—H10A109.5
Co1—O1—Na1i88.46 (7)Si4—C10—H10B109.5
Co1—O1—Na191.54 (7)Si4—C10—H10C109.5
Co1i—O1—Na1i91.54 (7)H10A—C10—H10B109.5
Co1i—O1—Na188.46 (7)H10A—C10—H10C109.5
Na1—O1—Na1i180.00 (3)H10B—C10—H10C109.5
Co1—N1—Na181.02 (15)Si4—C11—H11A109.5
Si1—N1—Co1116.1 (2)Si4—C11—H11B109.5
Si1—N1—Na1104.36 (18)Si4—C11—H11C109.5
Si2—N1—Co1115.7 (2)H11A—C11—H11B109.5
Si2—N1—Si1124.7 (3)H11A—C11—H11C109.5
Si2—N1—Na1101.38 (18)H11B—C11—H11C109.5
Co1—N2—Na1i79.79 (14)Si4—C12—H12A109.5
Si3—N2—Co1115.9 (2)Si4—C12—H12B109.5
Si3—N2—Si4121.2 (2)Si4—C12—H12C109.5
Si3—N2—Na1i107.8 (2)H12A—C12—H12B109.5
Si4—N2—Co1114.6 (2)H12A—C12—H12C109.5
Si4—N2—Na1i108.98 (19)H12B—C12—H12C109.5
Si1—C1—H1A109.5
Na1i—Co1—O1—Na1179.999 (1)C5—Si2—N1—Na1151.5 (2)
Na1i—Si3—N2—Co187.1 (2)C6—Si2—N1—Co155.6 (3)
Na1i—Si3—N2—Si4126.4 (4)C6—Si2—N1—Si1146.4 (3)
Na1i—Si4—N2—Co187.2 (2)C6—Si2—N1—Na129.8 (2)
Na1i—Si4—N2—Si3125.9 (4)C7—Si3—N2—Co123.4 (3)
N1—Co1—O1—Na1i172.03 (13)C7—Si3—N2—Si4170.0 (3)
N1—Co1—O1—Na17.97 (13)C7—Si3—N2—Na1i63.6 (3)
N2—Co1—O1—Na1171.82 (13)C8—Si3—N2—Co198.0 (3)
N2—Co1—O1—Na1i8.18 (13)C8—Si3—N2—Si448.5 (4)
C1—Si1—N1—Co16.4 (3)C8—Si3—N2—Na1i174.9 (2)
C1—Si1—N1—Si2164.3 (3)C9—Si3—N2—Co1140.9 (2)
C1—Si1—N1—Na180.6 (2)C9—Si3—N2—Si472.6 (3)
C2—Si1—N1—Co1116.1 (3)C9—Si3—N2—Na1i53.8 (3)
C2—Si1—N1—Si241.8 (4)C10—Si4—N2—Co157.1 (3)
C2—Si1—N1—Na1157.0 (2)C10—Si4—N2—Si389.8 (3)
C3—Si1—N1—Co1121.8 (3)C10—Si4—N2—Na1i144.3 (2)
C3—Si1—N1—Si280.3 (3)C11—Si4—N2—Co164.8 (3)
C3—Si1—N1—Na134.9 (3)C11—Si4—N2—Si3148.2 (3)
C4—Si2—N1—Co1173.7 (2)C11—Si4—N2—Na1i22.4 (3)
C4—Si2—N1—Si128.3 (4)C12—Si4—N2—Co1178.0 (2)
C4—Si2—N1—Na188.3 (2)C12—Si4—N2—Si331.1 (4)
C5—Si2—N1—Co166.1 (3)C12—Si4—N2—Na1i94.8 (3)
C5—Si2—N1—Si192.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Deceased.

Acknowledgements

This work was supported by the National Science Foundation through grants CHE-0957816 and CHE-1266281 (to GLH). The authors thank Professor Michael D. Hopkins for helpful discussions and assistance in manuscript preparation.

References

First citationBlakemore, J. D., Crabtree, R. H. & Brudvig, G. W. (2015). Chem. Rev. 115, 12974–13005.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, N. M., García-Álvarez, P., Kennedy, A. R., O'Hara, C. T. & Robertson, G. M. (2009). Chem. Commun. pp. 5835–5837.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDriess, M., Pritzkow, H., Skipinski, M. & Winkler, U. (1997). Organometallics, 16, 5108–5112.  CSD CrossRef CAS Web of Science Google Scholar
First citationForbes, G. C., Kennedy, A. R., Mulvey, R. E., Rowlings, R. B., Clegg, W., Liddle, S. T. & Wilson, C. C. (2000). Chem. Commun. pp. 1759–1760.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHansen, C. B., Jordan, R. F. & Hillhouse, G. H. (2015). Inorg. Chem. 54, 4603–4610.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHeering, C., Boldog, I., Vasylyeva, V., Sanchiz, J. & Janiak, C. (2013). CrystEngComm, 15, 9757–9768.  Web of Science CSD CrossRef CAS Google Scholar
First citationKärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. (2014). Chem. Rev. 114, 11863–12001.  Web of Science PubMed Google Scholar
First citationKennedy, A. R., Klett, J., Mulvey, R. E., Newton, S. & Wright, D. S. (2008). Chem. Commun. pp. 308–310.  Web of Science CSD CrossRef Google Scholar
First citationKennedy, A. R., MacLellan, J. G. & Mulvey, R. E. (2003). Acta Cryst. C59, m302–m303.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKennedy, A. R., Mulvey, R. E., Roberts, B. A., Rowlings, R. B. & Raston, C. L. (1999). Chem. Commun. pp. 353–354.  Web of Science CSD CrossRef Google Scholar
First citationKennedy, A. R., Mulvey, R. E. & Rowlings, R. B. (1998). Angew. Chem. Int. Ed. 37, 3180–3183.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z.-Y., Dai, Y., Zhang, H., Zhu, J., Zhang, J.-J., Liu, S.-Q. & Duan, C.-Y. (2014). Eur. J. Inorg. Chem. pp. 384–391.  Web of Science CSD CrossRef Google Scholar
First citationLu, X.-H., Ma, M.-T., Yao, Y.-M., Zhang, Y. & Shen, Q. (2010). Inorg. Chem. Commun. 13, 1566–1568.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsubara, K., Sueyasu, T., Esaki, M., Kumamoto, A., Nagao, S., Yamamoto, H., Koga, Y., Kawata, S. & Matsumoto, T. (2012). Eur. J. Inorg. Chem. pp. 3079–3086.  Web of Science CSD CrossRef Google Scholar
First citationMulvey, R. (2006). Organometallics, 25, 1060–1075.  Web of Science CrossRef CAS Google Scholar
First citationMulvey, R. E., Blair, V. L., Clegg, W., Kennedy, A. R., Klett, J. & Russo, L. (2010). Nat. Chem. 2, 588–591.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPrzyojski, J. A., Arman, H. D. & Tonzetich, Z. J. (2013). Organometallics, 32, 723–732.  Web of Science CSD CrossRef CAS Google Scholar
First citationReger, D. L., Pascui, A. E., Foley, E. A., Smith, M. D., Jezierska, J. & Ozarowski, A. (2014). Inorg. Chem. 53, 1975–1988.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSarazin, Y., Coles, S. J., Hughes, D. L., Hursthouse, M. B. & Bochmann, M. (2006). Eur. J. Inorg. Chem. pp. 3211–3220.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSumner, C. E. & Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 6124–6126.  CSD CrossRef CAS Web of Science Google Scholar
First citationWendelstorf, C. & Krämer, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 2791–2793.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J., Pan, X., Tang, N. & Lin, C.-C. (2010). Inorg. Chem. 49, 5362–5364.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds