research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(2-methyl-1H-imidazol-3-ium) μ-oxalato-bis­­[n-butyl­tri­chlorido­stannate(IV)]

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46557-5670, USA
*Correspondence e-mail: mouhamadoubdiop@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 May 2016; accepted 24 May 2016; online 27 May 2016)

The SnIV atom in the centrosymmetric anion of the title salt, (C4H7N2)2[Sn2(C4H9)2(C2O4)Cl6], is coordinated in a distorted octa­hedral mode by two O atoms of a bridging oxalate moiety, three Cl atoms and a C atom of an n-butyl group. The latter is disordered over two sets of sites in a 0.66:0.33 occupancy ratio. N—H⋯O and N—H⋯Cl hydrogen bonds involving the 2-methyl­imidazolium cation and neighbouring anions result in the formation of chains extending parallel to [001].

1. Chemical context

Ammonium salts of oxalatostannates(IV) with additional halogen atoms bonded within the anion are well known in the literature. Skapski et al. (1974[Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C Chim. 278, 1377-1379.]) have reported the crystal structure of [(R4N)2][C2O4(SnCl4)2] (R = eth­yl) while Le Floch et al. (1975[Le Floch, F., Sala Pala, J. & et Guerchais, J. E. (1975). Bull. Soc. Chim. Fr. 1-2, 120-124.]) have published spectroscopic studies of [(R4N)2][C2O4(SnX4)2] (R = ethyl, X = Cl, Br, I; R = butyl, X = Br). Our group has investigated several complexes containing an oxalate group chelating an SnCl4 moiety or an [SnCl3·H2O]+ fragment, resulting in framework structures (Sow et al., 2013[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106-m107.]; Diop et al., 2015[Diop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2015). Acta Cryst. E71, 520-522.]). In all cases, the environment around the tin(IV) atom is distorted octa­hedral.

[Scheme 1]

In the present communication we report on the reaction between 2-methyl-imidazolium hydrogenoxalate dihydrate and tin(IV) butyl­trichloride that yielded the title compound, (C4H7N2)2[(Sn2(C4H9)2(C2O4)Cl6].

2. Structural commentary

The distannate anion, [Sn2(C4H9)2(C2O4)Cl6]2−, is located about a center of symmetry and thus only one half of the mol­ecule is present in the asymmetric unit (Fig. 1[link]). The full mol­ecule consists of a central oxalate anion bridging two SnBuCl3 moieties (Fig. 2[link]) similar to the binuclear stan­nate(IV) anion reported for (Et4N)2[C2O4(SnCl4)2] (Skapski et al., 1974[Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C Chim. 278, 1377-1379.]). In addition to the bis-chelating and bridging oxalate oxygen atoms, the octa­hedral coordination sphere is completed by three chlorine atoms and the C atom of a disordered n-butyl group (Fig. 1[link]). The C—O distances (Table 1[link]) are consistent with an almost perfect π delocalization within the oxalate anion, as expected for a centrosymmetric bis-chelation. The Sn—C length is consistent with previously reported values (Table 1[link]; Diop et al., 2013[Diop, T., Lee, A. van der & Diop, L. (2013). Acta Cryst. E69, m562-m563.]). The Sn—Cl distances (Table 1[link]) are also comparable with those in related compounds, e.g. in (Bu4N)[SnBuCl4] (Diop et al., 2013[Diop, T., Lee, A. van der & Diop, L. (2013). Acta Cryst. E69, m562-m563.]), (Me4N)[C2O4SnCl3(H2O)] (Sow et al., 2013[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106-m107.]) or [(methyl-2-imidazolium)][C2O4SnCl3(H2O)] (Diop et al., 2015[Diop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2015). Acta Cryst. E71, 520-522.]). The equatorial Sn—Cl1 bond that is coplanar with the oxalate anion is considerably shorter than the Sn—Cl2 and Sn—Cl3 bonds that are oriented axially (Fig. 2[link], Table 1[link]). The Sn—O1 and Sn—O2 bond lengths are fully consistent with previously characterized examples (Sow et al., 2013[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106-m107.]; Gueye et al., 2014[Gueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49-m50.]; Sarr et al., 2015[Sarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 151-153.]). Distortions from an ideal octa­hedral coordination environment are reflected in the bond angles about the SnIV atom (Table 1[link]). Notably, the O1—Sn—O2 angle is less than 90° and the axial Cl2—Sn—Cl3 bond angle deviates considerably from an ideal of 180°.

Table 1
Selected geometric parameters (Å, °)

Sn1—C2 2.122 (2) O2—C1 1.243 (2)
Sn1—O1 2.1878 (13) O2—Sn1i 2.2475 (13)
Sn1—O2i 2.2475 (13) N1—C6 1.313 (3)
Sn1—Cl1 2.3731 (5) N1—C7 1.354 (3)
Sn1—Cl3 2.4460 (6) N2—C6 1.323 (3)
Sn1—Cl2 2.4536 (5) N2—C8 1.356 (3)
O1—C1 1.248 (2) C7—C8 1.336 (3)
       
C2—Sn1—O1 166.44 (7) O2i—Sn1—Cl3 86.17 (4)
C2—Sn1—O2i 92.40 (7) Cl1—Sn1—Cl3 92.40 (2)
O1—Sn1—O2i 74.04 (5) C2—Sn1—Cl2 96.58 (7)
C2—Sn1—Cl1 108.24 (6) O1—Sn1—Cl2 82.42 (4)
O1—Sn1—Cl1 85.32 (4) O2i—Sn1—Cl2 84.14 (4)
O2i—Sn1—Cl1 159.27 (4) Cl1—Sn1—Cl2 91.38 (2)
C2—Sn1—Cl3 98.81 (7) Cl3—Sn1—Cl2 162.13 (2)
O1—Sn1—Cl3 80.48 (4)    
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Disordered parts of the n-butyl chain are shown.
[Figure 2]
Figure 2
The full anion and two counter-cations in the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only the major part of the disordered n-butyl chain is shown. [Symmetry code: (A) −x + 1, −y + 1, −z + 1.]

One methyl-2-imidazolium counter-cation is also present in the asymmetric unit. As expected, the lengths of the C—N and C7—C8 bonds indicate π-delocalization in this cation (Table 1[link]).

3. Supra­molecular features

The imidazolium cation bridges two neighbouring [Sn2(C4H9)2(C2O4)Cl6]2− anions through N—H⋯O and N—H⋯Cl hydrogen bonds, leading to the formation of chains extending parallel to [001] (Fig. 3[link], Table 2[link]) whereby pairs of the cations are involved in this bridging motif, each alternating across the inversion center located between the cations. The chains are connected by additional C—H⋯Cl hydrogen bonds, giving a layer structure parallel to (100).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.74 (3) 2.75 (3) 3.398 (2) 147 (3)
N1—H1N⋯O1 0.74 (3) 2.44 (3) 2.993 (2) 133 (3)
N2—H2N⋯Cl2ii 0.77 (2) 2.43 (3) 3.187 (2) 170 (2)
C7—H7⋯Cl3iii 0.95 2.87 3.517 (2) 127
C9—H9A⋯Cl1 0.98 2.92 3.696 (3) 136
Symmetry codes: (ii) x, y, z-1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The packing of the mol­ecular components in a view approximately along [010]. N—H⋯O and N—H⋯Cl hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37 with one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned 51 different structures containing 2-methyl-1H-imidazol-3-ium cations and hundreds of those containing bis-chelating oxalate anions. Those of particular relevance to the title structure have been detailed above.

5. Synthesis and crystallization

Crystals of [2-methyl-1H-imidazol-3-ium][HC2O4·2H2O] (L) were obtained by mixing equimolar amounts of 2-methyl-imidazole with oxalic acid in water, followed by forced evaporation of the solvent at 333 K. A molar 2:1 mixture of (L) with SnBuCl3 in aceto­nitrile was allowed to react. Crystals of the title compound suitable for structural examination were obtained after slow evaporation of aceto­nitrile at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were included in geometrically calculated positions with C—H = 0.98 (meth­yl) and 0.99 Å (methyl­ene), with Uiso(H) = 1.5Ueq(C) (meth­yl), and 1.2Ueq(C) (methyl­ene). H atoms bound to N atoms within the cation were derived from difference maps and were refined freely. The n-butyl group was found to exhibit positional disorder, and was modelled with the peripheral three carbon atoms disordered over two sets of sites. Occupancies for these two sets were initially refined upon inspection of the refined occupancies. In the final model the occupancies were fixed at 2/3:1/3. Disordered pairs of carbon atoms (C3/C3A, C4/C4A, C5/C5A) were restrained to have similar atomic displacement parameters.

Table 3
Experimental details

Crystal data
Chemical formula (C4H7N2)2[Sn2(C4H9)2(C2O4)Cl6]
Mr 818.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 13.4674 (5), 11.4709 (4), 10.2030 (3)
β (°) 100.453 (1)
V3) 1550.03 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.16
Crystal size (mm) 0.29 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker Kappa X8 APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.671, 0.811
No. of measured, independent and observed [I > 2σ(I)] reflections 20211, 3868, 3490
Rint 0.018
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.06
No. of reflections 3868
No. of parameters 192
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.46
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CIFTAB (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

Bis(2-methyl-1H-imidazol-3-ium) µ-oxalato-bis[n-butyltrichloridostannate(IV)] top
Crystal data top
(C4H7N2)2[Sn2(C4H9)2(C2O4)Cl6]F(000) = 804
Mr = 818.60Dx = 1.754 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4674 (5) ÅCell parameters from 9885 reflections
b = 11.4709 (4) Åθ = 2.7–28.3°
c = 10.2030 (3) ŵ = 2.16 mm1
β = 100.453 (1)°T = 200 K
V = 1550.03 (9) Å3Block, colorless
Z = 20.29 × 0.18 × 0.12 mm
Data collection top
Bruker Kappa X8 APEXII
diffractometer
3868 independent reflections
Radiation source: fine-focus sealed tube3490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.4°
combination of ω and φ–scansh = 1713
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1415
Tmin = 0.671, Tmax = 0.811l = 1313
20211 measured reflections
Refinement top
Refinement on F2Primary atom site location: real-space vector search
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: mixed
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.9516P]
where P = (Fo2 + 2Fc2)/3
3868 reflections(Δ/σ)max = 0.022
192 parametersΔρmax = 0.69 e Å3
18 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Disorder in the n-butyl chain was modeled over two sites. Occupancies were initially refined and subsequently set to 0.66667:0.33333. Carbon atoms were refined with anisotropic atomic displacement parameters and the disordered carbon atoms were restrained to have similar displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.71591 (2)0.52312 (2)0.53372 (2)0.03131 (5)
Cl10.81275 (4)0.42161 (6)0.39795 (5)0.04767 (13)
Cl20.71227 (4)0.35142 (5)0.67619 (5)0.04538 (12)
Cl30.66628 (5)0.67332 (6)0.36433 (6)0.05395 (15)
O10.58579 (10)0.43651 (13)0.41329 (12)0.0341 (3)
O20.41920 (10)0.42053 (12)0.38137 (13)0.0339 (3)
C10.50131 (14)0.45924 (16)0.44091 (17)0.0296 (4)
C20.81592 (17)0.6238 (2)0.6744 (2)0.0465 (5)
H2A0.77530.67230.72510.056*0.6667
H2B0.85690.57000.73830.056*0.6667
H2C0.78100.69680.69110.056*0.3333
H2D0.83000.58000.75940.056*0.3333
C30.8844 (5)0.7002 (5)0.6182 (8)0.0621 (16)0.6667
H3A0.84390.75370.55340.075*0.6667
H3B0.92630.65200.56890.075*0.6667
C40.9514 (6)0.7697 (7)0.7186 (9)0.096 (3)0.6667
H4A0.90910.81120.77340.115*0.6667
H4B0.99550.71540.77830.115*0.6667
C51.0148 (5)0.8544 (6)0.6693 (11)0.147 (4)0.6667
H5A1.06090.81440.62020.221*0.6667
H5B1.05390.89730.74440.221*0.6667
H5C0.97250.90900.60970.221*0.6667
C3A0.9164 (10)0.6557 (15)0.6353 (18)0.089 (5)0.3333
H3C0.90500.71180.56030.107*0.3333
H3D0.94830.58500.60570.107*0.3333
C4A0.9967 (9)0.7180 (13)0.772 (2)0.125 (6)0.3333
H4C0.98750.68290.85780.150*0.3333
H4D1.06860.71380.76340.150*0.3333
C5A0.9606 (11)0.8257 (19)0.7572 (18)0.115 (5)0.3333
H5D1.01010.88010.80610.173*0.3333
H5E0.89760.83040.79210.173*0.3333
H5F0.94760.84620.66240.173*0.3333
N10.61980 (17)0.41626 (18)0.13231 (19)0.0462 (5)
H1N0.644 (2)0.434 (3)0.201 (3)0.059 (9)*
N20.60535 (16)0.37133 (18)0.07045 (18)0.0463 (5)
H2N0.6237 (19)0.366 (2)0.137 (2)0.044 (7)*
C60.6683 (2)0.4165 (2)0.0316 (2)0.0487 (5)
C70.52646 (18)0.36986 (19)0.0958 (2)0.0438 (5)
H70.47730.35950.15080.053*
C80.51718 (18)0.34151 (19)0.0328 (2)0.0438 (5)
H8A0.46000.30720.08730.053*
C90.7714 (3)0.4571 (4)0.0320 (3)0.0894 (12)
H9A0.79930.49050.11930.134*
H9B0.77070.51660.03700.134*
H9C0.81340.39130.01400.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02611 (7)0.04132 (8)0.02698 (7)0.00213 (5)0.00611 (5)0.00174 (5)
Cl10.0358 (3)0.0706 (4)0.0385 (3)0.0073 (2)0.0116 (2)0.0100 (2)
Cl20.0549 (3)0.0459 (3)0.0359 (2)0.0024 (2)0.0097 (2)0.0052 (2)
Cl30.0489 (3)0.0611 (4)0.0522 (3)0.0034 (3)0.0101 (3)0.0221 (3)
O10.0282 (7)0.0459 (7)0.0289 (6)0.0013 (6)0.0074 (5)0.0078 (6)
O20.0286 (7)0.0432 (8)0.0304 (6)0.0032 (6)0.0065 (5)0.0085 (6)
C10.0300 (9)0.0354 (9)0.0243 (8)0.0013 (7)0.0073 (7)0.0005 (7)
C20.0365 (11)0.0579 (14)0.0445 (11)0.0075 (10)0.0058 (9)0.0150 (10)
C30.045 (3)0.059 (3)0.078 (3)0.020 (2)0.000 (3)0.002 (3)
C40.077 (5)0.080 (5)0.121 (6)0.043 (4)0.009 (4)0.041 (4)
C50.061 (4)0.082 (4)0.283 (12)0.032 (3)0.009 (5)0.007 (6)
C3A0.050 (8)0.110 (13)0.111 (12)0.031 (7)0.024 (7)0.061 (10)
C4A0.053 (7)0.094 (10)0.233 (19)0.011 (6)0.042 (9)0.020 (11)
C5A0.058 (8)0.169 (18)0.122 (13)0.011 (10)0.027 (8)0.018 (12)
N10.0598 (13)0.0507 (11)0.0279 (9)0.0053 (9)0.0073 (8)0.0023 (8)
N20.0590 (12)0.0515 (11)0.0290 (9)0.0022 (9)0.0097 (8)0.0031 (8)
C60.0551 (14)0.0579 (14)0.0330 (10)0.0088 (11)0.0080 (9)0.0010 (9)
C70.0513 (13)0.0393 (11)0.0425 (11)0.0014 (9)0.0132 (10)0.0031 (9)
C80.0495 (12)0.0363 (10)0.0443 (11)0.0019 (9)0.0050 (10)0.0012 (9)
C90.063 (2)0.153 (4)0.0526 (17)0.038 (2)0.0123 (14)0.0002 (19)
Geometric parameters (Å, º) top
Sn1—C22.122 (2)C5—H5C0.9800
Sn1—O12.1878 (13)C3A—C4A1.76 (2)
Sn1—O2i2.2475 (13)C3A—H3C0.9900
Sn1—Cl12.3731 (5)C3A—H3D0.9900
Sn1—Cl32.4460 (6)C4A—C5A1.33 (2)
Sn1—Cl22.4536 (5)C4A—H4C0.9900
O1—C11.248 (2)C4A—H4D0.9900
O2—C11.243 (2)C5A—H5D0.9800
O2—Sn1i2.2475 (13)C5A—H5E0.9800
C1—C1i1.531 (3)C5A—H5F0.9800
C2—C31.463 (7)N1—C61.313 (3)
C2—C3A1.524 (16)N1—C71.354 (3)
C2—H2A0.9900N1—H1N0.74 (3)
C2—H2B0.9900N2—C61.323 (3)
C2—H2C0.9900N2—C81.356 (3)
C2—H2D0.9900N2—H2N0.77 (2)
C3—C41.471 (9)C6—C91.465 (4)
C3—H3A0.9900C7—C81.336 (3)
C3—H3B0.9900C7—H70.9500
C4—C51.443 (11)C8—H8A0.9500
C4—H4A0.9900C9—H9A0.9800
C4—H4B0.9900C9—H9B0.9800
C5—H5A0.9800C9—H9C0.9800
C5—H5B0.9800
C2—Sn1—O1166.44 (7)C4—C5—H5B109.5
C2—Sn1—O2i92.40 (7)H5A—C5—H5B109.5
O1—Sn1—O2i74.04 (5)C4—C5—H5C109.5
C2—Sn1—Cl1108.24 (6)H5A—C5—H5C109.5
O1—Sn1—Cl185.32 (4)H5B—C5—H5C109.5
O2i—Sn1—Cl1159.27 (4)C2—C3A—C4A109.7 (11)
C2—Sn1—Cl398.81 (7)C2—C3A—H3C109.7
O1—Sn1—Cl380.48 (4)C4A—C3A—H3C109.7
O2i—Sn1—Cl386.17 (4)C2—C3A—H3D109.7
Cl1—Sn1—Cl392.40 (2)C4A—C3A—H3D109.7
C2—Sn1—Cl296.58 (7)H3C—C3A—H3D108.2
O1—Sn1—Cl282.42 (4)C5A—C4A—C3A97.3 (16)
O2i—Sn1—Cl284.14 (4)C5A—C4A—H4C112.3
Cl1—Sn1—Cl291.38 (2)C3A—C4A—H4C112.3
Cl3—Sn1—Cl2162.13 (2)C5A—C4A—H4D112.3
C1—O1—Sn1116.64 (12)C3A—C4A—H4D112.3
C1—O2—Sn1i114.80 (11)H4C—C4A—H4D109.9
O2—C1—O1125.55 (17)C4A—C5A—H5D109.5
O2—C1—C1i117.2 (2)C4A—C5A—H5E109.5
O1—C1—C1i117.2 (2)H5D—C5A—H5E109.5
C3—C2—Sn1115.4 (3)C4A—C5A—H5F109.5
C3A—C2—Sn1116.0 (6)H5D—C5A—H5F109.5
C3—C2—H2A108.4H5E—C5A—H5F109.5
Sn1—C2—H2A108.4C6—N1—C7110.7 (2)
C3—C2—H2B108.4C6—N1—H1N122 (2)
Sn1—C2—H2B108.4C7—N1—H1N126 (2)
H2A—C2—H2B107.5C6—N2—C8110.15 (19)
C3A—C2—H2C108.3C6—N2—H2N117.8 (19)
Sn1—C2—H2C108.3C8—N2—H2N132.1 (19)
C3A—C2—H2D108.3N1—C6—N2106.0 (2)
Sn1—C2—H2D108.3N1—C6—C9127.2 (2)
H2C—C2—H2D107.4N2—C6—C9126.7 (2)
C2—C3—C4113.7 (6)C8—C7—N1106.4 (2)
C2—C3—H3A108.8C8—C7—H7126.8
C4—C3—H3A108.8N1—C7—H7126.8
C2—C3—H3B108.8C7—C8—N2106.6 (2)
C4—C3—H3B108.8C7—C8—H8A126.7
H3A—C3—H3B107.7N2—C8—H8A126.7
C5—C4—C3116.7 (8)C6—C9—H9A109.5
C5—C4—H4A108.1C6—C9—H9B109.5
C3—C4—H4A108.1H9A—C9—H9B109.5
C5—C4—H4B108.1C6—C9—H9C109.5
C3—C4—H4B108.1H9A—C9—H9C109.5
H4A—C4—H4B107.3H9B—C9—H9C109.5
C4—C5—H5A109.5
Sn1i—O2—C1—O1177.81 (15)C7—N1—C6—N20.7 (3)
Sn1i—O2—C1—C1i1.5 (3)C7—N1—C6—C9178.6 (3)
Sn1—O1—C1—O2178.19 (15)C8—N2—C6—N10.6 (3)
Sn1—O1—C1—C1i2.5 (3)C8—N2—C6—C9178.7 (3)
Sn1—C2—C3—C4179.1 (5)C6—N1—C7—C80.5 (3)
C2—C3—C4—C5174.8 (6)N1—C7—C8—N20.1 (3)
Sn1—C2—C3A—C4A170.7 (8)C6—N2—C8—C70.3 (3)
C2—C3A—C4A—C5A83.0 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.74 (3)2.75 (3)3.398 (2)147 (3)
N1—H1N···O10.74 (3)2.44 (3)2.993 (2)133 (3)
N2—H2N···Cl2ii0.77 (2)2.43 (3)3.187 (2)170 (2)
C7—H7···Cl3iii0.952.873.517 (2)127
C9—H9A···Cl10.982.923.696 (3)136
Symmetry codes: (ii) x, y, z1; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) and the University of Notre Dame (USA) for financial support.

References

First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2015). Acta Cryst. E71, 520–522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiop, T., Lee, A. van der & Diop, L. (2013). Acta Cryst. E69, m562–m563.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49–m50.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLe Floch, F., Sala Pala, J. & et Guerchais, J. E. (1975). Bull. Soc. Chim. Fr. 1–2, 120–124.  Google Scholar
First citationSarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 151–153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C Chim. 278, 1377–1379.  CAS Google Scholar
First citationSow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds