research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three 6-substituted coumarin-3-carboxamide derivatives

CROSSMARK_Color_square_no_text.svg

aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dCIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
*Correspondence e-mail: jnlow111@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 May 2016; accepted 29 May 2016; online 10 June 2016)

Three coumarin derivatives, viz. 6-methyl-N-(3-methyl­phen­yl)-2-oxo-2H-chromene-3-carboxamide, C18H15NO3 (1), N-(3-meth­oxy­phen­yl)-6-methyl-2-oxo-2H-chromene-3-carboxamide, C18H15NO4 (2), and 6-meth­oxy-N-(3-meth­oxy­phen­yl)-2-oxo-2H-chromene-3-carboxamide, C18H15NO5 (3), were synthesized and structurally characterized. The mol­ecules display intra­molecular N—H⋯O and weak C—H⋯O hydrogen bonds, which probably contribute to the approximate planarity of the mol­ecules. The supra­molecular structures feature C—H⋯O hydrogen bonds and ππ inter­actions, as confirmed by Hirshfeld surface analyses.

1. Chemical context

Benzopyrones are oxygen-containing heterocycles recognised as privileged structures for drug-discovery programs (Klekota & Roth, 2008[Klekota, J. & Roth, F. P. (2008). Bioinformatics, 24, 2518-2525.]; Lachance et al., 2012[Lachance, H., Wetzel, S., Kumar, K. & Waldmann, H. (2012). J. Med. Chem. 55, 5989-6001.]). Within this class of compounds, coumarin has emerged as an inter­esting building block due to its synthetic accessibility and substitution variability. Furthermore, coumarins display anti­cancer, anti­viral, anti-inflammatory and anti-oxidant biological properties (Matos et al., 2009[Matos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268-3270.], 2014[Matos, M. J., Janeiro, P., González Franco, R. M., Vilar, S., Tatonetti, N. P., Santana, L., Uriarte, E., Borges, F., Fontenla, J. A. & Viña, D. (2014). Future Med. Chem. 6, 371-383.]; Vazquez-Rodriguez et al., 2013[Vazquez-Rodriguez, S., Matos, M. J., Santana, L., Uriarte, E., Borges, F., Kachler, S. & Klotz, K. N. (2013). J. Pharm. Pharmacol. 65, 697-703.]).

[Scheme 1]

Previous work reported by our research group has shown that coumarin is a valid scaffold for the development of mono­amino oxidase B inhibitors (Matos et al., 2009[Matos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268-3270.]). As part of our ongoing studies of these compounds, we now describe the syntheses and crystal structures of three coumarin deriv­atives: 6-methyl-N-(3-methyl­phen­yl)-2-oxo-2H-chromene-3-carboxamide (1), N-(3-meth­oxy­phen­yl)-6-methyl-2-oxo-2H-chromene-3-carboxamide (2) and 6-meth­oxy-N-(3-meth­oxy­phen­yl)-2-oxo-2H-chromene-3-carboxamide (3).

2. Structural commentary

The structural analyses revealed that the mol­ecules are coumarin derivatives with a phenyl­amide substituent at position 3 of the coumarin ring, as seen in the chemical scheme. The coumarin component rings are identified by the letters A and B while the exocyclic benzene ring is denoted C. Figs. 1[link]–3[link][link] show the mol­ecular structures of compounds 13, respectively: they differ in the type of substituents at the 6-position of the coumarin ring system and at the 3-position of the pendant benzene ring.

[Figure 1]
Figure 1
A view of the asymmetric unit of 1 with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.
[Figure 2]
Figure 2
A view of the asymmetric unit of 2 with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.
[Figure 3]
Figure 3
A view of the asymmetric unit of 3 with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the coumarin ring: the mean C3—C4 bond length [1.3517 (3) Å] and the mean value for the C3—C2 bond length [1.461 (6) Å)] are shorter and longer, respectively, that those expected for an Car—Car bond, suggesting that there is an increased electronic density located in the C3—C4 bond at the pyrone ring.

The values for the distances of the C3—C31 bonds [mean value 1.508 (4) Å] connecting the coumarin system to the amide spacer are of the same order as a Csp3—Csp3 bond. This confers freedom of rotation of the phenyl­amide substituent around it. Despite that, the mol­ecules are approximately planar, as can be inferred by the set of values of the dihedral angles in Table 1[link], which refer to the combination of the dihedral angles between the best planes formed by all non-H atoms of the 2H-chromen-2-one ring, the O31/C31/N32 atoms of the amide residue and the phenyl substituent, which are all less than 11°. This may be correlated with the conformation assumed by the amide group around the C—N rotamer which displays an −anti orientation with respect to the oxo oxygen atom of the coumarin, thus allowing the establishment, in all three structures, of an intra­molecular N—H⋯O hydrogen bond between the amino group of the carboxamide and the oxo group at the O2 position of the coumarin and a weak C—H⋯O intra­molecular hydrogen bond between an ortho-CH group on the exocyclic phenyl ring and the O atom of the carboxamide. Thus these two inter­actions, which both form S(6) rings, probably contribute to the overall approximate planarity of the mol­ecules since they may prevent the mol­ecules from adopting some other possible conformations by restraining their geometry.

Table 1
Selected dihedral angles (°)

θ1 is the dihedral angle between the mean planes of the coumarin ring system and exocyclic phenyl ring. θ2 is the dihedral angles between the mean plane of the coumarin ring system and the plane defined by the atoms O31/C31/N32. θ3 is the dihedral angle between the mean planes of the exocyclic phenyl ring and the plane defined by atoms O31/C31/N32.

Compound θ1 θ2 θ3
1 4.69 (6) 4.8 (2) 0.21 (23)
2 4.28 (3) 4.46 (13) 8.60 (12)
3 8.17 (13) 2.9 (4) 10.2 (4)
BONKAS 4.70 (6) 3.2 (2) 7.8 (2)
DISXUA 10.29 (7) 3.9 (2) 6.42)
DISYAH 0.04 (6) 2.70 (17)' 2.76 (17)
DISYEL 3.07 (8) 3.4 (2) 1.0 (3)
DISYIP 12.75 (6) 1.21 (17) 12.73 (17)
WOJXOK 1.9 (4) 4.6 (9) 2.7 (9)
If the mean planes for the combined coumarin ring system and exocyclic phenyl rings are considered, then the maximum deviations of atoms within these rings from this plane are −0,1024 (12) Å or C6 in 1, −0.0754 (15) Å in 2 and 0.0699 (14) Å in 3. Considering all non-hydrogen atoms, the maximum deviations from this plane are 0.1783 (10) Å for O31 in 1, −0.1809 (12) Å for O31 in 2 and −0.2181 (15) Å for O313 in 3.

3. Supra­molecular features

As mentioned above, the NH group is involved in an intra­molecular hydrogen bond. It is not involved in any inter­molecular inter­actions thus only carbon atoms may act as donors for the carbonyl and meth­oxy-type acceptors. Details of the hydrogen bonding for compounds 1, 2 and 3 are given in Tables 2[link], 3[link] and 4[link], respectively.

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N32—H32⋯O2 0.893 (18) 1.957 (18) 2.7149 (14) 141.7 (16)
C312—H312⋯O31 0.95 2.26 2.8838 (16) 122
C5—H5⋯O1i 0.95 2.98 3.7304 (15) 137
Symmetry code: (i) x-1, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N32—H32⋯O2 0.96 (2) 1.85 (2) 2.6952 (16) 145.7 (17)
C8—H8⋯O1i 0.95 2.52 3.3676 (18) 149
C61—H61B⋯O31ii 0.98 2.57 3.4044 (19) 143
C317—H31A⋯O31iii 0.98 2.57 3.2769 (19) 129
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y, -z+1; (iii) x, y+1, z.

Table 4
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N32—H32⋯O2 0.92 (3) 1.91 (3) 2.699 (2) 143 (2)
C4—H4⋯O2i 0.95 2.43 3.319 (3) 155
C5—H5⋯O1i 0.95 2.47 3.391 (3) 164
C8—H8⋯O6ii 0.95 2.46 3.364 (3) 160
C312—H312⋯O31 0.95 2.26 2.868 (3) 121
C315—H315⋯O313ii 0.95 2.59 3.536 (4) 171
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

In 1, the mol­ecules are linked by the C5—H5⋯O1(x − 1, y, z) weak hydrogen bond to form a C(6) chain, which runs parallel to the a axis, Fig. 4[link]. In 2, the mol­ecules are linked by the C8—H8⋯O1(−x + 1, −y + 1, −z) weak hydrogen bond to form an R22(8) centrosymmetric dimer centred on (1/2, 1/2, 0), Fig. 5[link]. There is also a short C317—H31A⋯O31(x, y + 1, z) contact involving a methyl hydrogen atom. In 3, the mol­ecules are linked by the C4—H4⋯O2(x − 1, y, z), C5—H5⋯O1(x − 1, y, z) and C8—H8⋯O6(x + 1, y, z) bonds to form a chain of R22(8) rings, which runs parallel to the a axis, Fig. 6[link]. This chain is supplemented by the action of the C315—H315⋯O313(x + 1, y, z) weak hydrogen bond.

[Figure 4]
Figure 4
Compound 1, the simple chain formed by the C5—H5⋯O1 weak hydrogen bond. This chain extends by unit translation along the a axis. Symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z. H atoms not involved in the hydrogen bonding are omitted.
[Figure 5]
Figure 5
Compound 2, view of the C8—H8⋯O1 centrosymmetric R22(8) ring structure centred on ([1\over2], [1\over2], 0). Symmetry code: (i) −x + 1, −y + 1, z. H atoms not involved in the hydrogen bonding are omitted.
[Figure 6]
Figure 6
Compound 3, view of the chain of the linked R22(8), R22(8) and R22(16) structures formed by the inter­action of the C8—H8⋯O6, C5—H5⋯O1, C4—H4⋯O1 and C315—H315⋯O313 hydrogen bonds. This chain extends by unit translation along the a axis. Symmetry codes: (i) x − 1, y, z; (ii) −x + 1, y, z. H atoms not involved in the hydrogen bonding are omitted.

4. Hirshfeld surfaces

The Hirshfeld surfaces and two-dimensional fingerprint (FP) plots (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]) were generated using Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The surfaces, mapped over dnorm and the FP plots are presented in Figs. 7[link] to 9[link][link] for 1, 2 and 3, respectively. They provide complementary information concerning the inter­molecular inter­actions discussed above. The contributions from various contacts, listed in Table 5[link], were selected by the partial analysis of the FP plots.

Table 5
Percentages of atom–atom contacts

Contact 1 2 3
H⋯H 47.1 42.9 38.3
H⋯O/O⋯H 19.9 26.9 27.4
H⋯C/C⋯H 14.5 12.9 20.7
H⋯N/N⋯H 1.5 0.2 1.6
C⋯C 12.1 12.6 5.4
[Figure 7]
Figure 7
A view of the Hirshfeld surface mapped over dnorm (left) and fingerprint plot (right) for 1. The highlighted red spots on the top face of the surfaces indicate contact points with the atoms participating in the C—H⋯O inter­molecular inter­actions whereas those on the middle of the surface correspond to C⋯C contacts consequent of the ππ stacking. The C⋯C contacts contribute to higher the frequency of the pixels at dedi ≃ 1.8 Å on the FP plots (yellow spot).
[Figure 8]
Figure 8
A view of the Hirshfeld surface mapped over dnorm (left) and fingerprint plot (right) for 2. The highlighted red spots on the top face of the surfaces indicate contact points with the atoms participating in the C–H⋯O inter­molecular inter­actions whereas those on the middle of the surface correspond to C⋯C contacts consequent of the ππ stacking. The C⋯C contacts contribute to higher the frequency of the pixels at dedi ≃ 1.8 Å on the FP plots.
[Figure 9]
Figure 9
A view of the Hirshfeld surface mapped over dnorm (left) and fingerprint plot (right) for 3. The highlighted red spots on the bottom face of the surfaces indicate contact points with the atoms participating in the C—H⋯O inter­molecular inter­actions whereas those on the middle of the surface correspond to C⋯C and C⋯H contacts. The FP plot displays two couple of spikes (external ends corresponding to C⋯H contacts and middle spikes corresponding to O⋯H contacts).

Forgetting the prevalence of the H⋯H contacts on the surface, inherent to organic mol­ecules, the most significant contacts are the H⋯O/O⋯H ones. Those appear as highlighted red spots on the top face of the surfaces (Fig. 7[link] to 9) that indicate contact points with the atoms participating in the C—H⋯O inter­molecular inter­actions. Those contacts corres­pond to weak hydrogen bonds, as seen in the FP plots where the pair of sharp spikes that would be characteristic of hydrogen bond are masked by the H⋯H inter­actions appearing near dedi = 1.20 Å. Compound 1 has the smallest percentage for H⋯O/O⋯H contacts since it has no meth­oxy substituents. The most representative of these corresponds to the C5—H5⋯O2 contact that links the mol­ecules in the C6 chain. In the surface of 2, two red spots appear perpendicular to the C8—H8 bond and near O1 indicating the C8—H8⋯O1 contact that links the mol­ecules into dimers. The red spots near O31 indicate that this atom establishes two weak contacts (C61—H61B⋯O31 and C317—H31A⋯O31). In 3, there are several contacts, three of those involving the oxygen atoms of the coumarin system and those directly connected to it that are acceptors for H atoms of the coumarin residue of another mol­ecule. These multiple contacts result in chains of hydrogen-bonded rings, as described in the previous section, and seem to operate a co-operative effect since the hydrogen bonds in 3 are stronger than in 1 and 2 (see the well-defined sharp spikes in the FP plot of 3).

The values for the remaining contacts listed in Table 5[link] suggest that the supra­molecular structure is built by H⋯C/C⋯H and C⋯C contacts. In 3, the percentage for H⋯C/C⋯H contacts is higher than that for the other compounds. The FP plots also reveal a cluster at de/di ≃ 1.8 Å and di/de ≃ 1.2 Å characteristic of C—H⋯π contacts that seem to assume higher importance in the supra­molecular structure in 3. On the other hand, the C⋯C contacts prevail in 1 and 2. In fact, the packing in 1 is built up by several ππ inter­actions (Table 6[link]). Also, when the surface is mapped with shape index, several complementary triangular red hollows and blue bumps appear that are characteristic of the six-ring stacking (Figs. 10[link] and 11[link]). In 1, ring A stacks with ring C by a twofold rotation, and ring B with ring A when the mol­ecule is placed above another centrosymmetrically related mol­ecule. This gives rise to close C⋯C contacts in the middle of the surface identified as red spots. Mol­ecule 2 also displays a significant percentage of C⋯C contacts on the Hirshfeld surface, resulting from the continuous ππ stacking where ring C stacks with rings A and B (up and down) of centrosymmetrically related mol­ecules.

Table 6
Selected π–π contacts (Å)

CgI(J) = plane number I(J); CgCg = distance between ring centroids; CgIperp = perpendicular distance of Cg(I) on ring J; CgJperp = perpendicular distance of Cg(J) on ring I; Slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I.

Compound CgI CgJ(aru) CgCg CgIperp CgJperp Slippage
1 Cg1 Cg1(−x + 1, −y + 1, −z) 3.7630 (7) −3.3400 (5) −3.3400 (5) 1.733
1 Cg1 Cg2(−x + 1, −y + 1, −z) 3.4853 (7) −3.3281 (5) −3.3171 (5) 1.069
1 Cg2 Cg1(−x + 1, −y + 1, −z) 3.4853 (7) −3.3172 (5) −3.3281 (5) 1.035
1 Cg2 Cg3(−x + 1, −y + 2, −z) 3.6253 (7) 3.3547 (5) 3.4673 (5) 1.058
1 Cg3 Cg2(−x + 1, −y + 1, −z) 3.6253 (7) 3.4673 (5) 3.3548 (5) 1.374
             
2 Cg1 Cg3(−x + 1, −y + 1, −z + 1) 3.5379 (9) −3.4691 (6) −3.4872 (6) 0.597
2 Cg3 Cg1(−x + 1, −y + 1, −z + 1) 3.5378 (9) −3.4872 (6) −3.4691 (6) 0.694
2 Cg1 Cg3(−x + 2, −y + 1, −z + 1) 3.5974 (9) 3.4237 (6) 3.4068 (6) 1.156
2 Cg3 Cg1(−x + 2, −y + 1, −z + 1) 3.5975 (9) 3.4069 (6) 3.4237 (6) 1.105
2 Cg2 Cg3(−x + 1, −y + 1, −z + 1) 3.9325 (9) −3.5309 (6) −3.4844 (6) 1.823
2 Cg3 Cg2(−x + 1, −y + 1, −z + 1) 3.9324 (9) −3.4844 (6) −3.5309 (6) 1.731
             
3 Cg1 Cg2(−x + 1, −y, −z + 1) 3.5978 (13) −3.3575 (9) −3.3307 (9) 1.360
3 Cg2 Cg1(−x + 1, −y, −z + 1) 3.5978 (13) −3.3307 (9) −3.3575 (9) 1.293
Plane 1 is the plane of the pyran ring with Cg1 as centroid, ring B. Plane 2 is the plane of the coumarin phenyl ring with Cg2 as centroid, ring A. Plane 3 is the plane of the exocyclic phenyl ring with Cg3 as centroid, ring C. Some planes are repeated since they are inclined to each other and as a result give slightly different slippages.
[Figure 10]
Figure 10
Surface of 1 mapped with shape index showing the complementary triangular red hollows and blue bumps that are characteristic of six-ring stacking.
[Figure 11]
Figure 11
Surface of 2 mapped with shape index showing the complementary triangular red hollows and blue bumps that are characteristic of six-ring stacking.

5. Database survey

A search made in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the existence of 35 deposited compounds (42 mol­ecules) containing the coumarin carboxamide unit, all of which contained the same intra­molecular N—H⋯O hydrogen bond as seen here. The hydrogen atoms in these structures were riding with ideally fixed positions or refined positions. The range of values for N—H were 0.78 to 1.02 Å with a median value of 0.88 Å, the range of values for H⋯O were 1.87 to 2.04 Å with a median value of 2.00 Å, the range of values for N⋯O were 2.639 to 2.801 Å with a median value of 2.722 Å and the range of values for the N—H⋯O angle was 125 to 146° with a median value of 138°.

Six of these compounds, with CSD codes: BONKAS (Julien et al., 2014[Julien, O., Kampmann, M., Bassik, M. C., Zorn, J. A., Venditto, V. J., Shimbo, K., Agard, N. J., Shimada, K., Rheingold, A. L., Stockwell, B. R., Weissman, J. S. & Wells, J. A. (2014). Nat. Chem. Biol. 10, 969-976.]); DISXUA, DISYAH, DISYEL and DISYIP (Maldonado-Domínguez et al., 2014[Maldonado-Domínguez, M., Arcos-Ramos, R., Romero, M., Flores-Pérez, B., Farfán, N., Santillan, R., Lacroix, P. G. & Malfant, I. (2014). New J. Chem. 38, 260-268.]); WOJXOK (Pan et al., 2014[Pan, Z.-Y., He, X., Chen, Y.-Y., Tang, W.-J., Shi, J.-B., Tang, Y.-L., Song, B.-A., Li, J. & Liu, X. H. (2014). Eur. J. Med. Chem. 80, 278-284.]), have a phenyl group attached to the carboxamide N atom and these mol­ecules have similar conformations to the present compounds, Table 1[link]. These compounds also had a short intra­molecular contact between the ortho-C hydrogen atom of the exocyclic benzene ring and the carboxamide O atom as in the present compounds. Details of the searches can be found in the supporting information.

6. Synthesis and crystallization

The coumarin derivatives 13 were synthesized by a two-step process. In the first step, 5-methyl­salicyl­aldehyde (1 mmol) and diethyl malonate (1 mmol) and catalytic amounts of piperidine were dissolved in ethanol (10 ml) and refluxed for 4 h. After cooling to room temperature, the suspension was filtered off and ethyl 6-methyl­coumarin-3-carboxyl­ate was obtained. This compound was then dissolved in 20 ml of an ethano­lic solution with 0.5% NaOH (aq.) and hydrolyzed under reflux for 1h. After reaction, 10% HCl (aq.) was added and the desired carb­oxy­lic acid was then filtered and washed with water (Chimenti et al., 2010[Chimenti, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., Rivanera, D., Zicari, A., Scaltrito, M. M. & Sisto, F. (2010). Bioorg. Med. Chem. Lett. 20, 4922-4926.]).

Then, to a solution of 6-methyl­coumarin-3-carb­oxy­lic acid (1 mmol) in di­chloro­methane, 1-ethyl-3-(3-di­methyl­amino­prop­yl)carbodi­imide (EDC) (1.10 mmol) and 4-di­methyl­amino­pyridine (DMAP) (1.10 mmol) were added. The mixture was kept under a flux of argon gas at 273 K for five minutes. Shortly after, the aromatic amine (1 mmol) with the intended substitution pattern was added. The reaction mixture was stirred for 4 h at room temperature. The crude product was filtered and purified by column chromatography (hexa­ne/ethyl acetate 9:1) or by recrystallization with ethanol to give the desired product, (Murata et al., 2005[Murata, C., Masuda, T., Kamochi, Y., Todoroki, K., Yoshida, H., Nohta, H., Yamaguchi, M. & Takadate, A. (2005). Chem. Pharm. Bull. 53, 750-758.]). 6-Methyl-N-(3′-methyl­phen­yl)coumarin-3-carboxamide (1) (yield: 79%; m.p. 467–468 K; crystallization solvent: methanol); 6-methyl-N-(3′-meth­oxy­phen­yl)coumarin-3-carboxamide (2) (yield: 74%; m.p. 447–448 K; crystallization solvent: methanol); 6-meth­oxy-N-(3′-meth­oxy­phen­yl)coumarin-3-carboxamide (3) (yield: 50.7%; m.p. 440–441 K; crystallization solvent: ethyl acetate).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. H atoms were treated as riding atoms with C—H(aromatic) = 0.95 Å and Uiso = 1.2Ueq(C), C—H(meth­yl) 0.98 Å and Uiso = 1.5Ueq(C) The amino H atoms were refined.

Table 7
Experimental details

  1 2 3
Crystal data
Chemical formula C18H15NO3 C18H15NO4 C18H15NO5
Mr 293.31 309.31 325.31
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 7.2117 (3), 8.0491 (3), 23.6242 (9) 7.1028 (4), 10.1367 (4), 10.8171 (5) 6.7722 (5), 8.3098 (7), 14.4202 (13)
α, β, γ (°) 90, 94.388 (4), 90 75.827 (4), 88.318 (4), 71.271 (4) 91.874 (7), 100.009 (7), 113.042 (7)
V3) 1367.31 (9) 714.10 (6) 730.84 (11)
Z 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.10 0.11
Crystal size (mm) 0.42 × 0.03 × 0.02 0.20 × 0.04 × 0.02 0.17 × 0.11 × 0.02
 
Data collection
Diffractometer Rigaku AFC12 (Right) Rigaku AFC12 (Right) Rigaku AFC12 (Right)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.895, 1.000 0.893, 1.000 0.792, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12045, 3135, 2593 15638, 3262, 2704 8745, 3302, 2666
Rint 0.023 0.025 0.033
(sin θ/λ)max−1) 0.649 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.03 0.047, 0.139, 1.02 0.071, 0.152, 1.16
No. of reflections 3134 3261 3302
No. of parameters 205 214 223
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.26 0.37, −0.21 0.25, −0.26
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303-309.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: OSCAIL (McArdle et al., 2004) and SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014/7 (Sheldrick, 2015b) for (1), (2); OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014/6 (Sheldrick, 2015b) for (3). For all compounds, molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

(1) 6-Methyl-N-(3-methylphenyl)-2-oxo-2H-chromene-3-carboxamide top
Crystal data top
C18H15NO3F(000) = 616
Mr = 293.31Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 7.2117 (3) ÅCell parameters from 5809 reflections
b = 8.0491 (3) Åθ = 2.7–27.6°
c = 23.6242 (9) ŵ = 0.10 mm1
β = 94.388 (4)°T = 100 K
V = 1367.31 (9) Å3Needle, yellow
Z = 40.42 × 0.03 × 0.02 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
3135 independent reflections
Radiation source: Rotating Anode2593 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.023
profile data from ω–scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 98
Tmin = 0.895, Tmax = 1.000k = 107
12045 measured reflectionsl = 3029
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.3348P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3134 reflectionsΔρmax = 0.35 e Å3
205 parametersΔρmin = 0.26 e Å3
Special details top

Experimental. CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69397 (12)0.68051 (12)0.05947 (3)0.0158 (2)
O20.88820 (13)0.82921 (12)0.00415 (4)0.0191 (2)
O310.45616 (13)0.95381 (12)0.10022 (4)0.0199 (2)
N320.76928 (15)0.97441 (14)0.09028 (4)0.0153 (2)
H320.855 (2)0.949 (2)0.0664 (7)0.033 (5)*
C20.72934 (18)0.77998 (16)0.01268 (5)0.0147 (3)
C30.57335 (17)0.81575 (16)0.02182 (5)0.0137 (3)
C40.40358 (17)0.75122 (16)0.00695 (5)0.0144 (3)
H40.30340.77590.02940.017*
C4A0.37082 (17)0.64663 (15)0.04177 (5)0.0140 (3)
C50.19774 (18)0.57410 (16)0.05816 (5)0.0152 (3)
H50.09460.59560.03650.018*
C60.17503 (18)0.47192 (16)0.10530 (5)0.0148 (3)
C70.32959 (18)0.44378 (16)0.13696 (5)0.0159 (3)
H70.31550.37390.16940.019*
C80.50106 (18)0.51447 (16)0.12233 (5)0.0160 (3)
H80.60340.49500.14450.019*
C8A0.52020 (17)0.61462 (16)0.07444 (5)0.0139 (3)
C310.59396 (18)0.92182 (16)0.07469 (5)0.0144 (3)
C610.01018 (18)0.39458 (17)0.12285 (5)0.0178 (3)
H61A0.00660.27590.13020.027*
H61B0.06420.44890.15740.027*
H61C0.09370.40850.09240.027*
C3110.83193 (18)1.06916 (16)0.13848 (5)0.0150 (3)
C3120.71473 (18)1.12797 (16)0.17828 (5)0.0163 (3)
H3120.58611.10130.17450.020*
C3130.78614 (19)1.22628 (17)0.22372 (5)0.0175 (3)
C3140.97525 (19)1.26281 (17)0.22921 (5)0.0194 (3)
H3141.02441.33070.25970.023*
C3151.09272 (19)1.20017 (17)0.19020 (5)0.0197 (3)
H3151.22211.22360.19470.024*
C3161.02253 (18)1.10408 (17)0.14486 (5)0.0175 (3)
H3161.10321.06220.11830.021*
C3170.6556 (2)1.29639 (18)0.26456 (5)0.0220 (3)
H31A0.72341.31440.30160.033*
H31B0.55351.21800.26870.033*
H31C0.60501.40230.24990.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0138 (5)0.0177 (5)0.0158 (4)0.0013 (4)0.0014 (3)0.0033 (4)
O20.0158 (5)0.0214 (5)0.0204 (5)0.0018 (4)0.0029 (3)0.0037 (4)
O310.0178 (5)0.0229 (5)0.0195 (5)0.0001 (4)0.0044 (4)0.0047 (4)
N320.0157 (6)0.0153 (6)0.0150 (5)0.0015 (4)0.0017 (4)0.0020 (4)
C20.0174 (7)0.0116 (6)0.0148 (6)0.0008 (5)0.0000 (5)0.0004 (5)
C30.0166 (6)0.0111 (6)0.0136 (6)0.0019 (5)0.0013 (4)0.0019 (5)
C40.0163 (6)0.0122 (6)0.0149 (6)0.0036 (5)0.0035 (5)0.0021 (5)
C4A0.0156 (6)0.0115 (6)0.0147 (6)0.0021 (5)0.0003 (5)0.0020 (5)
C50.0143 (6)0.0137 (6)0.0179 (6)0.0021 (5)0.0027 (5)0.0018 (5)
C60.0150 (6)0.0126 (6)0.0164 (6)0.0022 (5)0.0016 (4)0.0037 (5)
C70.0178 (7)0.0157 (7)0.0140 (6)0.0013 (5)0.0006 (5)0.0010 (5)
C80.0153 (6)0.0176 (7)0.0154 (6)0.0031 (5)0.0025 (5)0.0003 (5)
C8A0.0127 (6)0.0127 (6)0.0161 (6)0.0006 (5)0.0007 (5)0.0021 (5)
C310.0179 (7)0.0115 (6)0.0138 (6)0.0010 (5)0.0012 (5)0.0016 (5)
C610.0147 (6)0.0175 (7)0.0210 (6)0.0002 (5)0.0004 (5)0.0007 (5)
C3110.0188 (7)0.0116 (6)0.0142 (6)0.0011 (5)0.0005 (5)0.0019 (5)
C3120.0171 (6)0.0152 (6)0.0166 (6)0.0016 (5)0.0010 (5)0.0025 (5)
C3130.0237 (7)0.0143 (7)0.0147 (6)0.0017 (5)0.0020 (5)0.0027 (5)
C3140.0243 (7)0.0168 (7)0.0163 (6)0.0022 (5)0.0034 (5)0.0010 (5)
C3150.0180 (7)0.0195 (7)0.0210 (6)0.0025 (5)0.0020 (5)0.0039 (5)
C3160.0187 (7)0.0172 (7)0.0168 (6)0.0014 (5)0.0027 (5)0.0032 (5)
C3170.0247 (7)0.0229 (7)0.0183 (6)0.0008 (6)0.0018 (5)0.0026 (5)
Geometric parameters (Å, º) top
O1—C21.3730 (15)C8—C8A1.3874 (17)
O1—C8A1.3817 (15)C8—H80.9500
O2—C21.2144 (15)C61—H61A0.9800
O31—C311.2287 (15)C61—H61B0.9800
N32—C311.3573 (16)C61—H61C0.9800
N32—C3111.4154 (16)C311—C3121.3943 (17)
N32—H320.893 (18)C311—C3161.3998 (18)
C2—C31.4672 (17)C312—C3131.3997 (18)
C3—C41.3514 (18)C312—H3120.9500
C3—C311.5109 (16)C313—C3141.3914 (19)
C4—C4A1.4309 (17)C313—C3171.5082 (18)
C4—H40.9500C314—C3151.3931 (19)
C4A—C8A1.3964 (17)C314—H3140.9500
C4A—C51.4053 (17)C315—C3161.3851 (18)
C5—C61.3841 (18)C315—H3150.9500
C5—H50.9500C316—H3160.9500
C6—C71.4074 (18)C317—H31A0.9800
C6—C611.5029 (17)C317—H31B0.9800
C7—C81.3810 (18)C317—H31C0.9800
C7—H70.9500
C2—O1—C8A122.61 (10)O31—C31—C3119.49 (11)
C31—N32—C311128.30 (11)N32—C31—C3115.55 (11)
C31—N32—H32115.8 (11)C6—C61—H61A109.5
C311—N32—H32115.8 (12)C6—C61—H61B109.5
O2—C2—O1116.01 (11)H61A—C61—H61B109.5
O2—C2—C3126.69 (11)C6—C61—H61C109.5
O1—C2—C3117.29 (11)H61A—C61—H61C109.5
C4—C3—C2119.88 (11)H61B—C61—H61C109.5
C4—C3—C31117.51 (11)C312—C311—C316120.00 (12)
C2—C3—C31122.61 (11)C312—C311—N32123.55 (12)
C3—C4—C4A121.71 (12)C316—C311—N32116.44 (11)
C3—C4—H4119.1C311—C312—C313120.18 (12)
C4A—C4—H4119.1C311—C312—H312119.9
C8A—C4A—C5118.53 (11)C313—C312—H312119.9
C8A—C4A—C4117.80 (12)C314—C313—C312119.43 (12)
C5—C4A—C4123.68 (11)C314—C313—C317121.11 (12)
C6—C5—C4A121.09 (12)C312—C313—C317119.41 (12)
C6—C5—H5119.5C313—C314—C315120.21 (12)
C4A—C5—H5119.5C313—C314—H314119.9
C5—C6—C7118.26 (11)C315—C314—H314119.9
C5—C6—C61121.07 (12)C316—C315—C314120.59 (13)
C7—C6—C61120.66 (11)C316—C315—H315119.7
C8—C7—C6122.08 (12)C314—C315—H315119.7
C8—C7—H7119.0C315—C316—C311119.55 (12)
C6—C7—H7119.0C315—C316—H316120.2
C7—C8—C8A118.34 (12)C311—C316—H316120.2
C7—C8—H8120.8C313—C317—H31A109.5
C8A—C8—H8120.8C313—C317—H31B109.5
O1—C8A—C8117.61 (11)H31A—C317—H31B109.5
O1—C8A—C4A120.71 (11)C313—C317—H31C109.5
C8—C8A—C4A121.68 (12)H31A—C317—H31C109.5
O31—C31—N32124.96 (12)H31B—C317—H31C109.5
C8A—O1—C2—O2179.71 (11)C4—C4A—C8A—O10.84 (17)
C8A—O1—C2—C30.18 (17)C5—C4A—C8A—C80.31 (18)
O2—C2—C3—C4179.80 (12)C4—C4A—C8A—C8179.93 (11)
O1—C2—C3—C40.07 (18)C311—N32—C31—O312.3 (2)
O2—C2—C3—C310.5 (2)C311—N32—C31—C3177.45 (11)
O1—C2—C3—C31179.32 (10)C4—C3—C31—O314.22 (18)
C2—C3—C4—C4A0.50 (19)C2—C3—C31—O31176.51 (12)
C31—C3—C4—C4A178.79 (11)C4—C3—C31—N32175.55 (11)
C3—C4—C4A—C8A0.95 (18)C2—C3—C31—N323.72 (17)
C3—C4—C4A—C5178.65 (12)C31—N32—C311—C3121.5 (2)
C8A—C4A—C5—C60.54 (18)C31—N32—C311—C316178.94 (12)
C4—C4A—C5—C6179.05 (11)C316—C311—C312—C3131.97 (19)
C4A—C5—C6—C70.72 (18)N32—C311—C312—C313177.58 (12)
C4A—C5—C6—C61179.92 (11)C311—C312—C313—C3140.86 (19)
C5—C6—C7—C80.06 (19)C311—C312—C313—C317176.73 (12)
C61—C6—C7—C8179.26 (12)C312—C313—C314—C3150.84 (19)
C6—C7—C8—C8A0.75 (19)C317—C313—C314—C315178.39 (12)
C2—O1—C8A—C8179.42 (11)C313—C314—C315—C3161.4 (2)
C2—O1—C8A—C4A0.29 (18)C314—C315—C316—C3110.3 (2)
C7—C8—C8A—O1178.18 (11)C312—C311—C316—C3151.37 (19)
C7—C8—C8A—C4A0.94 (19)N32—C311—C316—C315178.21 (11)
C5—C4A—C8A—O1178.78 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N32—H32···O20.893 (18)1.957 (18)2.7149 (14)141.7 (16)
C312—H312···O310.952.262.8838 (16)122
C5—H5···O1i0.952.983.7304 (15)137
Symmetry code: (i) x1, y, z.
(2) N-(3-Methoxyphenyl)-6-methyl-2-oxo-2H-chromene-3-carboxamide top
Crystal data top
C18H15NO4Z = 2
Mr = 309.31F(000) = 324
Triclinic, P1Dx = 1.439 Mg m3
a = 7.1028 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.1367 (4) ÅCell parameters from 9156 reflections
c = 10.8171 (5) Åθ = 2.0–27.5°
α = 75.827 (4)°µ = 0.10 mm1
β = 88.318 (4)°T = 100 K
γ = 71.271 (4)°Needle, colourless
V = 714.10 (6) Å30.20 × 0.04 × 0.02 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
3262 independent reflections
Radiation source: Rotating Anode2704 reflections with I > 2σ(I)
Confocal mirrors, HF Varimax monochromatorRint = 0.025
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.0°
profile data from ω–scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1313
Tmin = 0.893, Tmax = 1.000l = 1414
15638 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.2203P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3261 reflectionsΔρmax = 0.37 e Å3
214 parametersΔρmin = 0.21 e Å3
Special details top

Experimental. CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65788 (15)0.44209 (11)0.15778 (9)0.0286 (3)
O20.62079 (16)0.61257 (11)0.25621 (10)0.0336 (3)
O310.86393 (17)0.30291 (11)0.59953 (9)0.0342 (3)
N320.73898 (17)0.54313 (13)0.50493 (12)0.0254 (3)
H320.687 (3)0.604 (2)0.423 (2)0.050 (6)*
O3130.68878 (17)0.96846 (12)0.62447 (11)0.0367 (3)
C8A0.6993 (2)0.30000 (15)0.15628 (13)0.0245 (3)
C20.6741 (2)0.48376 (15)0.26677 (14)0.0263 (3)
C30.75233 (19)0.37076 (14)0.38259 (12)0.0227 (3)
C40.79282 (19)0.23155 (15)0.38073 (13)0.0241 (3)
H40.84090.15870.45730.029*
C4A0.76523 (19)0.19084 (15)0.26675 (13)0.0232 (3)
C50.8052 (2)0.04818 (15)0.25954 (13)0.0249 (3)
H50.85080.02790.33430.030*
C60.7792 (2)0.01685 (15)0.14495 (14)0.0258 (3)
C70.7102 (2)0.13159 (16)0.03699 (14)0.0281 (3)
H70.69040.11140.04200.034*
C80.6702 (2)0.27245 (16)0.04094 (14)0.0293 (3)
H80.62380.34860.03360.035*
C310.7903 (2)0.40253 (15)0.50651 (13)0.0250 (3)
C610.8246 (2)0.13560 (16)0.13511 (15)0.0325 (3)
H61A0.70660.14640.09950.049*
H61B0.86150.20120.22020.049*
H61C0.93510.15860.07920.049*
C3110.75735 (19)0.60513 (16)0.60585 (13)0.0252 (3)
C3120.7157 (2)0.75307 (16)0.57413 (14)0.0268 (3)
H3120.67880.80650.48820.032*
C3130.7276 (2)0.82377 (16)0.66755 (14)0.0289 (3)
C3140.7787 (2)0.74642 (17)0.79326 (14)0.0321 (3)
H3140.78610.79370.85780.039*
C3150.8186 (2)0.59968 (18)0.82285 (15)0.0356 (4)
H3150.85340.54650.90900.043*
C3160.8099 (2)0.52680 (17)0.73131 (14)0.0318 (3)
H3160.83920.42540.75400.038*
C3170.6726 (2)1.04748 (18)0.71900 (16)0.0368 (4)
H31A0.63571.15040.67740.055*
H31B0.80081.01620.76700.055*
H31C0.57031.03020.77750.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0367 (6)0.0231 (5)0.0253 (5)0.0075 (4)0.0064 (4)0.0066 (4)
O20.0443 (6)0.0214 (5)0.0336 (6)0.0075 (4)0.0094 (5)0.0070 (4)
O310.0488 (7)0.0300 (6)0.0241 (5)0.0119 (5)0.0046 (4)0.0073 (4)
N320.0263 (6)0.0262 (6)0.0261 (6)0.0088 (5)0.0001 (5)0.0103 (5)
O3130.0481 (7)0.0317 (6)0.0376 (6)0.0158 (5)0.0010 (5)0.0181 (5)
C8A0.0228 (6)0.0233 (7)0.0285 (7)0.0071 (5)0.0009 (5)0.0083 (5)
C20.0260 (7)0.0274 (7)0.0274 (7)0.0093 (6)0.0027 (5)0.0092 (6)
C30.0203 (6)0.0251 (7)0.0242 (7)0.0083 (5)0.0010 (5)0.0073 (5)
C40.0222 (6)0.0266 (7)0.0238 (7)0.0082 (5)0.0005 (5)0.0066 (5)
C4A0.0194 (6)0.0280 (7)0.0248 (7)0.0091 (5)0.0023 (5)0.0099 (5)
C50.0245 (7)0.0250 (7)0.0261 (7)0.0086 (5)0.0025 (5)0.0072 (5)
C60.0226 (6)0.0277 (7)0.0314 (7)0.0098 (5)0.0047 (5)0.0132 (6)
C70.0276 (7)0.0338 (8)0.0256 (7)0.0098 (6)0.0002 (5)0.0122 (6)
C80.0320 (7)0.0295 (7)0.0251 (7)0.0077 (6)0.0033 (6)0.0071 (6)
C310.0241 (7)0.0278 (7)0.0255 (7)0.0096 (5)0.0016 (5)0.0094 (5)
C610.0359 (8)0.0300 (8)0.0363 (8)0.0114 (6)0.0040 (6)0.0156 (6)
C3110.0199 (6)0.0322 (7)0.0293 (7)0.0106 (5)0.0035 (5)0.0154 (6)
C3120.0247 (7)0.0308 (7)0.0284 (7)0.0101 (6)0.0012 (5)0.0119 (6)
C3130.0241 (7)0.0323 (8)0.0367 (8)0.0126 (6)0.0051 (6)0.0161 (6)
C3140.0304 (8)0.0440 (9)0.0309 (8)0.0156 (7)0.0060 (6)0.0211 (7)
C3150.0390 (8)0.0434 (9)0.0264 (7)0.0136 (7)0.0031 (6)0.0118 (6)
C3160.0339 (8)0.0339 (8)0.0293 (8)0.0113 (6)0.0025 (6)0.0109 (6)
C3170.0360 (8)0.0392 (9)0.0471 (9)0.0166 (7)0.0072 (7)0.0273 (7)
Geometric parameters (Å, º) top
O1—C21.3656 (16)C6—C611.5040 (19)
O1—C8A1.3785 (16)C7—C81.375 (2)
O2—C21.2137 (17)C7—H70.9500
O31—C311.2247 (17)C8—H80.9500
N32—C311.3488 (18)C61—H61A0.9800
N32—C3111.4145 (17)C61—H61B0.9800
N32—H320.96 (2)C61—H61C0.9800
O313—C3131.3629 (18)C311—C3121.387 (2)
O313—C3171.4267 (17)C311—C3161.387 (2)
C8A—C81.3785 (19)C312—C3131.3931 (19)
C8A—C4A1.3871 (19)C312—H3120.9500
C2—C31.4560 (19)C313—C3141.386 (2)
C3—C41.3518 (19)C314—C3151.377 (2)
C3—C311.5038 (18)C314—H3140.9500
C4—C4A1.4297 (18)C315—C3161.386 (2)
C4—H40.9500C315—H3150.9500
C4A—C51.4028 (19)C316—H3160.9500
C5—C61.3841 (19)C317—H31A0.9800
C5—H50.9500C317—H31B0.9800
C6—C71.400 (2)C317—H31C0.9800
C2—O1—C8A122.60 (11)O31—C31—C3119.53 (12)
C31—N32—C311128.29 (13)N32—C31—C3115.57 (12)
C31—N32—H32112.4 (12)C6—C61—H61A109.5
C311—N32—H32119.3 (12)C6—C61—H61B109.5
C313—O313—C317116.71 (12)H61A—C61—H61B109.5
O1—C8A—C8116.95 (12)C6—C61—H61C109.5
O1—C8A—C4A120.97 (12)H61A—C61—H61C109.5
C8—C8A—C4A122.07 (13)H61B—C61—H61C109.5
O2—C2—O1115.82 (12)C312—C311—C316120.02 (13)
O2—C2—C3126.86 (13)C312—C311—N32116.32 (13)
O1—C2—C3117.32 (12)C316—C311—N32123.65 (14)
C4—C3—C2119.74 (12)C311—C312—C313120.38 (14)
C4—C3—C31117.86 (12)C311—C312—H312119.8
C2—C3—C31122.40 (12)C313—C312—H312119.8
C3—C4—C4A121.83 (13)O313—C313—C314124.95 (13)
C3—C4—H4119.1O313—C313—C312115.09 (13)
C4A—C4—H4119.1C314—C313—C312119.96 (14)
C8A—C4A—C5118.50 (12)C315—C314—C313118.75 (13)
C8A—C4A—C4117.36 (12)C315—C314—H314120.6
C5—C4A—C4124.12 (13)C313—C314—H314120.6
C6—C5—C4A120.84 (13)C314—C315—C316122.32 (15)
C6—C5—H5119.6C314—C315—H315118.8
C4A—C5—H5119.6C316—C315—H315118.8
C5—C6—C7118.07 (13)C315—C316—C311118.57 (15)
C5—C6—C61121.52 (13)C315—C316—H316120.7
C7—C6—C61120.41 (13)C311—C316—H316120.7
C8—C7—C6122.46 (13)O313—C317—H31A109.5
C8—C7—H7118.8O313—C317—H31B109.5
C6—C7—H7118.8H31A—C317—H31B109.5
C7—C8—C8A118.06 (13)O313—C317—H31C109.5
C7—C8—H8121.0H31A—C317—H31C109.5
C8A—C8—H8121.0H31B—C317—H31C109.5
O31—C31—N32124.90 (13)
C2—O1—C8A—C8177.70 (12)O1—C8A—C8—C7179.94 (12)
C2—O1—C8A—C4A1.7 (2)C4A—C8A—C8—C70.6 (2)
C8A—O1—C2—O2175.39 (12)C311—N32—C31—O310.1 (2)
C8A—O1—C2—C34.54 (19)C311—N32—C31—C3179.84 (12)
O2—C2—C3—C4175.53 (13)C4—C3—C31—O313.1 (2)
O1—C2—C3—C44.39 (19)C2—C3—C31—O31177.02 (13)
O2—C2—C3—C314.3 (2)C4—C3—C31—N32177.06 (11)
O1—C2—C3—C31175.77 (11)C2—C3—C31—N322.78 (19)
C2—C3—C4—C4A1.4 (2)C31—N32—C311—C312172.29 (12)
C31—C3—C4—C4A178.73 (11)C31—N32—C311—C3169.0 (2)
O1—C8A—C4A—C5179.94 (11)C316—C311—C312—C3130.5 (2)
C8—C8A—C4A—C50.7 (2)N32—C311—C312—C313179.28 (12)
O1—C8A—C4A—C41.47 (19)C317—O313—C313—C3149.2 (2)
C8—C8A—C4A—C4179.19 (12)C317—O313—C313—C312171.67 (12)
C3—C4—C4A—C8A1.5 (2)C311—C312—C313—O313178.26 (12)
C3—C4—C4A—C5179.88 (12)C311—C312—C313—C3140.9 (2)
C8A—C4A—C5—C60.1 (2)O313—C313—C314—C315178.48 (13)
C4—C4A—C5—C6178.51 (12)C312—C313—C314—C3150.6 (2)
C4A—C5—C6—C70.5 (2)C313—C314—C315—C3160.1 (2)
C4A—C5—C6—C61178.98 (12)C314—C315—C316—C3110.6 (2)
C5—C6—C7—C80.7 (2)C312—C311—C316—C3150.2 (2)
C61—C6—C7—C8178.82 (13)N32—C311—C316—C315178.48 (13)
C6—C7—C8—C8A0.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N32—H32···O20.96 (2)1.85 (2)2.6952 (16)145.7 (17)
C8—H8···O1i0.952.523.3676 (18)149
C61—H61B···O31ii0.982.573.4044 (19)143
C317—H31A···O31iii0.982.573.2769 (19)129
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z+1; (iii) x, y+1, z.
(3) 6-Methoxy-N-(3-methoxyphenyl)-2-oxo-2H-chromene-3-carboxamide top
Crystal data top
C18H15NO5Z = 2
Mr = 325.31F(000) = 340
Triclinic, P1Dx = 1.483 Mg m3
a = 6.7722 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3098 (7) ÅCell parameters from 3630 reflections
c = 14.4202 (13) Åθ = 2.7–27.4°
α = 91.874 (7)°µ = 0.11 mm1
β = 100.009 (7)°T = 100 K
γ = 113.042 (7)°Plate, yellow
V = 730.84 (11) Å30.17 × 0.11 × 0.02 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
3302 independent reflections
Radiation source: Rotating Anode, Rotating Anode2666 reflections with I > 2σ(I)
Confocal mirrors, HF Varimax monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.7°
profile data from ω–scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 109
Tmin = 0.792, Tmax = 1.000l = 1818
8745 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.3539P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
3302 reflectionsΔρmax = 0.25 e Å3
223 parametersΔρmin = 0.26 e Å3
Special details top

Experimental. CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7758 (2)0.24765 (19)0.52564 (10)0.0207 (3)
O20.9491 (2)0.3631 (2)0.41317 (11)0.0227 (4)
O60.0500 (2)0.0132 (2)0.68826 (11)0.0244 (4)
O310.4048 (2)0.4552 (2)0.27644 (11)0.0249 (4)
O3130.5339 (3)0.7656 (2)0.01169 (11)0.0272 (4)
N320.7594 (3)0.4985 (2)0.27488 (13)0.0212 (4)
H320.872 (4)0.476 (3)0.3080 (18)0.032 (7)*
C20.7823 (3)0.3270 (3)0.44407 (15)0.0195 (5)
C30.5890 (3)0.3567 (3)0.40191 (15)0.0183 (4)
C40.4121 (3)0.3038 (3)0.44288 (15)0.0193 (5)
H40.28720.32360.41470.023*
C4A0.4085 (3)0.2184 (3)0.52792 (15)0.0188 (5)
C50.2277 (3)0.1573 (3)0.57142 (16)0.0200 (5)
H50.09870.17330.54540.024*
C60.2368 (3)0.0732 (3)0.65245 (15)0.0203 (5)
C70.4289 (4)0.0548 (3)0.69251 (16)0.0214 (5)
H70.43620.00120.74950.026*
C80.6098 (4)0.1144 (3)0.64972 (15)0.0213 (5)
H80.73990.10040.67630.026*
C8A0.5963 (3)0.1941 (3)0.56802 (15)0.0190 (5)
C310.5759 (3)0.4431 (3)0.31191 (15)0.0203 (5)
C610.0465 (4)0.0852 (3)0.76813 (16)0.0252 (5)
H61A0.09770.12380.78510.038*
H61B0.15930.01080.82190.038*
H61C0.07550.18820.75200.038*
C3110.7911 (3)0.5766 (3)0.19019 (15)0.0203 (5)
C3120.6436 (3)0.6337 (3)0.13821 (15)0.0210 (5)
H3120.51300.62120.15880.025*
C3130.6884 (3)0.7093 (3)0.05573 (16)0.0216 (5)
C3140.8761 (4)0.7263 (3)0.02325 (16)0.0239 (5)
H3140.90400.77620.03390.029*
C3151.0229 (4)0.6682 (3)0.07684 (17)0.0256 (5)
H3151.15300.68020.05590.031*
C3160.9831 (4)0.5942 (3)0.15912 (16)0.0239 (5)
H3161.08460.55530.19470.029*
C3170.5672 (4)0.8430 (3)0.07431 (17)0.0296 (5)
H31A0.44260.87150.10020.044*
H31B0.57980.75980.12030.044*
H31C0.70200.95080.06150.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0169 (8)0.0216 (8)0.0281 (8)0.0112 (6)0.0064 (6)0.0086 (6)
O20.0189 (8)0.0229 (8)0.0302 (9)0.0109 (7)0.0078 (6)0.0075 (6)
O60.0193 (8)0.0271 (9)0.0313 (9)0.0115 (7)0.0101 (6)0.0116 (7)
O310.0169 (8)0.0281 (9)0.0315 (9)0.0101 (7)0.0058 (6)0.0106 (7)
O3130.0262 (9)0.0306 (9)0.0318 (9)0.0168 (7)0.0091 (7)0.0130 (7)
N320.0176 (10)0.0238 (10)0.0267 (10)0.0116 (8)0.0068 (8)0.0081 (8)
C20.0186 (11)0.0131 (10)0.0254 (11)0.0051 (8)0.0044 (8)0.0014 (8)
C30.0172 (10)0.0133 (10)0.0252 (11)0.0069 (8)0.0047 (8)0.0025 (8)
C40.0182 (11)0.0133 (10)0.0268 (12)0.0076 (8)0.0022 (8)0.0027 (8)
C4A0.0199 (11)0.0126 (10)0.0250 (11)0.0078 (8)0.0048 (8)0.0010 (8)
C50.0153 (10)0.0172 (11)0.0288 (12)0.0088 (8)0.0023 (8)0.0016 (9)
C60.0185 (11)0.0162 (11)0.0267 (12)0.0068 (9)0.0063 (9)0.0021 (8)
C70.0230 (12)0.0187 (11)0.0243 (11)0.0091 (9)0.0068 (9)0.0052 (9)
C80.0185 (11)0.0175 (11)0.0294 (12)0.0095 (9)0.0026 (9)0.0041 (9)
C8A0.0157 (10)0.0143 (10)0.0274 (12)0.0054 (8)0.0069 (8)0.0020 (8)
C310.0181 (11)0.0160 (11)0.0267 (12)0.0072 (9)0.0035 (9)0.0022 (9)
C610.0258 (12)0.0226 (12)0.0290 (12)0.0092 (10)0.0106 (9)0.0083 (9)
C3110.0206 (11)0.0135 (10)0.0254 (11)0.0051 (9)0.0055 (8)0.0014 (8)
C3120.0190 (11)0.0167 (11)0.0293 (12)0.0077 (9)0.0084 (9)0.0049 (9)
C3130.0190 (11)0.0171 (11)0.0283 (12)0.0073 (9)0.0036 (9)0.0018 (9)
C3140.0256 (12)0.0210 (12)0.0262 (12)0.0088 (9)0.0088 (9)0.0070 (9)
C3150.0182 (11)0.0252 (12)0.0346 (13)0.0076 (9)0.0110 (9)0.0060 (10)
C3160.0201 (11)0.0216 (12)0.0308 (13)0.0099 (9)0.0036 (9)0.0044 (9)
C3170.0308 (13)0.0296 (13)0.0301 (13)0.0129 (11)0.0069 (10)0.0129 (10)
Geometric parameters (Å, º) top
O1—C21.366 (2)C7—C81.391 (3)
O1—C8A1.379 (2)C7—H70.9500
O2—C21.218 (2)C8—C8A1.377 (3)
O6—C61.366 (3)C8—H80.9500
O6—C611.432 (3)C61—H61A0.9800
O31—C311.226 (3)C61—H61B0.9800
O313—C3131.374 (3)C61—H61C0.9800
O313—C3171.428 (3)C311—C3121.385 (3)
N32—C311.356 (3)C311—C3161.404 (3)
N32—C3111.412 (3)C312—C3131.388 (3)
N32—H320.92 (3)C312—H3120.9500
C2—C31.459 (3)C313—C3141.388 (3)
C3—C41.352 (3)C314—C3151.397 (3)
C3—C311.509 (3)C314—H3140.9500
C4—C4A1.436 (3)C315—C3161.374 (3)
C4—H40.9500C315—H3150.9500
C4A—C8A1.394 (3)C316—H3160.9500
C4A—C51.397 (3)C317—H31A0.9800
C5—C61.385 (3)C317—H31B0.9800
C5—H50.9500C317—H31C0.9800
C6—C71.397 (3)
C2—O1—C8A123.06 (16)O31—C31—N32124.7 (2)
C6—O6—C61117.74 (17)O31—C31—C3119.63 (19)
C313—O313—C317117.52 (18)N32—C31—C3115.61 (18)
C31—N32—C311127.96 (19)O6—C61—H61A109.5
C31—N32—H32114.6 (16)O6—C61—H61B109.5
C311—N32—H32117.4 (16)H61A—C61—H61B109.5
O2—C2—O1116.03 (18)O6—C61—H61C109.5
O2—C2—C3126.7 (2)H61A—C61—H61C109.5
O1—C2—C3117.27 (18)H61B—C61—H61C109.5
C4—C3—C2119.95 (19)C312—C311—C316120.1 (2)
C4—C3—C31117.69 (18)C312—C311—N32123.3 (2)
C2—C3—C31122.35 (18)C316—C311—N32116.59 (19)
C3—C4—C4A121.62 (19)C311—C312—C313119.3 (2)
C3—C4—H4119.2C311—C312—H312120.3
C4A—C4—H4119.2C313—C312—H312120.3
C8A—C4A—C5118.77 (19)O313—C313—C314124.3 (2)
C8A—C4A—C4117.53 (19)O313—C313—C312114.19 (19)
C5—C4A—C4123.69 (19)C314—C313—C312121.5 (2)
C6—C5—C4A119.93 (19)C313—C314—C315118.3 (2)
C6—C5—H5120.0C313—C314—H314120.9
C4A—C5—H5120.0C315—C314—H314120.9
O6—C6—C5115.76 (19)C316—C315—C314121.4 (2)
O6—C6—C7124.16 (19)C316—C315—H315119.3
C5—C6—C7120.1 (2)C314—C315—H315119.3
C8—C7—C6120.5 (2)C315—C316—C311119.4 (2)
C8—C7—H7119.7C315—C316—H316120.3
C6—C7—H7119.7C311—C316—H316120.3
C8A—C8—C7118.6 (2)O313—C317—H31A109.5
C8A—C8—H8120.7O313—C317—H31B109.5
C7—C8—H8120.7H31A—C317—H31B109.5
C8—C8A—O1117.40 (18)O313—C317—H31C109.5
C8—C8A—C4A122.04 (19)H31A—C317—H31C109.5
O1—C8A—C4A120.55 (19)H31B—C317—H31C109.5
C8A—O1—C2—O2178.07 (17)C4—C4A—C8A—C8179.69 (19)
C8A—O1—C2—C30.7 (3)C5—C4A—C8A—O1178.01 (18)
O2—C2—C3—C4177.7 (2)C4—C4A—C8A—O11.3 (3)
O1—C2—C3—C41.0 (3)C311—N32—C31—O311.1 (4)
O2—C2—C3—C311.4 (3)C311—N32—C31—C3177.28 (19)
O1—C2—C3—C31179.99 (18)C4—C3—C31—O313.4 (3)
C2—C3—C4—C4A0.1 (3)C2—C3—C31—O31175.63 (19)
C31—C3—C4—C4A179.18 (18)C4—C3—C31—N32178.15 (18)
C3—C4—C4A—C8A1.0 (3)C2—C3—C31—N322.8 (3)
C3—C4—C4A—C5178.2 (2)C31—N32—C311—C31210.4 (3)
C8A—C4A—C5—C60.5 (3)C31—N32—C311—C316169.2 (2)
C4—C4A—C5—C6178.8 (2)C316—C311—C312—C3130.5 (3)
C61—O6—C6—C5175.76 (18)N32—C311—C312—C313179.91 (19)
C61—O6—C6—C74.4 (3)C317—O313—C313—C3141.5 (3)
C4A—C5—C6—O6178.04 (18)C317—O313—C313—C312179.27 (19)
C4A—C5—C6—C72.2 (3)C311—C312—C313—O313178.17 (19)
O6—C6—C7—C8177.8 (2)C311—C312—C313—C3141.1 (3)
C5—C6—C7—C82.4 (3)O313—C313—C314—C315178.0 (2)
C6—C7—C8—C8A1.0 (3)C312—C313—C314—C3151.2 (3)
C7—C8—C8A—O1178.30 (18)C313—C314—C315—C3160.7 (3)
C7—C8—C8A—C4A0.8 (3)C314—C315—C316—C3110.1 (3)
C2—O1—C8A—C8179.51 (19)C312—C311—C316—C3150.0 (3)
C2—O1—C8A—C4A0.4 (3)N32—C311—C316—C315179.6 (2)
C5—C4A—C8A—C81.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N32—H32···O20.92 (3)1.91 (3)2.699 (2)143 (2)
C4—H4···O2i0.952.433.319 (3)155
C5—H5···O1i0.952.473.391 (3)164
C8—H8···O6ii0.952.463.364 (3)160
C312—H312···O310.952.262.868 (3)121
C315—H315···O313ii0.952.593.536 (4)171
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Selected dihedral angles (°) top
θ1 is the dihedral angle between the mean planes of the coumarin ring system and exocyclic phenyl ring . θ2 is the dihedral angles between the mean plane of the coumarin ring system and the plane defined by the atoms O31/C31/N32. θ3 is the dihedral angle between the mean planes of the exocyclic phenyl ring and the plane defined by atoms O31/C31/N32.
Compoundθ1θ2θ3
14.69 (6)4.8 (2)0.21 (23)
24.28 (3)4.46 (13)8.60 (12)
38.17 (13)2.9 (4)10.2 (4)
BONKAS4.70 (6)3.2 (2)7.8 (2)
DISXUA10.29 (7)3.9 (2)6.42)
DISYAH0.04 (6)2.70 (17)'2.76 (17)
DISYEL3.07 (8)3.4 (2)1.0 (3)
DISYIP12.75 (6)1.21 (17)12.73 (17)
WOJXOK1.9 (4)4.6 (9)2.7 (9)
If the mean planes for the combined coumarin ring system and exocyclic phenyl rings are considered, then the maximum deviations of atoms within these rings from this plane are -0,1024 (12) Å or C6 in 1, -0.0754 (15) Å in 2 and 0.0699 (14) Å in 3. Considering all non-hydrogen atoms, the maximum deviations from this plane are 0.1783 (10) Å for O31 in 1, -0.1809 (12) Å for O31 in 2 and -0.2181 (15) Å for O313 in 3.
Percentages of atom–atom contacts top
Contact123
H···H47.142.938.3
H···O/O···H19.926.927.4
H···C/C···H14.512.920.7
H···N/N···H1.50.21.6
C···C12.112.65.4
Selected ππ contacts (Å) top
CgI(J) = plane number I(J); Cg···Cg = distance between ring centroids; CgIperp = perpendicular distance of Cg(I) on ring J; CgJperp = perpendicular distance of Cg(J) on ring I; Slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I.
CompoundCgICgJ(aru)Cg···CgCgIperpCgJperpSlippage
1Cg1Cg1(-x + 1, -y + 1, -z)3.7630 (7)-3.3400 (5)-3.3400 (5)1.733
1Cg1Cg2(-x + 1, -y + 1, -z)3.4853 (7)-3.3281 (5)-3.3171 (5)1.069
1Cg2Cg1(-x + 1, -y + 1, -z)3.4853 (7)-3.3172 (5)-3.3281 (5)1.035
1Cg2Cg3(-x + 1, -y + 2, -z)3.6253 (7)3.3547 (5)3.4673 (5)1.058
1Cg3Cg2(-x + 1, -y + 1, -z)3.6253 (7)3.4673 (5)3.3548 (5)1.374
2Cg1Cg3(-x + 1, -y + 1, -z + 1)3.5379 (9)-3.4691 (6)-3.4872 (6)0.597
2Cg3Cg1(-x + 1, -y + 1, -z + 1)3.5378 (9)-3.4872 (6)-3.4691 (6)0.694
2Cg1Cg3(-x + 2, -y + 1, -z + 1)3.5974 (9)3.4237 (6)3.4068 (6)1.156
2Cg3Cg1(-x + 2, -y + 1, -z + 1)3.5975 (9)3.4069 (6)3.4237 (6)1.105
2Cg2Cg3(-x + 1, -y + 1, -z + 1)3.9325 (9)-3.5309 (6)-3.4844 (6)1.823
2Cg3Cg2(-x + 1, -y + 1, -z + 1)3.9324 (9)-3.4844 (6)-3.5309 (6)1.731
3Cg1Cg2(-x + 1, -y, -z + 1)3.5978 (13)-3.3575 (9)-3.3307 (9)1.360
3Cg2Cg1(-x + 1, -y, -z + 1)3.5978 (13)-3.3307 (9)-3.3575 (9)1.293
Plane 1 is the plane of the pyran ring with Cg1 as centroid, ring B. Plane 2 is the plane of the coumarin phenyl ring with Cg2 as centroid, ring A. Plane 3 is the plane of the exocyclic phenyl ring with Cg3 as centroid, ring C. Some planes are repeated since they are inclined to each other and as a result give slightly different slippages.
 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]), for the data collection, help and advice and the Foundation for Science and Technology (FCT) and FEDER/COMPETE2020 (UID/QUι00081/2015 and POCI-01–0145-FEDER-006980). AF (SFRH/BD/80831/2011) and MJM (SFRH/BPD/95345/2013) were supported by grants from FCT, POPH and QREN.

References

First citationChimenti, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., Rivanera, D., Zicari, A., Scaltrito, M. M. & Sisto, F. (2010). Bioorg. Med. Chem. Lett. 20, 4922–4926.  Web of Science CrossRef CAS PubMed Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJulien, O., Kampmann, M., Bassik, M. C., Zorn, J. A., Venditto, V. J., Shimbo, K., Agard, N. J., Shimada, K., Rheingold, A. L., Stockwell, B. R., Weissman, J. S. & Wells, J. A. (2014). Nat. Chem. Biol. 10, 969–976.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKlekota, J. & Roth, F. P. (2008). Bioinformatics, 24, 2518–2525.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLachance, H., Wetzel, S., Kumar, K. & Waldmann, H. (2012). J. Med. Chem. 55, 5989–6001.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaldonado-Domínguez, M., Arcos-Ramos, R., Romero, M., Flores-Pérez, B., Farfán, N., Santillan, R., Lacroix, P. G. & Malfant, I. (2014). New J. Chem. 38, 260–268.  Google Scholar
First citationMatos, M. J., Janeiro, P., González Franco, R. M., Vilar, S., Tatonetti, N. P., Santana, L., Uriarte, E., Borges, F., Fontenla, J. A. & Viña, D. (2014). Future Med. Chem. 6, 371–383.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268–3270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurata, C., Masuda, T., Kamochi, Y., Todoroki, K., Yoshida, H., Nohta, H., Yamaguchi, M. & Takadate, A. (2005). Chem. Pharm. Bull. 53, 750–758.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPan, Z.-Y., He, X., Chen, Y.-Y., Tang, W.-J., Shi, J.-B., Tang, Y.-L., Song, B.-A., Li, J. & Liu, X. H. (2014). Eur. J. Med. Chem. 80, 278–284.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVazquez-Rodriguez, S., Matos, M. J., Santana, L., Uriarte, E., Borges, F., Kachler, S. & Klotz, K. N. (2013). J. Pharm. Pharmacol. 65, 697–703.  Web of Science CAS PubMed Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds