research communications
Crystal structures of three 6-substituted coumarin-3-carboxamide derivatives
aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dCIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
*Correspondence e-mail: jnlow111@gmail.com
Three coumarin derivatives, viz. 6-methyl-N-(3-methylphenyl)-2-oxo-2H-chromene-3-carboxamide, C18H15NO3 (1), N-(3-methoxyphenyl)-6-methyl-2-oxo-2H-chromene-3-carboxamide, C18H15NO4 (2), and 6-methoxy-N-(3-methoxyphenyl)-2-oxo-2H-chromene-3-carboxamide, C18H15NO5 (3), were synthesized and structurally characterized. The molecules display intramolecular N—H⋯O and weak C—H⋯O hydrogen bonds, which probably contribute to the approximate planarity of the molecules. The supramolecular structures feature C—H⋯O hydrogen bonds and π–π interactions, as confirmed by Hirshfeld surface analyses.
Keywords: crystal structure; coumarin; carboxamide.
1. Chemical context
Benzopyrones are oxygen-containing heterocycles recognised as privileged structures for drug-discovery programs (Klekota & Roth, 2008; Lachance et al., 2012). Within this class of compounds, coumarin has emerged as an interesting building block due to its synthetic accessibility and substitution variability. Furthermore, display anticancer, antiviral, anti-inflammatory and anti-oxidant biological properties (Matos et al., 2009, 2014; Vazquez-Rodriguez et al., 2013).
Previous work reported by our research group has shown that coumarin is a valid scaffold for the development of monoamino oxidase B inhibitors (Matos et al., 2009). As part of our ongoing studies of these compounds, we now describe the syntheses and crystal structures of three coumarin derivatives: 6-methyl-N-(3-methylphenyl)-2-oxo-2H-chromene-3-carboxamide (1), N-(3-methoxyphenyl)-6-methyl-2-oxo-2H-chromene-3-carboxamide (2) and 6-methoxy-N-(3-methoxyphenyl)-2-oxo-2H-chromene-3-carboxamide (3).
2. Structural commentary
The structural analyses revealed that the molecules are coumarin derivatives with a phenylamide substituent at position 3 of the coumarin ring, as seen in the chemical scheme. The coumarin component rings are identified by the letters A and B while the exocyclic benzene ring is denoted C. Figs. 1–3 show the molecular structures of compounds 1–3, respectively: they differ in the type of substituents at the 6-position of the coumarin ring system and at the 3-position of the pendant benzene ring.
An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the coumarin ring: the mean C3—C4 bond length [1.3517 (3) Å] and the mean value for the C3—C2 bond length [1.461 (6) Å)] are shorter and longer, respectively, that those expected for an Car—Car bond, suggesting that there is an increased electronic density located in the C3—C4 bond at the pyrone ring.
The values for the distances of the C3—C31 bonds [mean value 1.508 (4) Å] connecting the coumarin system to the amide spacer are of the same order as a Csp3—Csp3 bond. This confers freedom of rotation of the phenylamide substituent around it. Despite that, the molecules are approximately planar, as can be inferred by the set of values of the dihedral angles in Table 1, which refer to the combination of the dihedral angles between the best planes formed by all non-H atoms of the 2H-chromen-2-one ring, the O31/C31/N32 atoms of the amide residue and the phenyl substituent, which are all less than 11°. This may be correlated with the conformation assumed by the amide group around the C—N rotamer which displays an −anti orientation with respect to the oxo oxygen atom of the coumarin, thus allowing the establishment, in all three structures, of an intramolecular N—H⋯O hydrogen bond between the amino group of the carboxamide and the oxo group at the O2 position of the coumarin and a weak C—H⋯O intramolecular hydrogen bond between an ortho-CH group on the exocyclic phenyl ring and the O atom of the carboxamide. Thus these two interactions, which both form S(6) rings, probably contribute to the overall approximate planarity of the molecules since they may prevent the molecules from adopting some other possible conformations by restraining their geometry.
3. Supramolecular features
As mentioned above, the NH group is involved in an intramolecular hydrogen bond. It is not involved in any intermolecular interactions thus only carbon atoms may act as donors for the carbonyl and methoxy-type acceptors. Details of the hydrogen bonding for compounds 1, 2 and 3 are given in Tables 2, 3 and 4, respectively.
|
|
|
In 1, the molecules are linked by the C5—H5⋯O1(x − 1, y, z) weak hydrogen bond to form a C(6) chain, which runs parallel to the a axis, Fig. 4. In 2, the molecules are linked by the C8—H8⋯O1(−x + 1, −y + 1, −z) weak hydrogen bond to form an R22(8) centrosymmetric dimer centred on (1/2, 1/2, 0), Fig. 5. There is also a short C317—H31A⋯O31(x, y + 1, z) contact involving a methyl hydrogen atom. In 3, the molecules are linked by the C4—H4⋯O2(x − 1, y, z), C5—H5⋯O1(x − 1, y, z) and C8—H8⋯O6(x + 1, y, z) bonds to form a chain of R22(8) rings, which runs parallel to the a axis, Fig. 6. This chain is supplemented by the action of the C315—H315⋯O313(x + 1, y, z) weak hydrogen bond.
4. Hirshfeld surfaces
The Hirshfeld surfaces and two-dimensional fingerprint (FP) plots (Rohl et al., 2008) were generated using Crystal Explorer 3.1 (Wolff et al., 2012). The surfaces, mapped over dnorm and the FP plots are presented in Figs. 7 to 9 for 1, 2 and 3, respectively. They provide complementary information concerning the intermolecular interactions discussed above. The contributions from various contacts, listed in Table 5, were selected by the partial analysis of the FP plots.
|
Forgetting the prevalence of the H⋯H contacts on the surface, inherent to organic molecules, the most significant contacts are the H⋯O/O⋯H ones. Those appear as highlighted red spots on the top face of the surfaces (Fig. 7 to 9) that indicate contact points with the atoms participating in the C—H⋯O intermolecular interactions. Those contacts correspond to weak hydrogen bonds, as seen in the FP plots where the pair of sharp spikes that would be characteristic of hydrogen bond are masked by the H⋯H interactions appearing near de≃di = 1.20 Å. Compound 1 has the smallest percentage for H⋯O/O⋯H contacts since it has no methoxy substituents. The most representative of these corresponds to the C5—H5⋯O2 contact that links the molecules in the C6 chain. In the surface of 2, two red spots appear perpendicular to the C8—H8 bond and near O1 indicating the C8—H8⋯O1 contact that links the molecules into dimers. The red spots near O31 indicate that this atom establishes two weak contacts (C61—H61B⋯O31 and C317—H31A⋯O31). In 3, there are several contacts, three of those involving the oxygen atoms of the coumarin system and those directly connected to it that are acceptors for H atoms of the coumarin residue of another molecule. These multiple contacts result in chains of hydrogen-bonded rings, as described in the previous section, and seem to operate a co-operative effect since the hydrogen bonds in 3 are stronger than in 1 and 2 (see the well-defined sharp spikes in the FP plot of 3).
The values for the remaining contacts listed in Table 5 suggest that the supramolecular structure is built by H⋯C/C⋯H and C⋯C contacts. In 3, the percentage for H⋯C/C⋯H contacts is higher than that for the other compounds. The FP plots also reveal a cluster at de/di ≃ 1.8 Å and di/de ≃ 1.2 Å characteristic of C—H⋯π contacts that seem to assume higher importance in the supramolecular structure in 3. On the other hand, the C⋯C contacts prevail in 1 and 2. In fact, the packing in 1 is built up by several π–π interactions (Table 6). Also, when the surface is mapped with shape index, several complementary triangular red hollows and blue bumps appear that are characteristic of the six-ring stacking (Figs. 10 and 11). In 1, ring A stacks with ring C by a twofold rotation, and ring B with ring A when the molecule is placed above another centrosymmetrically related molecule. This gives rise to close C⋯C contacts in the middle of the surface identified as red spots. Molecule 2 also displays a significant percentage of C⋯C contacts on the Hirshfeld surface, resulting from the continuous π–π stacking where ring C stacks with rings A and B (up and down) of centrosymmetrically related molecules.
|
5. Database survey
A search made in the Cambridge Structural Database (Groom et al., 2016) revealed the existence of 35 deposited compounds (42 molecules) containing the coumarin carboxamide unit, all of which contained the same intramolecular N—H⋯O hydrogen bond as seen here. The hydrogen atoms in these structures were riding with ideally fixed positions or refined positions. The range of values for N—H were 0.78 to 1.02 Å with a median value of 0.88 Å, the range of values for H⋯O were 1.87 to 2.04 Å with a median value of 2.00 Å, the range of values for N⋯O were 2.639 to 2.801 Å with a median value of 2.722 Å and the range of values for the N—H⋯O angle was 125 to 146° with a median value of 138°.
Six of these compounds, with CSD codes: BONKAS (Julien et al., 2014); DISXUA, DISYAH, DISYEL and DISYIP (Maldonado-Domínguez et al., 2014); WOJXOK (Pan et al., 2014), have a phenyl group attached to the carboxamide N atom and these molecules have similar conformations to the present compounds, Table 1. These compounds also had a short intramolecular contact between the ortho-C hydrogen atom of the exocyclic benzene ring and the carboxamide O atom as in the present compounds. Details of the searches can be found in the supporting information.
6. Synthesis and crystallization
The coumarin derivatives 1–3 were synthesized by a two-step process. In the first step, 5-methylsalicylaldehyde (1 mmol) and diethyl malonate (1 mmol) and catalytic amounts of piperidine were dissolved in ethanol (10 ml) and refluxed for 4 h. After cooling to room temperature, the suspension was filtered off and ethyl 6-methylcoumarin-3-carboxylate was obtained. This compound was then dissolved in 20 ml of an ethanolic solution with 0.5% NaOH (aq.) and hydrolyzed under reflux for 1h. After reaction, 10% HCl (aq.) was added and the desired carboxylic acid was then filtered and washed with water (Chimenti et al., 2010).
Then, to a solution of 6-methylcoumarin-3-carboxylic acid (1 mmol) in dichloromethane, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (1.10 mmol) and 4-dimethylaminopyridine (DMAP) (1.10 mmol) were added. The mixture was kept under a et al., 2005). 6-Methyl-N-(3′-methylphenyl)coumarin-3-carboxamide (1) (yield: 79%; m.p. 467–468 K; crystallization solvent: methanol); 6-methyl-N-(3′-methoxyphenyl)coumarin-3-carboxamide (2) (yield: 74%; m.p. 447–448 K; crystallization solvent: methanol); 6-methoxy-N-(3′-methoxyphenyl)coumarin-3-carboxamide (3) (yield: 50.7%; m.p. 440–441 K; crystallization solvent: ethyl acetate).
of argon gas at 273 K for five minutes. Shortly after, the aromatic amine (1 mmol) with the intended substitution pattern was added. The reaction mixture was stirred for 4 h at room temperature. The crude product was filtered and purified by (hexane/ethyl acetate 9:1) or by recrystallization with ethanol to give the desired product, (Murata7. Refinement
Crystal data, data collection and structure . H atoms were treated as riding atoms with C—H(aromatic) = 0.95 Å and Uiso = 1.2Ueq(C), C—H(methyl) 0.98 Å and Uiso = 1.5Ueq(C) The amino H atoms were refined.
details are summarized in Table 7
|
Supporting information
https://doi.org/10.1107/S2056989016008665/hb7589sup1.cif
contains datablocks 1, 2, general, 3. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989016008665/hb75891sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989016008665/hb75892sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989016008665/hb75893sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016008665/hb75891sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016008665/hb75892sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016008665/hb75893sup7.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016008665/hb7589sup8.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989016008665/hb7589sup9.pdf
For all compounds, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: OSCAIL (McArdle et al., 2004) and SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014/7 (Sheldrick, 2015b) for (1), (2); OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014/6 (Sheldrick, 2015b) for (3). For all compounds, molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).C18H15NO3 | F(000) = 616 |
Mr = 293.31 | Dx = 1.425 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 7.2117 (3) Å | Cell parameters from 5809 reflections |
b = 8.0491 (3) Å | θ = 2.7–27.6° |
c = 23.6242 (9) Å | µ = 0.10 mm−1 |
β = 94.388 (4)° | T = 100 K |
V = 1367.31 (9) Å3 | Needle, yellow |
Z = 4 | 0.42 × 0.03 × 0.02 mm |
Rigaku AFC12 (Right) diffractometer | 3135 independent reflections |
Radiation source: Rotating Anode | 2593 reflections with I > 2σ(I) |
Detector resolution: 28.5714 pixels mm-1 | Rint = 0.023 |
profile data from ω–scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | h = −9→8 |
Tmin = 0.895, Tmax = 1.000 | k = −10→7 |
12045 measured reflections | l = −30→29 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0741P)2 + 0.3348P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3134 reflections | Δρmax = 0.35 e Å−3 |
205 parameters | Δρmin = −0.26 e Å−3 |
Experimental. CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.69397 (12) | 0.68051 (12) | −0.05947 (3) | 0.0158 (2) | |
O2 | 0.88820 (13) | 0.82921 (12) | −0.00415 (4) | 0.0191 (2) | |
O31 | 0.45616 (13) | 0.95381 (12) | 0.10022 (4) | 0.0199 (2) | |
N32 | 0.76928 (15) | 0.97441 (14) | 0.09028 (4) | 0.0153 (2) | |
H32 | 0.855 (2) | 0.949 (2) | 0.0664 (7) | 0.033 (5)* | |
C2 | 0.72934 (18) | 0.77998 (16) | −0.01268 (5) | 0.0147 (3) | |
C3 | 0.57335 (17) | 0.81575 (16) | 0.02182 (5) | 0.0137 (3) | |
C4 | 0.40358 (17) | 0.75122 (16) | 0.00695 (5) | 0.0144 (3) | |
H4 | 0.3034 | 0.7759 | 0.0294 | 0.017* | |
C4A | 0.37082 (17) | 0.64663 (15) | −0.04177 (5) | 0.0140 (3) | |
C5 | 0.19774 (18) | 0.57410 (16) | −0.05816 (5) | 0.0152 (3) | |
H5 | 0.0946 | 0.5956 | −0.0365 | 0.018* | |
C6 | 0.17503 (18) | 0.47192 (16) | −0.10530 (5) | 0.0148 (3) | |
C7 | 0.32959 (18) | 0.44378 (16) | −0.13696 (5) | 0.0159 (3) | |
H7 | 0.3155 | 0.3739 | −0.1694 | 0.019* | |
C8 | 0.50106 (18) | 0.51447 (16) | −0.12233 (5) | 0.0160 (3) | |
H8 | 0.6034 | 0.4950 | −0.1445 | 0.019* | |
C8A | 0.52020 (17) | 0.61462 (16) | −0.07444 (5) | 0.0139 (3) | |
C31 | 0.59396 (18) | 0.92182 (16) | 0.07469 (5) | 0.0144 (3) | |
C61 | −0.01018 (18) | 0.39458 (17) | −0.12285 (5) | 0.0178 (3) | |
H61A | 0.0066 | 0.2759 | −0.1302 | 0.027* | |
H61B | −0.0642 | 0.4489 | −0.1574 | 0.027* | |
H61C | −0.0937 | 0.4085 | −0.0924 | 0.027* | |
C311 | 0.83193 (18) | 1.06916 (16) | 0.13848 (5) | 0.0150 (3) | |
C312 | 0.71473 (18) | 1.12797 (16) | 0.17828 (5) | 0.0163 (3) | |
H312 | 0.5861 | 1.1013 | 0.1745 | 0.020* | |
C313 | 0.78614 (19) | 1.22628 (17) | 0.22372 (5) | 0.0175 (3) | |
C314 | 0.97525 (19) | 1.26281 (17) | 0.22921 (5) | 0.0194 (3) | |
H314 | 1.0244 | 1.3307 | 0.2597 | 0.023* | |
C315 | 1.09272 (19) | 1.20017 (17) | 0.19020 (5) | 0.0197 (3) | |
H315 | 1.2221 | 1.2236 | 0.1947 | 0.024* | |
C316 | 1.02253 (18) | 1.10408 (17) | 0.14486 (5) | 0.0175 (3) | |
H316 | 1.1032 | 1.0622 | 0.1183 | 0.021* | |
C317 | 0.6556 (2) | 1.29639 (18) | 0.26456 (5) | 0.0220 (3) | |
H31A | 0.7234 | 1.3144 | 0.3016 | 0.033* | |
H31B | 0.5535 | 1.2180 | 0.2687 | 0.033* | |
H31C | 0.6050 | 1.4023 | 0.2499 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0138 (5) | 0.0177 (5) | 0.0158 (4) | −0.0013 (4) | 0.0014 (3) | −0.0033 (4) |
O2 | 0.0158 (5) | 0.0214 (5) | 0.0204 (5) | −0.0018 (4) | 0.0029 (3) | −0.0037 (4) |
O31 | 0.0178 (5) | 0.0229 (5) | 0.0195 (5) | 0.0001 (4) | 0.0044 (4) | −0.0047 (4) |
N32 | 0.0157 (6) | 0.0153 (6) | 0.0150 (5) | 0.0015 (4) | 0.0017 (4) | −0.0020 (4) |
C2 | 0.0174 (7) | 0.0116 (6) | 0.0148 (6) | 0.0008 (5) | 0.0000 (5) | 0.0004 (5) |
C3 | 0.0166 (6) | 0.0111 (6) | 0.0136 (6) | 0.0019 (5) | 0.0013 (4) | 0.0019 (5) |
C4 | 0.0163 (6) | 0.0122 (6) | 0.0149 (6) | 0.0036 (5) | 0.0035 (5) | 0.0021 (5) |
C4A | 0.0156 (6) | 0.0115 (6) | 0.0147 (6) | 0.0021 (5) | 0.0003 (5) | 0.0020 (5) |
C5 | 0.0143 (6) | 0.0137 (6) | 0.0179 (6) | 0.0021 (5) | 0.0027 (5) | 0.0018 (5) |
C6 | 0.0150 (6) | 0.0126 (6) | 0.0164 (6) | 0.0022 (5) | −0.0016 (4) | 0.0037 (5) |
C7 | 0.0178 (7) | 0.0157 (7) | 0.0140 (6) | 0.0013 (5) | −0.0006 (5) | −0.0010 (5) |
C8 | 0.0153 (6) | 0.0176 (7) | 0.0154 (6) | 0.0031 (5) | 0.0025 (5) | 0.0003 (5) |
C8A | 0.0127 (6) | 0.0127 (6) | 0.0161 (6) | 0.0006 (5) | −0.0007 (5) | 0.0021 (5) |
C31 | 0.0179 (7) | 0.0115 (6) | 0.0138 (6) | 0.0010 (5) | 0.0012 (5) | 0.0016 (5) |
C61 | 0.0147 (6) | 0.0175 (7) | 0.0210 (6) | −0.0002 (5) | −0.0004 (5) | −0.0007 (5) |
C311 | 0.0188 (7) | 0.0116 (6) | 0.0142 (6) | 0.0011 (5) | −0.0005 (5) | 0.0019 (5) |
C312 | 0.0171 (6) | 0.0152 (6) | 0.0166 (6) | 0.0016 (5) | 0.0010 (5) | 0.0025 (5) |
C313 | 0.0237 (7) | 0.0143 (7) | 0.0147 (6) | 0.0017 (5) | 0.0020 (5) | 0.0027 (5) |
C314 | 0.0243 (7) | 0.0168 (7) | 0.0163 (6) | −0.0022 (5) | −0.0034 (5) | 0.0010 (5) |
C315 | 0.0180 (7) | 0.0195 (7) | 0.0210 (6) | −0.0025 (5) | −0.0020 (5) | 0.0039 (5) |
C316 | 0.0187 (7) | 0.0172 (7) | 0.0168 (6) | 0.0014 (5) | 0.0027 (5) | 0.0032 (5) |
C317 | 0.0247 (7) | 0.0229 (7) | 0.0183 (6) | 0.0008 (6) | 0.0018 (5) | −0.0026 (5) |
O1—C2 | 1.3730 (15) | C8—C8A | 1.3874 (17) |
O1—C8A | 1.3817 (15) | C8—H8 | 0.9500 |
O2—C2 | 1.2144 (15) | C61—H61A | 0.9800 |
O31—C31 | 1.2287 (15) | C61—H61B | 0.9800 |
N32—C31 | 1.3573 (16) | C61—H61C | 0.9800 |
N32—C311 | 1.4154 (16) | C311—C312 | 1.3943 (17) |
N32—H32 | 0.893 (18) | C311—C316 | 1.3998 (18) |
C2—C3 | 1.4672 (17) | C312—C313 | 1.3997 (18) |
C3—C4 | 1.3514 (18) | C312—H312 | 0.9500 |
C3—C31 | 1.5109 (16) | C313—C314 | 1.3914 (19) |
C4—C4A | 1.4309 (17) | C313—C317 | 1.5082 (18) |
C4—H4 | 0.9500 | C314—C315 | 1.3931 (19) |
C4A—C8A | 1.3964 (17) | C314—H314 | 0.9500 |
C4A—C5 | 1.4053 (17) | C315—C316 | 1.3851 (18) |
C5—C6 | 1.3841 (18) | C315—H315 | 0.9500 |
C5—H5 | 0.9500 | C316—H316 | 0.9500 |
C6—C7 | 1.4074 (18) | C317—H31A | 0.9800 |
C6—C61 | 1.5029 (17) | C317—H31B | 0.9800 |
C7—C8 | 1.3810 (18) | C317—H31C | 0.9800 |
C7—H7 | 0.9500 | ||
C2—O1—C8A | 122.61 (10) | O31—C31—C3 | 119.49 (11) |
C31—N32—C311 | 128.30 (11) | N32—C31—C3 | 115.55 (11) |
C31—N32—H32 | 115.8 (11) | C6—C61—H61A | 109.5 |
C311—N32—H32 | 115.8 (12) | C6—C61—H61B | 109.5 |
O2—C2—O1 | 116.01 (11) | H61A—C61—H61B | 109.5 |
O2—C2—C3 | 126.69 (11) | C6—C61—H61C | 109.5 |
O1—C2—C3 | 117.29 (11) | H61A—C61—H61C | 109.5 |
C4—C3—C2 | 119.88 (11) | H61B—C61—H61C | 109.5 |
C4—C3—C31 | 117.51 (11) | C312—C311—C316 | 120.00 (12) |
C2—C3—C31 | 122.61 (11) | C312—C311—N32 | 123.55 (12) |
C3—C4—C4A | 121.71 (12) | C316—C311—N32 | 116.44 (11) |
C3—C4—H4 | 119.1 | C311—C312—C313 | 120.18 (12) |
C4A—C4—H4 | 119.1 | C311—C312—H312 | 119.9 |
C8A—C4A—C5 | 118.53 (11) | C313—C312—H312 | 119.9 |
C8A—C4A—C4 | 117.80 (12) | C314—C313—C312 | 119.43 (12) |
C5—C4A—C4 | 123.68 (11) | C314—C313—C317 | 121.11 (12) |
C6—C5—C4A | 121.09 (12) | C312—C313—C317 | 119.41 (12) |
C6—C5—H5 | 119.5 | C313—C314—C315 | 120.21 (12) |
C4A—C5—H5 | 119.5 | C313—C314—H314 | 119.9 |
C5—C6—C7 | 118.26 (11) | C315—C314—H314 | 119.9 |
C5—C6—C61 | 121.07 (12) | C316—C315—C314 | 120.59 (13) |
C7—C6—C61 | 120.66 (11) | C316—C315—H315 | 119.7 |
C8—C7—C6 | 122.08 (12) | C314—C315—H315 | 119.7 |
C8—C7—H7 | 119.0 | C315—C316—C311 | 119.55 (12) |
C6—C7—H7 | 119.0 | C315—C316—H316 | 120.2 |
C7—C8—C8A | 118.34 (12) | C311—C316—H316 | 120.2 |
C7—C8—H8 | 120.8 | C313—C317—H31A | 109.5 |
C8A—C8—H8 | 120.8 | C313—C317—H31B | 109.5 |
O1—C8A—C8 | 117.61 (11) | H31A—C317—H31B | 109.5 |
O1—C8A—C4A | 120.71 (11) | C313—C317—H31C | 109.5 |
C8—C8A—C4A | 121.68 (12) | H31A—C317—H31C | 109.5 |
O31—C31—N32 | 124.96 (12) | H31B—C317—H31C | 109.5 |
C8A—O1—C2—O2 | 179.71 (11) | C4—C4A—C8A—O1 | 0.84 (17) |
C8A—O1—C2—C3 | −0.18 (17) | C5—C4A—C8A—C8 | 0.31 (18) |
O2—C2—C3—C4 | −179.80 (12) | C4—C4A—C8A—C8 | 179.93 (11) |
O1—C2—C3—C4 | 0.07 (18) | C311—N32—C31—O31 | 2.3 (2) |
O2—C2—C3—C31 | −0.5 (2) | C311—N32—C31—C3 | −177.45 (11) |
O1—C2—C3—C31 | 179.32 (10) | C4—C3—C31—O31 | −4.22 (18) |
C2—C3—C4—C4A | 0.50 (19) | C2—C3—C31—O31 | 176.51 (12) |
C31—C3—C4—C4A | −178.79 (11) | C4—C3—C31—N32 | 175.55 (11) |
C3—C4—C4A—C8A | −0.95 (18) | C2—C3—C31—N32 | −3.72 (17) |
C3—C4—C4A—C5 | 178.65 (12) | C31—N32—C311—C312 | −1.5 (2) |
C8A—C4A—C5—C6 | 0.54 (18) | C31—N32—C311—C316 | 178.94 (12) |
C4—C4A—C5—C6 | −179.05 (11) | C316—C311—C312—C313 | 1.97 (19) |
C4A—C5—C6—C7 | −0.72 (18) | N32—C311—C312—C313 | −177.58 (12) |
C4A—C5—C6—C61 | −179.92 (11) | C311—C312—C313—C314 | −0.86 (19) |
C5—C6—C7—C8 | 0.06 (19) | C311—C312—C313—C317 | 176.73 (12) |
C61—C6—C7—C8 | 179.26 (12) | C312—C313—C314—C315 | −0.84 (19) |
C6—C7—C8—C8A | 0.75 (19) | C317—C313—C314—C315 | −178.39 (12) |
C2—O1—C8A—C8 | −179.42 (11) | C313—C314—C315—C316 | 1.4 (2) |
C2—O1—C8A—C4A | −0.29 (18) | C314—C315—C316—C311 | −0.3 (2) |
C7—C8—C8A—O1 | 178.18 (11) | C312—C311—C316—C315 | −1.37 (19) |
C7—C8—C8A—C4A | −0.94 (19) | N32—C311—C316—C315 | 178.21 (11) |
C5—C4A—C8A—O1 | −178.78 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N32—H32···O2 | 0.893 (18) | 1.957 (18) | 2.7149 (14) | 141.7 (16) |
C312—H312···O31 | 0.95 | 2.26 | 2.8838 (16) | 122 |
C5—H5···O1i | 0.95 | 2.98 | 3.7304 (15) | 137 |
Symmetry code: (i) x−1, y, z. |
C18H15NO4 | Z = 2 |
Mr = 309.31 | F(000) = 324 |
Triclinic, P1 | Dx = 1.439 Mg m−3 |
a = 7.1028 (4) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 10.1367 (4) Å | Cell parameters from 9156 reflections |
c = 10.8171 (5) Å | θ = 2.0–27.5° |
α = 75.827 (4)° | µ = 0.10 mm−1 |
β = 88.318 (4)° | T = 100 K |
γ = 71.271 (4)° | Needle, colourless |
V = 714.10 (6) Å3 | 0.20 × 0.04 × 0.02 mm |
Rigaku AFC12 (Right) diffractometer | 3262 independent reflections |
Radiation source: Rotating Anode | 2704 reflections with I > 2σ(I) |
Confocal mirrors, HF Varimax monochromator | Rint = 0.025 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 2.0° |
profile data from ω–scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | k = −13→13 |
Tmin = 0.893, Tmax = 1.000 | l = −14→14 |
15638 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.139 | w = 1/[σ2(Fo2) + (0.0823P)2 + 0.2203P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3261 reflections | Δρmax = 0.37 e Å−3 |
214 parameters | Δρmin = −0.21 e Å−3 |
Experimental. CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.65788 (15) | 0.44209 (11) | 0.15778 (9) | 0.0286 (3) | |
O2 | 0.62079 (16) | 0.61257 (11) | 0.25621 (10) | 0.0336 (3) | |
O31 | 0.86393 (17) | 0.30291 (11) | 0.59953 (9) | 0.0342 (3) | |
N32 | 0.73898 (17) | 0.54313 (13) | 0.50493 (12) | 0.0254 (3) | |
H32 | 0.687 (3) | 0.604 (2) | 0.423 (2) | 0.050 (6)* | |
O313 | 0.68878 (17) | 0.96846 (12) | 0.62447 (11) | 0.0367 (3) | |
C8A | 0.6993 (2) | 0.30000 (15) | 0.15628 (13) | 0.0245 (3) | |
C2 | 0.6741 (2) | 0.48376 (15) | 0.26677 (14) | 0.0263 (3) | |
C3 | 0.75233 (19) | 0.37076 (14) | 0.38259 (12) | 0.0227 (3) | |
C4 | 0.79282 (19) | 0.23155 (15) | 0.38073 (13) | 0.0241 (3) | |
H4 | 0.8409 | 0.1587 | 0.4573 | 0.029* | |
C4A | 0.76523 (19) | 0.19084 (15) | 0.26675 (13) | 0.0232 (3) | |
C5 | 0.8052 (2) | 0.04818 (15) | 0.25954 (13) | 0.0249 (3) | |
H5 | 0.8508 | −0.0279 | 0.3343 | 0.030* | |
C6 | 0.7792 (2) | 0.01685 (15) | 0.14495 (14) | 0.0258 (3) | |
C7 | 0.7102 (2) | 0.13159 (16) | 0.03699 (14) | 0.0281 (3) | |
H7 | 0.6904 | 0.1114 | −0.0420 | 0.034* | |
C8 | 0.6702 (2) | 0.27245 (16) | 0.04094 (14) | 0.0293 (3) | |
H8 | 0.6238 | 0.3486 | −0.0336 | 0.035* | |
C31 | 0.7903 (2) | 0.40253 (15) | 0.50651 (13) | 0.0250 (3) | |
C61 | 0.8246 (2) | −0.13560 (16) | 0.13511 (15) | 0.0325 (3) | |
H61A | 0.7066 | −0.1464 | 0.0995 | 0.049* | |
H61B | 0.8615 | −0.2012 | 0.2202 | 0.049* | |
H61C | 0.9351 | −0.1586 | 0.0792 | 0.049* | |
C311 | 0.75735 (19) | 0.60513 (16) | 0.60585 (13) | 0.0252 (3) | |
C312 | 0.7157 (2) | 0.75307 (16) | 0.57413 (14) | 0.0268 (3) | |
H312 | 0.6788 | 0.8065 | 0.4882 | 0.032* | |
C313 | 0.7276 (2) | 0.82377 (16) | 0.66755 (14) | 0.0289 (3) | |
C314 | 0.7787 (2) | 0.74642 (17) | 0.79326 (14) | 0.0321 (3) | |
H314 | 0.7861 | 0.7937 | 0.8578 | 0.039* | |
C315 | 0.8186 (2) | 0.59968 (18) | 0.82285 (15) | 0.0356 (4) | |
H315 | 0.8534 | 0.5465 | 0.9090 | 0.043* | |
C316 | 0.8099 (2) | 0.52680 (17) | 0.73131 (14) | 0.0318 (3) | |
H316 | 0.8392 | 0.4254 | 0.7540 | 0.038* | |
C317 | 0.6726 (2) | 1.04748 (18) | 0.71900 (16) | 0.0368 (4) | |
H31A | 0.6357 | 1.1504 | 0.6774 | 0.055* | |
H31B | 0.8008 | 1.0162 | 0.7670 | 0.055* | |
H31C | 0.5703 | 1.0302 | 0.7775 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0367 (6) | 0.0231 (5) | 0.0253 (5) | −0.0075 (4) | −0.0064 (4) | −0.0066 (4) |
O2 | 0.0443 (6) | 0.0214 (5) | 0.0336 (6) | −0.0075 (4) | −0.0094 (5) | −0.0070 (4) |
O31 | 0.0488 (7) | 0.0300 (6) | 0.0241 (5) | −0.0119 (5) | −0.0046 (4) | −0.0073 (4) |
N32 | 0.0263 (6) | 0.0262 (6) | 0.0261 (6) | −0.0088 (5) | 0.0001 (5) | −0.0103 (5) |
O313 | 0.0481 (7) | 0.0317 (6) | 0.0376 (6) | −0.0158 (5) | 0.0010 (5) | −0.0181 (5) |
C8A | 0.0228 (6) | 0.0233 (7) | 0.0285 (7) | −0.0071 (5) | −0.0009 (5) | −0.0083 (5) |
C2 | 0.0260 (7) | 0.0274 (7) | 0.0274 (7) | −0.0093 (6) | −0.0027 (5) | −0.0092 (6) |
C3 | 0.0203 (6) | 0.0251 (7) | 0.0242 (7) | −0.0083 (5) | 0.0010 (5) | −0.0073 (5) |
C4 | 0.0222 (6) | 0.0266 (7) | 0.0238 (7) | −0.0082 (5) | 0.0005 (5) | −0.0066 (5) |
C4A | 0.0194 (6) | 0.0280 (7) | 0.0248 (7) | −0.0091 (5) | 0.0023 (5) | −0.0099 (5) |
C5 | 0.0245 (7) | 0.0250 (7) | 0.0261 (7) | −0.0086 (5) | 0.0025 (5) | −0.0072 (5) |
C6 | 0.0226 (6) | 0.0277 (7) | 0.0314 (7) | −0.0098 (5) | 0.0047 (5) | −0.0132 (6) |
C7 | 0.0276 (7) | 0.0338 (8) | 0.0256 (7) | −0.0098 (6) | 0.0002 (5) | −0.0122 (6) |
C8 | 0.0320 (7) | 0.0295 (7) | 0.0251 (7) | −0.0077 (6) | −0.0033 (6) | −0.0071 (6) |
C31 | 0.0241 (7) | 0.0278 (7) | 0.0255 (7) | −0.0096 (5) | 0.0016 (5) | −0.0094 (5) |
C61 | 0.0359 (8) | 0.0300 (8) | 0.0363 (8) | −0.0114 (6) | 0.0040 (6) | −0.0156 (6) |
C311 | 0.0199 (6) | 0.0322 (7) | 0.0293 (7) | −0.0106 (5) | 0.0035 (5) | −0.0154 (6) |
C312 | 0.0247 (7) | 0.0308 (7) | 0.0284 (7) | −0.0101 (6) | 0.0012 (5) | −0.0119 (6) |
C313 | 0.0241 (7) | 0.0323 (8) | 0.0367 (8) | −0.0126 (6) | 0.0051 (6) | −0.0161 (6) |
C314 | 0.0304 (8) | 0.0440 (9) | 0.0309 (8) | −0.0156 (7) | 0.0060 (6) | −0.0211 (7) |
C315 | 0.0390 (8) | 0.0434 (9) | 0.0264 (7) | −0.0136 (7) | 0.0031 (6) | −0.0118 (6) |
C316 | 0.0339 (8) | 0.0339 (8) | 0.0293 (8) | −0.0113 (6) | 0.0025 (6) | −0.0109 (6) |
C317 | 0.0360 (8) | 0.0392 (9) | 0.0471 (9) | −0.0166 (7) | 0.0072 (7) | −0.0273 (7) |
O1—C2 | 1.3656 (16) | C6—C61 | 1.5040 (19) |
O1—C8A | 1.3785 (16) | C7—C8 | 1.375 (2) |
O2—C2 | 1.2137 (17) | C7—H7 | 0.9500 |
O31—C31 | 1.2247 (17) | C8—H8 | 0.9500 |
N32—C31 | 1.3488 (18) | C61—H61A | 0.9800 |
N32—C311 | 1.4145 (17) | C61—H61B | 0.9800 |
N32—H32 | 0.96 (2) | C61—H61C | 0.9800 |
O313—C313 | 1.3629 (18) | C311—C312 | 1.387 (2) |
O313—C317 | 1.4267 (17) | C311—C316 | 1.387 (2) |
C8A—C8 | 1.3785 (19) | C312—C313 | 1.3931 (19) |
C8A—C4A | 1.3871 (19) | C312—H312 | 0.9500 |
C2—C3 | 1.4560 (19) | C313—C314 | 1.386 (2) |
C3—C4 | 1.3518 (19) | C314—C315 | 1.377 (2) |
C3—C31 | 1.5038 (18) | C314—H314 | 0.9500 |
C4—C4A | 1.4297 (18) | C315—C316 | 1.386 (2) |
C4—H4 | 0.9500 | C315—H315 | 0.9500 |
C4A—C5 | 1.4028 (19) | C316—H316 | 0.9500 |
C5—C6 | 1.3841 (19) | C317—H31A | 0.9800 |
C5—H5 | 0.9500 | C317—H31B | 0.9800 |
C6—C7 | 1.400 (2) | C317—H31C | 0.9800 |
C2—O1—C8A | 122.60 (11) | O31—C31—C3 | 119.53 (12) |
C31—N32—C311 | 128.29 (13) | N32—C31—C3 | 115.57 (12) |
C31—N32—H32 | 112.4 (12) | C6—C61—H61A | 109.5 |
C311—N32—H32 | 119.3 (12) | C6—C61—H61B | 109.5 |
C313—O313—C317 | 116.71 (12) | H61A—C61—H61B | 109.5 |
O1—C8A—C8 | 116.95 (12) | C6—C61—H61C | 109.5 |
O1—C8A—C4A | 120.97 (12) | H61A—C61—H61C | 109.5 |
C8—C8A—C4A | 122.07 (13) | H61B—C61—H61C | 109.5 |
O2—C2—O1 | 115.82 (12) | C312—C311—C316 | 120.02 (13) |
O2—C2—C3 | 126.86 (13) | C312—C311—N32 | 116.32 (13) |
O1—C2—C3 | 117.32 (12) | C316—C311—N32 | 123.65 (14) |
C4—C3—C2 | 119.74 (12) | C311—C312—C313 | 120.38 (14) |
C4—C3—C31 | 117.86 (12) | C311—C312—H312 | 119.8 |
C2—C3—C31 | 122.40 (12) | C313—C312—H312 | 119.8 |
C3—C4—C4A | 121.83 (13) | O313—C313—C314 | 124.95 (13) |
C3—C4—H4 | 119.1 | O313—C313—C312 | 115.09 (13) |
C4A—C4—H4 | 119.1 | C314—C313—C312 | 119.96 (14) |
C8A—C4A—C5 | 118.50 (12) | C315—C314—C313 | 118.75 (13) |
C8A—C4A—C4 | 117.36 (12) | C315—C314—H314 | 120.6 |
C5—C4A—C4 | 124.12 (13) | C313—C314—H314 | 120.6 |
C6—C5—C4A | 120.84 (13) | C314—C315—C316 | 122.32 (15) |
C6—C5—H5 | 119.6 | C314—C315—H315 | 118.8 |
C4A—C5—H5 | 119.6 | C316—C315—H315 | 118.8 |
C5—C6—C7 | 118.07 (13) | C315—C316—C311 | 118.57 (15) |
C5—C6—C61 | 121.52 (13) | C315—C316—H316 | 120.7 |
C7—C6—C61 | 120.41 (13) | C311—C316—H316 | 120.7 |
C8—C7—C6 | 122.46 (13) | O313—C317—H31A | 109.5 |
C8—C7—H7 | 118.8 | O313—C317—H31B | 109.5 |
C6—C7—H7 | 118.8 | H31A—C317—H31B | 109.5 |
C7—C8—C8A | 118.06 (13) | O313—C317—H31C | 109.5 |
C7—C8—H8 | 121.0 | H31A—C317—H31C | 109.5 |
C8A—C8—H8 | 121.0 | H31B—C317—H31C | 109.5 |
O31—C31—N32 | 124.90 (13) | ||
C2—O1—C8A—C8 | 177.70 (12) | O1—C8A—C8—C7 | −179.94 (12) |
C2—O1—C8A—C4A | −1.7 (2) | C4A—C8A—C8—C7 | −0.6 (2) |
C8A—O1—C2—O2 | −175.39 (12) | C311—N32—C31—O31 | −0.1 (2) |
C8A—O1—C2—C3 | 4.54 (19) | C311—N32—C31—C3 | −179.84 (12) |
O2—C2—C3—C4 | 175.53 (13) | C4—C3—C31—O31 | 3.1 (2) |
O1—C2—C3—C4 | −4.39 (19) | C2—C3—C31—O31 | −177.02 (13) |
O2—C2—C3—C31 | −4.3 (2) | C4—C3—C31—N32 | −177.06 (11) |
O1—C2—C3—C31 | 175.77 (11) | C2—C3—C31—N32 | 2.78 (19) |
C2—C3—C4—C4A | 1.4 (2) | C31—N32—C311—C312 | 172.29 (12) |
C31—C3—C4—C4A | −178.73 (11) | C31—N32—C311—C316 | −9.0 (2) |
O1—C8A—C4A—C5 | −179.94 (11) | C316—C311—C312—C313 | 0.5 (2) |
C8—C8A—C4A—C5 | 0.7 (2) | N32—C311—C312—C313 | 179.28 (12) |
O1—C8A—C4A—C4 | −1.47 (19) | C317—O313—C313—C314 | −9.2 (2) |
C8—C8A—C4A—C4 | 179.19 (12) | C317—O313—C313—C312 | 171.67 (12) |
C3—C4—C4A—C8A | 1.5 (2) | C311—C312—C313—O313 | 178.26 (12) |
C3—C4—C4A—C5 | 179.88 (12) | C311—C312—C313—C314 | −0.9 (2) |
C8A—C4A—C5—C6 | −0.1 (2) | O313—C313—C314—C315 | −178.48 (13) |
C4—C4A—C5—C6 | −178.51 (12) | C312—C313—C314—C315 | 0.6 (2) |
C4A—C5—C6—C7 | −0.5 (2) | C313—C314—C315—C316 | 0.1 (2) |
C4A—C5—C6—C61 | 178.98 (12) | C314—C315—C316—C311 | −0.6 (2) |
C5—C6—C7—C8 | 0.7 (2) | C312—C311—C316—C315 | 0.2 (2) |
C61—C6—C7—C8 | −178.82 (13) | N32—C311—C316—C315 | −178.48 (13) |
C6—C7—C8—C8A | −0.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N32—H32···O2 | 0.96 (2) | 1.85 (2) | 2.6952 (16) | 145.7 (17) |
C8—H8···O1i | 0.95 | 2.52 | 3.3676 (18) | 149 |
C61—H61B···O31ii | 0.98 | 2.57 | 3.4044 (19) | 143 |
C317—H31A···O31iii | 0.98 | 2.57 | 3.2769 (19) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y, −z+1; (iii) x, y+1, z. |
C18H15NO5 | Z = 2 |
Mr = 325.31 | F(000) = 340 |
Triclinic, P1 | Dx = 1.483 Mg m−3 |
a = 6.7722 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3098 (7) Å | Cell parameters from 3630 reflections |
c = 14.4202 (13) Å | θ = 2.7–27.4° |
α = 91.874 (7)° | µ = 0.11 mm−1 |
β = 100.009 (7)° | T = 100 K |
γ = 113.042 (7)° | Plate, yellow |
V = 730.84 (11) Å3 | 0.17 × 0.11 × 0.02 mm |
Rigaku AFC12 (Right) diffractometer | 3302 independent reflections |
Radiation source: Rotating Anode, Rotating Anode | 2666 reflections with I > 2σ(I) |
Confocal mirrors, HF Varimax monochromator | Rint = 0.033 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 2.7° |
profile data from ω–scans | h = −7→8 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | k = −10→9 |
Tmin = 0.792, Tmax = 1.000 | l = −18→18 |
8745 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.152 | w = 1/[σ2(Fo2) + (0.0606P)2 + 0.3539P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
3302 reflections | Δρmax = 0.25 e Å−3 |
223 parameters | Δρmin = −0.26 e Å−3 |
Experimental. CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7758 (2) | 0.24765 (19) | 0.52564 (10) | 0.0207 (3) | |
O2 | 0.9491 (2) | 0.3631 (2) | 0.41317 (11) | 0.0227 (4) | |
O6 | 0.0500 (2) | 0.0132 (2) | 0.68826 (11) | 0.0244 (4) | |
O31 | 0.4048 (2) | 0.4552 (2) | 0.27644 (11) | 0.0249 (4) | |
O313 | 0.5339 (3) | 0.7656 (2) | 0.01169 (11) | 0.0272 (4) | |
N32 | 0.7594 (3) | 0.4985 (2) | 0.27488 (13) | 0.0212 (4) | |
H32 | 0.872 (4) | 0.476 (3) | 0.3080 (18) | 0.032 (7)* | |
C2 | 0.7823 (3) | 0.3270 (3) | 0.44407 (15) | 0.0195 (5) | |
C3 | 0.5890 (3) | 0.3567 (3) | 0.40191 (15) | 0.0183 (4) | |
C4 | 0.4121 (3) | 0.3038 (3) | 0.44288 (15) | 0.0193 (5) | |
H4 | 0.2872 | 0.3236 | 0.4147 | 0.023* | |
C4A | 0.4085 (3) | 0.2184 (3) | 0.52792 (15) | 0.0188 (5) | |
C5 | 0.2277 (3) | 0.1573 (3) | 0.57142 (16) | 0.0200 (5) | |
H5 | 0.0987 | 0.1733 | 0.5454 | 0.024* | |
C6 | 0.2368 (3) | 0.0732 (3) | 0.65245 (15) | 0.0203 (5) | |
C7 | 0.4289 (4) | 0.0548 (3) | 0.69251 (16) | 0.0214 (5) | |
H7 | 0.4362 | 0.0012 | 0.7495 | 0.026* | |
C8 | 0.6098 (4) | 0.1144 (3) | 0.64972 (15) | 0.0213 (5) | |
H8 | 0.7399 | 0.1004 | 0.6763 | 0.026* | |
C8A | 0.5963 (3) | 0.1941 (3) | 0.56802 (15) | 0.0190 (5) | |
C31 | 0.5759 (3) | 0.4431 (3) | 0.31191 (15) | 0.0203 (5) | |
C61 | 0.0465 (4) | −0.0852 (3) | 0.76813 (16) | 0.0252 (5) | |
H61A | −0.0977 | −0.1238 | 0.7851 | 0.038* | |
H61B | 0.1593 | −0.0108 | 0.8219 | 0.038* | |
H61C | 0.0755 | −0.1882 | 0.7520 | 0.038* | |
C311 | 0.7911 (3) | 0.5766 (3) | 0.19019 (15) | 0.0203 (5) | |
C312 | 0.6436 (3) | 0.6337 (3) | 0.13821 (15) | 0.0210 (5) | |
H312 | 0.5130 | 0.6212 | 0.1588 | 0.025* | |
C313 | 0.6884 (3) | 0.7093 (3) | 0.05573 (16) | 0.0216 (5) | |
C314 | 0.8761 (4) | 0.7263 (3) | 0.02325 (16) | 0.0239 (5) | |
H314 | 0.9040 | 0.7762 | −0.0339 | 0.029* | |
C315 | 1.0229 (4) | 0.6682 (3) | 0.07684 (17) | 0.0256 (5) | |
H315 | 1.1530 | 0.6802 | 0.0559 | 0.031* | |
C316 | 0.9831 (4) | 0.5942 (3) | 0.15912 (16) | 0.0239 (5) | |
H316 | 1.0846 | 0.5553 | 0.1947 | 0.029* | |
C317 | 0.5672 (4) | 0.8430 (3) | −0.07431 (17) | 0.0296 (5) | |
H31A | 0.4426 | 0.8715 | −0.1002 | 0.044* | |
H31B | 0.5798 | 0.7598 | −0.1203 | 0.044* | |
H31C | 0.7020 | 0.9508 | −0.0615 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0169 (8) | 0.0216 (8) | 0.0281 (8) | 0.0112 (6) | 0.0064 (6) | 0.0086 (6) |
O2 | 0.0189 (8) | 0.0229 (8) | 0.0302 (9) | 0.0109 (7) | 0.0078 (6) | 0.0075 (6) |
O6 | 0.0193 (8) | 0.0271 (9) | 0.0313 (9) | 0.0115 (7) | 0.0101 (6) | 0.0116 (7) |
O31 | 0.0169 (8) | 0.0281 (9) | 0.0315 (9) | 0.0101 (7) | 0.0058 (6) | 0.0106 (7) |
O313 | 0.0262 (9) | 0.0306 (9) | 0.0318 (9) | 0.0168 (7) | 0.0091 (7) | 0.0130 (7) |
N32 | 0.0176 (10) | 0.0238 (10) | 0.0267 (10) | 0.0116 (8) | 0.0068 (8) | 0.0081 (8) |
C2 | 0.0186 (11) | 0.0131 (10) | 0.0254 (11) | 0.0051 (8) | 0.0044 (8) | 0.0014 (8) |
C3 | 0.0172 (10) | 0.0133 (10) | 0.0252 (11) | 0.0069 (8) | 0.0047 (8) | 0.0025 (8) |
C4 | 0.0182 (11) | 0.0133 (10) | 0.0268 (12) | 0.0076 (8) | 0.0022 (8) | 0.0027 (8) |
C4A | 0.0199 (11) | 0.0126 (10) | 0.0250 (11) | 0.0078 (8) | 0.0048 (8) | 0.0010 (8) |
C5 | 0.0153 (10) | 0.0172 (11) | 0.0288 (12) | 0.0088 (8) | 0.0023 (8) | 0.0016 (9) |
C6 | 0.0185 (11) | 0.0162 (11) | 0.0267 (12) | 0.0068 (9) | 0.0063 (9) | 0.0021 (8) |
C7 | 0.0230 (12) | 0.0187 (11) | 0.0243 (11) | 0.0091 (9) | 0.0068 (9) | 0.0052 (9) |
C8 | 0.0185 (11) | 0.0175 (11) | 0.0294 (12) | 0.0095 (9) | 0.0026 (9) | 0.0041 (9) |
C8A | 0.0157 (10) | 0.0143 (10) | 0.0274 (12) | 0.0054 (8) | 0.0069 (8) | 0.0020 (8) |
C31 | 0.0181 (11) | 0.0160 (11) | 0.0267 (12) | 0.0072 (9) | 0.0035 (9) | 0.0022 (9) |
C61 | 0.0258 (12) | 0.0226 (12) | 0.0290 (12) | 0.0092 (10) | 0.0106 (9) | 0.0083 (9) |
C311 | 0.0206 (11) | 0.0135 (10) | 0.0254 (11) | 0.0051 (9) | 0.0055 (8) | 0.0014 (8) |
C312 | 0.0190 (11) | 0.0167 (11) | 0.0293 (12) | 0.0077 (9) | 0.0084 (9) | 0.0049 (9) |
C313 | 0.0190 (11) | 0.0171 (11) | 0.0283 (12) | 0.0073 (9) | 0.0036 (9) | 0.0018 (9) |
C314 | 0.0256 (12) | 0.0210 (12) | 0.0262 (12) | 0.0088 (9) | 0.0088 (9) | 0.0070 (9) |
C315 | 0.0182 (11) | 0.0252 (12) | 0.0346 (13) | 0.0076 (9) | 0.0110 (9) | 0.0060 (10) |
C316 | 0.0201 (11) | 0.0216 (12) | 0.0308 (13) | 0.0099 (9) | 0.0036 (9) | 0.0044 (9) |
C317 | 0.0308 (13) | 0.0296 (13) | 0.0301 (13) | 0.0129 (11) | 0.0069 (10) | 0.0129 (10) |
O1—C2 | 1.366 (2) | C7—C8 | 1.391 (3) |
O1—C8A | 1.379 (2) | C7—H7 | 0.9500 |
O2—C2 | 1.218 (2) | C8—C8A | 1.377 (3) |
O6—C6 | 1.366 (3) | C8—H8 | 0.9500 |
O6—C61 | 1.432 (3) | C61—H61A | 0.9800 |
O31—C31 | 1.226 (3) | C61—H61B | 0.9800 |
O313—C313 | 1.374 (3) | C61—H61C | 0.9800 |
O313—C317 | 1.428 (3) | C311—C312 | 1.385 (3) |
N32—C31 | 1.356 (3) | C311—C316 | 1.404 (3) |
N32—C311 | 1.412 (3) | C312—C313 | 1.388 (3) |
N32—H32 | 0.92 (3) | C312—H312 | 0.9500 |
C2—C3 | 1.459 (3) | C313—C314 | 1.388 (3) |
C3—C4 | 1.352 (3) | C314—C315 | 1.397 (3) |
C3—C31 | 1.509 (3) | C314—H314 | 0.9500 |
C4—C4A | 1.436 (3) | C315—C316 | 1.374 (3) |
C4—H4 | 0.9500 | C315—H315 | 0.9500 |
C4A—C8A | 1.394 (3) | C316—H316 | 0.9500 |
C4A—C5 | 1.397 (3) | C317—H31A | 0.9800 |
C5—C6 | 1.385 (3) | C317—H31B | 0.9800 |
C5—H5 | 0.9500 | C317—H31C | 0.9800 |
C6—C7 | 1.397 (3) | ||
C2—O1—C8A | 123.06 (16) | O31—C31—N32 | 124.7 (2) |
C6—O6—C61 | 117.74 (17) | O31—C31—C3 | 119.63 (19) |
C313—O313—C317 | 117.52 (18) | N32—C31—C3 | 115.61 (18) |
C31—N32—C311 | 127.96 (19) | O6—C61—H61A | 109.5 |
C31—N32—H32 | 114.6 (16) | O6—C61—H61B | 109.5 |
C311—N32—H32 | 117.4 (16) | H61A—C61—H61B | 109.5 |
O2—C2—O1 | 116.03 (18) | O6—C61—H61C | 109.5 |
O2—C2—C3 | 126.7 (2) | H61A—C61—H61C | 109.5 |
O1—C2—C3 | 117.27 (18) | H61B—C61—H61C | 109.5 |
C4—C3—C2 | 119.95 (19) | C312—C311—C316 | 120.1 (2) |
C4—C3—C31 | 117.69 (18) | C312—C311—N32 | 123.3 (2) |
C2—C3—C31 | 122.35 (18) | C316—C311—N32 | 116.59 (19) |
C3—C4—C4A | 121.62 (19) | C311—C312—C313 | 119.3 (2) |
C3—C4—H4 | 119.2 | C311—C312—H312 | 120.3 |
C4A—C4—H4 | 119.2 | C313—C312—H312 | 120.3 |
C8A—C4A—C5 | 118.77 (19) | O313—C313—C314 | 124.3 (2) |
C8A—C4A—C4 | 117.53 (19) | O313—C313—C312 | 114.19 (19) |
C5—C4A—C4 | 123.69 (19) | C314—C313—C312 | 121.5 (2) |
C6—C5—C4A | 119.93 (19) | C313—C314—C315 | 118.3 (2) |
C6—C5—H5 | 120.0 | C313—C314—H314 | 120.9 |
C4A—C5—H5 | 120.0 | C315—C314—H314 | 120.9 |
O6—C6—C5 | 115.76 (19) | C316—C315—C314 | 121.4 (2) |
O6—C6—C7 | 124.16 (19) | C316—C315—H315 | 119.3 |
C5—C6—C7 | 120.1 (2) | C314—C315—H315 | 119.3 |
C8—C7—C6 | 120.5 (2) | C315—C316—C311 | 119.4 (2) |
C8—C7—H7 | 119.7 | C315—C316—H316 | 120.3 |
C6—C7—H7 | 119.7 | C311—C316—H316 | 120.3 |
C8A—C8—C7 | 118.6 (2) | O313—C317—H31A | 109.5 |
C8A—C8—H8 | 120.7 | O313—C317—H31B | 109.5 |
C7—C8—H8 | 120.7 | H31A—C317—H31B | 109.5 |
C8—C8A—O1 | 117.40 (18) | O313—C317—H31C | 109.5 |
C8—C8A—C4A | 122.04 (19) | H31A—C317—H31C | 109.5 |
O1—C8A—C4A | 120.55 (19) | H31B—C317—H31C | 109.5 |
C8A—O1—C2—O2 | −178.07 (17) | C4—C4A—C8A—C8 | 179.69 (19) |
C8A—O1—C2—C3 | 0.7 (3) | C5—C4A—C8A—O1 | 178.01 (18) |
O2—C2—C3—C4 | 177.7 (2) | C4—C4A—C8A—O1 | −1.3 (3) |
O1—C2—C3—C4 | −1.0 (3) | C311—N32—C31—O31 | −1.1 (4) |
O2—C2—C3—C31 | −1.4 (3) | C311—N32—C31—C3 | 177.28 (19) |
O1—C2—C3—C31 | −179.99 (18) | C4—C3—C31—O31 | −3.4 (3) |
C2—C3—C4—C4A | 0.1 (3) | C2—C3—C31—O31 | 175.63 (19) |
C31—C3—C4—C4A | 179.18 (18) | C4—C3—C31—N32 | 178.15 (18) |
C3—C4—C4A—C8A | 1.0 (3) | C2—C3—C31—N32 | −2.8 (3) |
C3—C4—C4A—C5 | −178.2 (2) | C31—N32—C311—C312 | 10.4 (3) |
C8A—C4A—C5—C6 | −0.5 (3) | C31—N32—C311—C316 | −169.2 (2) |
C4—C4A—C5—C6 | 178.8 (2) | C316—C311—C312—C313 | −0.5 (3) |
C61—O6—C6—C5 | 175.76 (18) | N32—C311—C312—C313 | 179.91 (19) |
C61—O6—C6—C7 | −4.4 (3) | C317—O313—C313—C314 | 1.5 (3) |
C4A—C5—C6—O6 | −178.04 (18) | C317—O313—C313—C312 | −179.27 (19) |
C4A—C5—C6—C7 | 2.2 (3) | C311—C312—C313—O313 | −178.17 (19) |
O6—C6—C7—C8 | 177.8 (2) | C311—C312—C313—C314 | 1.1 (3) |
C5—C6—C7—C8 | −2.4 (3) | O313—C313—C314—C315 | 178.0 (2) |
C6—C7—C8—C8A | 1.0 (3) | C312—C313—C314—C315 | −1.2 (3) |
C7—C8—C8A—O1 | −178.30 (18) | C313—C314—C315—C316 | 0.7 (3) |
C7—C8—C8A—C4A | 0.8 (3) | C314—C315—C316—C311 | −0.1 (3) |
C2—O1—C8A—C8 | 179.51 (19) | C312—C311—C316—C315 | 0.0 (3) |
C2—O1—C8A—C4A | 0.4 (3) | N32—C311—C316—C315 | 179.6 (2) |
C5—C4A—C8A—C8 | −1.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N32—H32···O2 | 0.92 (3) | 1.91 (3) | 2.699 (2) | 143 (2) |
C4—H4···O2i | 0.95 | 2.43 | 3.319 (3) | 155 |
C5—H5···O1i | 0.95 | 2.47 | 3.391 (3) | 164 |
C8—H8···O6ii | 0.95 | 2.46 | 3.364 (3) | 160 |
C312—H312···O31 | 0.95 | 2.26 | 2.868 (3) | 121 |
C315—H315···O313ii | 0.95 | 2.59 | 3.536 (4) | 171 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
θ1 is the dihedral angle between the mean planes of the coumarin ring system and exocyclic phenyl ring . θ2 is the dihedral angles between the mean plane of the coumarin ring system and the plane defined by the atoms O31/C31/N32. θ3 is the dihedral angle between the mean planes of the exocyclic phenyl ring and the plane defined by atoms O31/C31/N32. |
Compound | θ1 | θ2 | θ3 |
1 | 4.69 (6) | 4.8 (2) | 0.21 (23) |
2 | 4.28 (3) | 4.46 (13) | 8.60 (12) |
3 | 8.17 (13) | 2.9 (4) | 10.2 (4) |
BONKAS | 4.70 (6) | 3.2 (2) | 7.8 (2) |
DISXUA | 10.29 (7) | 3.9 (2) | 6.42) |
DISYAH | 0.04 (6) | 2.70 (17)' | 2.76 (17) |
DISYEL | 3.07 (8) | 3.4 (2) | 1.0 (3) |
DISYIP | 12.75 (6) | 1.21 (17) | 12.73 (17) |
WOJXOK | 1.9 (4) | 4.6 (9) | 2.7 (9) |
If the mean planes for the combined coumarin ring system and exocyclic phenyl rings are considered, then the maximum deviations of atoms within these rings from this plane are -0,1024 (12) Å or C6 in 1, -0.0754 (15) Å in 2 and 0.0699 (14) Å in 3. Considering all non-hydrogen atoms, the maximum deviations from this plane are 0.1783 (10) Å for O31 in 1, -0.1809 (12) Å for O31 in 2 and -0.2181 (15) Å for O313 in 3. |
Contact | 1 | 2 | 3 |
H···H | 47.1 | 42.9 | 38.3 |
H···O/O···H | 19.9 | 26.9 | 27.4 |
H···C/C···H | 14.5 | 12.9 | 20.7 |
H···N/N···H | 1.5 | 0.2 | 1.6 |
C···C | 12.1 | 12.6 | 5.4 |
CgI(J) = plane number I(J); Cg···Cg = distance between ring centroids; CgIperp = perpendicular distance of Cg(I) on ring J; CgJperp = perpendicular distance of Cg(J) on ring I; Slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I. |
Compound | CgI | CgJ(aru) | Cg···Cg | CgIperp | CgJperp | Slippage |
1 | Cg1 | Cg1(-x + 1, -y + 1, -z) | 3.7630 (7) | -3.3400 (5) | -3.3400 (5) | 1.733 |
1 | Cg1 | Cg2(-x + 1, -y + 1, -z) | 3.4853 (7) | -3.3281 (5) | -3.3171 (5) | 1.069 |
1 | Cg2 | Cg1(-x + 1, -y + 1, -z) | 3.4853 (7) | -3.3172 (5) | -3.3281 (5) | 1.035 |
1 | Cg2 | Cg3(-x + 1, -y + 2, -z) | 3.6253 (7) | 3.3547 (5) | 3.4673 (5) | 1.058 |
1 | Cg3 | Cg2(-x + 1, -y + 1, -z) | 3.6253 (7) | 3.4673 (5) | 3.3548 (5) | 1.374 |
2 | Cg1 | Cg3(-x + 1, -y + 1, -z + 1) | 3.5379 (9) | -3.4691 (6) | -3.4872 (6) | 0.597 |
2 | Cg3 | Cg1(-x + 1, -y + 1, -z + 1) | 3.5378 (9) | -3.4872 (6) | -3.4691 (6) | 0.694 |
2 | Cg1 | Cg3(-x + 2, -y + 1, -z + 1) | 3.5974 (9) | 3.4237 (6) | 3.4068 (6) | 1.156 |
2 | Cg3 | Cg1(-x + 2, -y + 1, -z + 1) | 3.5975 (9) | 3.4069 (6) | 3.4237 (6) | 1.105 |
2 | Cg2 | Cg3(-x + 1, -y + 1, -z + 1) | 3.9325 (9) | -3.5309 (6) | -3.4844 (6) | 1.823 |
2 | Cg3 | Cg2(-x + 1, -y + 1, -z + 1) | 3.9324 (9) | -3.4844 (6) | -3.5309 (6) | 1.731 |
3 | Cg1 | Cg2(-x + 1, -y, -z + 1) | 3.5978 (13) | -3.3575 (9) | -3.3307 (9) | 1.360 |
3 | Cg2 | Cg1(-x + 1, -y, -z + 1) | 3.5978 (13) | -3.3307 (9) | -3.3575 (9) | 1.293 |
Plane 1 is the plane of the pyran ring with Cg1 as centroid, ring B. Plane 2 is the plane of the coumarin phenyl ring with Cg2 as centroid, ring A. Plane 3 is the plane of the exocyclic phenyl ring with Cg3 as centroid, ring C. Some planes are repeated since they are inclined to each other and as a result give slightly different slippages. |
Acknowledgements
The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012), for the data collection, help and advice and the Foundation for Science and Technology (FCT) and FEDER/COMPETE2020 (UID/QUι00081/2015 and POCI-01–0145-FEDER-006980). AF (SFRH/BD/80831/2011) and MJM (SFRH/BPD/95345/2013) were supported by grants from FCT, POPH and QREN.
References
Chimenti, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., Rivanera, D., Zicari, A., Scaltrito, M. M. & Sisto, F. (2010). Bioorg. Med. Chem. Lett. 20, 4922–4926. Web of Science CrossRef CAS PubMed Google Scholar
Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Julien, O., Kampmann, M., Bassik, M. C., Zorn, J. A., Venditto, V. J., Shimbo, K., Agard, N. J., Shimada, K., Rheingold, A. L., Stockwell, B. R., Weissman, J. S. & Wells, J. A. (2014). Nat. Chem. Biol. 10, 969–976. Web of Science CSD CrossRef CAS PubMed Google Scholar
Klekota, J. & Roth, F. P. (2008). Bioinformatics, 24, 2518–2525. Web of Science CrossRef PubMed CAS Google Scholar
Lachance, H., Wetzel, S., Kumar, K. & Waldmann, H. (2012). J. Med. Chem. 55, 5989–6001. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maldonado-Domínguez, M., Arcos-Ramos, R., Romero, M., Flores-Pérez, B., Farfán, N., Santillan, R., Lacroix, P. G. & Malfant, I. (2014). New J. Chem. 38, 260–268. Google Scholar
Matos, M. J., Janeiro, P., González Franco, R. M., Vilar, S., Tatonetti, N. P., Santana, L., Uriarte, E., Borges, F., Fontenla, J. A. & Viña, D. (2014). Future Med. Chem. 6, 371–383. Web of Science CrossRef CAS PubMed Google Scholar
Matos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268–3270. Web of Science CrossRef PubMed CAS Google Scholar
McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309. Web of Science CSD CrossRef CAS Google Scholar
Murata, C., Masuda, T., Kamochi, Y., Todoroki, K., Yoshida, H., Nohta, H., Yamaguchi, M. & Takadate, A. (2005). Chem. Pharm. Bull. 53, 750–758. Web of Science CrossRef PubMed CAS Google Scholar
Pan, Z.-Y., He, X., Chen, Y.-Y., Tang, W.-J., Shi, J.-B., Tang, Y.-L., Song, B.-A., Li, J. & Liu, X. H. (2014). Eur. J. Med. Chem. 80, 278–284. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan. Google Scholar
Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vazquez-Rodriguez, S., Matos, M. J., Santana, L., Uriarte, E., Borges, F., Kachler, S. & Klotz, K. N. (2013). J. Pharm. Pharmacol. 65, 697–703. Web of Science CAS PubMed Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.