research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld-surface analysis of (benzene­carbo­thio­amide-κS)bromido­bis­­(tri­phenylphosphane-κP)silver(I)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: chavengp@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 June 2016; accepted 13 June 2016; online 21 June 2016)

The title complex, [AgBr(C7H7NS)(C18H15P)2], was obtained from the reaction of silver(I) bromide with benzene­carbo­thio­amide (C7H7NS) and tri­phenyl­phosphane (C18H15P) in the mixed solvent of aceto­nitrile and ethanol. The mononuclear complex exhibits a distorted tetra­hedral coordination geometry about the metal atom, arising from one S atom of a benzene­carbo­thio­amide ligand, two P atoms of two tri­phenyl­phosphane mol­ecules and one bromide ion. An intra­molecular N—H⋯Br hydrogen bond is observed and in the crystal structure, inversion dimers linked by pairs of N—H⋯Br and C—H⋯Br hydrogen bonds are observed. In addition, C—H⋯π inter­actions occur, leading to [101] chains. Hirshfeld-surface analyses are presented and discussed.

1. Chemical context

Mixed-ligand complexes of AgI-containing phospho­rus and sulfur donor ligands have been studied and published extensively in recent years (Dennehy et al., 2007[Dennehy, M., Quinzani, O. V. & Jennings, M. (2007). J. Mol. Struct. 841, 110-117.]; Ruangwut & Pakawatchai, 2014[Ruangwut, W. & Pakawatchai, C. (2014). Acta Cryst. E70, m310-m311.]) because of their potential ability to inhibit bacteria (Isab et al., 2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251-1256.]; Nawaz et al., 2011[Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502-1506.]). Tri­phenyl­phosphane and thione ligands, which contain P and S donor atoms, respectively, are capable of forming mixed-ligand silver(I) complexes as mononuclear (Aslanidis et al., 1997[Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Läge, M. (1997). Inorg. Chim. Acta, 254, 277-284.]) and dinuclear models (Cox et al., 2000[Cox, P. J., Aslanidis, P., Karagiannidis, P. & Hadjikakou, S. (2000). Inorg. Chim. Acta, 310, 268-272.]). In this paper, we report the synthesis and structure of the mixed-ligand complex of silver(I) bromide with tri­phenyl­phosphane and benzene­carbo­thio­amide ligands.

[Scheme 1]

2. Structural commentary

The monomeric complex of the title compound crystallizes in the monoclinic crystal system, space group P21/n, and is shown in Fig. 1[link]. The silver ion is four-coordinated exhibiting a distorted tetra­hedral environment. This deviation can be explained by P1—Ag1—P2 angle which has the highest value of 121.60 (2)° due to the steric hindrance and the repulsion between two bulky tri­phenyl­phosphane mol­ecules. The range of angles around the Ag atom of 97.338 (18)–121.60 (2)° is similar to that observed in the analogous mononuclear silver(I) complex [AgCl(C7H7NS)(C18H15P)2] previously synthesized by us (Ruangwut & Pakawatchai, 2014[Ruangwut, W. & Pakawatchai, C. (2014). Acta Cryst. E70, m310-m311.]), in which the angles about the metal ion are 97.298 (16)–120.053 (16)°. The Ag—S bond length of 2.6015 (8) Å is slightly longer than in [AgCl(C7H7NS)(C18H15P)2], 2.5580 (5) Å. The Ag—P bond lengths of 2.4682 (7) and 2.4671 (6) Å for Ag1—P1 and Ag1—P2, respectively, are similar to those of the Ag—P bond lengths in [AgCl(C7H7NS)(C18H15P)2] [2.4529 (5) and 2.4578 (5) Å], and similar to the Ag—P distances of analogous tetra­hedrally coordinated AgI complexes such as [Ag(NO3)(C2H3N3S)(C18H15P)2] [2.4485 (6) and 2.4493 (6) Å; Wattanakanjana et al., 2014[Wattanakanjana, Y., Palamae, S., Ratthiwan, J. & Nimthong, R. (2014). Acta Cryst. E70, m61-m62.]], [Ag(Htsa)(PPh3)3] [2.574 (7)–2.611 (6) Å; Nomiya et al., 1998[Nomiya, K., Kasuga, N. C., Takamori, I. & Tsuda, K. (1998). Polyhedron, 17, 3519-3530.]] and [Ag(PPh3)2(bzoxtH)]·2NO3 [2.480 (1) and 2.514 (2) Å; McFarlane et al., 1998[McFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121-125.]]. An intra­molecular hydrogen bond N1—H1B⋯Br1 [3.413 (3) Å; Table 1[link]] is found between one of the H atoms from an amine group of the benzene­carbo­thio­amide mol­ecule and the bromide ion, as depicted in Fig. 2[link], which also shows the inter-mol­ecular dimeric hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.85 (1) 2.54 (1) 3.357 (3) 161 (3)
N1—H1B⋯Br1 0.85 (1) 2.58 (1) 3.413 (3) 166 (3)
C17—H17⋯Br1i 0.93 2.91 3.789 (3) 158
C22—H22⋯Cg3ii 0.93 2.94 3.78 (3) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
An inversion dimer in the crystal of the title compound linked by two pairs of N—H⋯Br inter­actions, forming R42(8) loops, and pairs of C—H⋯Br inter­actions, forming R22(14) loops.

3. Supra­molecular features

In the crystal, the dimeric inter­molecular inter­actions are generated through a crystallographic inversion center by linking through the N1—H1A⋯Br1i [3.357 (3)Å] and C17—H17⋯Br1i [3.789 (3) Å] [symmetry code: (i) 1 – x, 1 – y, 1 – z] hydrogen bonds between a pair of adjacent complex mol­ecules; these are similar to the those in the above-mentioned complex [AgCl(C7H7NS)(C18H15P)2] (Ruangwut & Pakawatchai, 2014[Ruangwut, W. & Pakawatchai, C. (2014). Acta Cryst. E70, m310-m311.]). There are two cyclic patterns of R42(8) loops formed by two pairs of N1—H1A⋯Br1 and N1—H1B⋯Br1 inter­actions and of R22(14) loops forming by a pair of C17—H17⋯Br1 inter­actions, as illustrated in Fig. 2[link]. In addition, supra­molecular C—H⋯π chains (Fig. 3[link]) are formed between the Csp2 atoms of the phenyl rings and the centroids of another phenyl ring [C22—H22⋯Cg3 = 3.782 (3) Å].

[Figure 3]
Figure 3
The supra­molecular C—H⋯π chain in the title compound.

4. Hirshfeld surface analysis

For the title complex, the Hirshfeld-surfaces analysis (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was generated by Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]) and mapped over dnorm, de and di fingerprint plot (Spackman & McKinnon 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The contact distances to the closest atom inside (di) and outside (de) of the Hirshfeld surface analyse the inter­molecular inter­actions via the mapping of dnorm, as depicted in Fig. 4[link]. The inter­actions are shown on the Hirshfeld surfaces with short contacts indicated in red. The corresponding fingerprint plots (Fig. 5[link]ad) for Hirshfeld surfaces of the complex are shown with characteristic pseudo-symmetry wings in the upper left and lower right sides of the de and di diagonal axes that represent the overall 2D fingerprint plot and those delineated into H⋯H, H⋯Br/Br⋯H, and C⋯H/H⋯C contacts are shown in Fig. 5[link]ad, respectively. The fingerprint plot of H⋯H contacts represented by the largest contribution within the Hirshfeld surfaces (60.8%) are shown as one distinct pattern with a minimum value of de + di ∼2.6 Å. The reciprocal H⋯Br/Br⋯H contacts consist of 5.4% of the total Hirshfeld surface with de + di ∼3.3 Å, exhibited by two symmetrical narrow pointed wings indicating the inter­molecular hydrogen-bond inter­actions N1—H1A⋯Br1 and C17—H17⋯Br1 in the crystal packing. The presence of C—H⋯π inter­actions on the fingerprint plot, which contribute 29.7% of overall Hirshfeld surface, are indicated by de + di ∼3.0 Å.

[Figure 4]
Figure 4
dnorm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions of the title compound. Dotted red lines represent hydrogen bonds.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the title complex showing the percentage contributions of individual types of inter­actions: (a) all inter­molecular inter­actions, (b) H⋯H contacts, (c) H⋯Br/Br⋯H contacts and (d) C⋯H/H⋯C contacts. de and di represent the distances from the surface to nearest external and inter­nal atoms and the blue–cyan color represents increasing numbers of surface contributors at individual de/di points

5. Synthesis and crystallization

Silver(I) bromide (0.10 g, 0.5 mmol) was dissolved in the mixed solvent of 15 ml of aceto­nitrile and 15 ml of ethanol and then tri­phenyl­phosphane (0.27 g, 1 mmol) was added. The mixture was refluxed for 2 h at 343 K and a white precipitate was formed. After that, benzene­carbo­thio­amide (0.13 g, 1 mmol) was added and continually refluxed for 5 h. At that time, the white precipitate dissolved. The clear yellow solution was filtered and left to evaporate at room temperature. After a day, pale-yellow blocks of the title compound were filtered off and dried in vacuo. Calculated for C43H37AgBrNP2S: C 61.07, H 4.37, N 1.65 and S 3.78%. Found: C 60.50, H 4.21, N 1.43 and S 3.70%.

6. Refinement

Crystal data and details of structure determination are summarized in Table 2[link]. All H atoms on carbon atoms were positioned geometrically and refined using a riding-model approximation with C—H = 0.93 Å with Uiso(H) = 1.2 Ueq(C). N-bound H atoms were found from difference maps and refined isotropically with distance restraint N—H = 0.85–0.86 Å.

Table 2
Experimental details

Crystal data
Chemical formula [AgBr(C7H7NS)(C18H15P)2]
Mr 849.51
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.4354 (5), 14.1925 (5), 19.1682 (6)
β (°) 98.786 (1)
V3) 3881.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.72
Crystal size (mm) 0.23 × 0.13 × 0.08
 
Data collection
Diffractometer Bruker APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.885, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 52150, 9261, 6704
Rint 0.048
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.02
No. of reflections 9261
No. of parameters 450
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.24
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

(Benzenecarbothioamide-κS)bromidobis(triphenylphosphane-κP)silver(I) top
Crystal data top
[AgBr(C7H7NS)(C18H15P)2]F(000) = 1720
Mr = 849.51Dx = 1.454 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.4354 (5) ÅCell parameters from 7218 reflections
b = 14.1925 (5) Åθ = 2.4–22.5°
c = 19.1682 (6) ŵ = 1.72 mm1
β = 98.786 (1)°T = 293 K
V = 3881.0 (2) Å3Block, pale yellow
Z = 40.23 × 0.13 × 0.08 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
6704 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Frames, each covering 0.3 ° in ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1818
Tmin = 0.885, Tmax = 1.000k = 1818
52150 measured reflectionsl = 2525
9261 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.3053P]
where P = (Fo2 + 2Fc2)/3
9261 reflections(Δ/σ)max = 0.002
450 parametersΔρmax = 0.47 e Å3
2 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.46287 (2)0.62099 (2)0.69031 (2)0.04396 (7)
Br10.58251 (2)0.50868 (2)0.63144 (2)0.05659 (9)
P20.48182 (4)0.57124 (5)0.81500 (3)0.03691 (15)
P10.52341 (5)0.77367 (5)0.65520 (3)0.03869 (15)
S10.29135 (5)0.58599 (6)0.63246 (4)0.0582 (2)
N10.36464 (19)0.50017 (19)0.53303 (13)0.0570 (6)
C310.46028 (17)0.44578 (18)0.82667 (13)0.0400 (6)
C130.52381 (17)0.79219 (17)0.56084 (13)0.0400 (6)
C190.59722 (17)0.58766 (17)0.86800 (13)0.0398 (6)
C250.40173 (17)0.63235 (18)0.86506 (13)0.0418 (6)
C10.64521 (18)0.78817 (18)0.69490 (14)0.0446 (6)
C70.46305 (18)0.87882 (18)0.68001 (13)0.0431 (6)
C380.20344 (19)0.5373 (2)0.49980 (13)0.0479 (6)
C80.5067 (2)0.95988 (19)0.70832 (14)0.0496 (7)
H80.57170.96340.71650.059*
C140.5523 (2)0.87597 (18)0.53392 (15)0.0505 (7)
H140.57070.92590.56430.061*
C370.29051 (18)0.53868 (19)0.55164 (13)0.0438 (6)
C260.3653 (2)0.5943 (2)0.92112 (15)0.0575 (7)
H260.38120.53300.93540.069*
C180.4949 (2)0.7197 (2)0.51477 (14)0.0567 (8)
H180.47450.66330.53190.068*
C360.4922 (2)0.39729 (19)0.88842 (15)0.0527 (7)
H360.52740.42860.92610.063*
C150.5538 (2)0.8863 (2)0.46293 (16)0.0570 (8)
H150.57390.94270.44560.068*
C320.4108 (2)0.39653 (19)0.77074 (15)0.0533 (7)
H320.39040.42720.72830.064*
C90.4535 (3)1.0364 (2)0.72469 (15)0.0627 (8)
H90.48321.09040.74440.075*
C300.3763 (2)0.7235 (2)0.84460 (17)0.0589 (8)
H300.39920.75010.80630.071*
C60.7174 (2)0.7775 (2)0.65652 (18)0.0662 (8)
H60.70440.76680.60810.079*
C350.4722 (2)0.3025 (2)0.89437 (16)0.0629 (8)
H350.49340.27080.93620.075*
C200.6114 (2)0.6257 (2)0.93455 (15)0.0625 (8)
H200.56010.64560.95470.075*
C160.5258 (2)0.8140 (2)0.41780 (15)0.0638 (8)
H160.52670.82120.36970.077*
C340.4216 (2)0.2551 (2)0.83930 (18)0.0647 (8)
H340.40780.19160.84370.078*
C120.3662 (2)0.8761 (2)0.66785 (19)0.0675 (9)
H120.33540.82210.64900.081*
C220.7760 (2)0.6065 (2)0.9435 (2)0.0730 (10)
H220.83610.61220.96890.088*
C170.4962 (3)0.7304 (2)0.44316 (16)0.0703 (9)
H170.47720.68120.41230.084*
C330.3916 (2)0.3018 (2)0.77778 (18)0.0676 (9)
H330.35770.26950.74000.081*
C430.1355 (2)0.6041 (3)0.50190 (18)0.0769 (11)
H430.14460.65090.53630.092*
C270.3056 (2)0.6455 (3)0.95658 (19)0.0755 (10)
H270.28180.61890.99450.091*
C240.6743 (2)0.5599 (2)0.83923 (16)0.0646 (8)
H240.66670.53440.79400.077*
C280.2820 (2)0.7350 (3)0.9356 (2)0.0835 (11)
H280.24130.76930.95920.100*
C390.1878 (2)0.4692 (2)0.44791 (17)0.0699 (9)
H390.23290.42320.44500.084*
C20.6671 (2)0.8013 (2)0.76686 (15)0.0621 (8)
H20.61900.80660.79390.075*
C30.7590 (3)0.8066 (3)0.7994 (2)0.0811 (11)
H30.77270.81660.84780.097*
C290.3173 (2)0.7755 (3)0.8803 (2)0.0775 (10)
H290.30190.83720.86690.093*
C230.7633 (2)0.5695 (3)0.8772 (2)0.0807 (11)
H230.81510.55050.85730.097*
C210.7004 (2)0.6350 (3)0.97230 (18)0.0788 (10)
H210.70850.66081.01740.095*
C40.8294 (3)0.7974 (3)0.7605 (2)0.0887 (12)
H40.89140.80120.78230.106*
C100.3588 (3)1.0325 (3)0.71206 (19)0.0775 (11)
H100.32361.08390.72280.093*
C410.0393 (3)0.5356 (3)0.40405 (18)0.0859 (12)
H410.01620.53470.37220.103*
C110.3150 (3)0.9533 (3)0.6836 (2)0.0874 (12)
H110.24990.95120.67460.105*
C50.8099 (2)0.7825 (3)0.6898 (2)0.0874 (11)
H50.85860.77570.66360.105*
C400.1056 (3)0.4688 (3)0.4003 (2)0.0889 (12)
H400.09570.42260.36560.107*
C420.0537 (3)0.6035 (3)0.4541 (2)0.0978 (14)
H420.00850.64970.45620.117*
H1A0.370 (2)0.485 (2)0.4908 (7)0.064 (10)*
H1B0.4142 (14)0.498 (2)0.5637 (13)0.071 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05487 (13)0.04402 (12)0.03328 (10)0.00277 (9)0.00765 (8)0.00067 (8)
Br10.06087 (19)0.06224 (19)0.04602 (16)0.01813 (14)0.00608 (13)0.00806 (13)
P20.0384 (4)0.0428 (4)0.0294 (3)0.0038 (3)0.0046 (3)0.0006 (3)
P10.0405 (4)0.0387 (4)0.0364 (3)0.0011 (3)0.0043 (3)0.0022 (3)
S10.0462 (4)0.0899 (6)0.0381 (4)0.0004 (4)0.0049 (3)0.0146 (4)
N10.0511 (16)0.0765 (18)0.0416 (15)0.0049 (13)0.0016 (12)0.0149 (13)
C310.0390 (14)0.0432 (14)0.0395 (14)0.0028 (11)0.0117 (11)0.0001 (11)
C130.0413 (14)0.0394 (14)0.0392 (13)0.0008 (11)0.0056 (11)0.0026 (11)
C190.0410 (14)0.0418 (13)0.0357 (13)0.0033 (11)0.0032 (11)0.0038 (11)
C250.0335 (13)0.0524 (16)0.0381 (13)0.0018 (11)0.0009 (10)0.0091 (11)
C10.0417 (15)0.0399 (14)0.0508 (16)0.0016 (11)0.0031 (12)0.0019 (12)
C70.0475 (15)0.0438 (15)0.0387 (14)0.0029 (12)0.0090 (11)0.0079 (11)
C380.0470 (16)0.0564 (17)0.0388 (15)0.0034 (13)0.0017 (12)0.0017 (12)
C80.0599 (18)0.0475 (16)0.0412 (15)0.0022 (14)0.0076 (13)0.0020 (12)
C140.0604 (18)0.0443 (15)0.0478 (16)0.0077 (13)0.0111 (13)0.0001 (12)
C370.0480 (16)0.0474 (15)0.0358 (13)0.0048 (12)0.0062 (11)0.0004 (11)
C260.0495 (17)0.076 (2)0.0486 (17)0.0003 (15)0.0137 (13)0.0011 (15)
C180.081 (2)0.0434 (16)0.0426 (16)0.0081 (14)0.0016 (14)0.0039 (12)
C360.0664 (19)0.0514 (17)0.0409 (15)0.0057 (14)0.0105 (13)0.0014 (12)
C150.069 (2)0.0506 (17)0.0537 (18)0.0045 (14)0.0185 (15)0.0128 (14)
C320.0589 (18)0.0466 (17)0.0518 (17)0.0013 (13)0.0006 (14)0.0021 (13)
C90.099 (3)0.0502 (18)0.0401 (16)0.0130 (17)0.0152 (16)0.0038 (13)
C300.0547 (18)0.0578 (19)0.0644 (19)0.0051 (14)0.0103 (15)0.0063 (15)
C60.0484 (18)0.083 (2)0.067 (2)0.0052 (16)0.0095 (15)0.0037 (17)
C350.086 (2)0.0514 (18)0.0558 (18)0.0008 (16)0.0264 (17)0.0143 (15)
C200.0428 (16)0.094 (2)0.0492 (17)0.0026 (16)0.0020 (13)0.0187 (16)
C160.088 (2)0.067 (2)0.0371 (15)0.0064 (18)0.0116 (15)0.0091 (15)
C340.075 (2)0.0433 (17)0.080 (2)0.0069 (15)0.0283 (18)0.0005 (16)
C120.0484 (18)0.0524 (18)0.102 (3)0.0035 (15)0.0115 (17)0.0094 (17)
C220.0412 (18)0.090 (3)0.081 (3)0.0003 (17)0.0120 (16)0.005 (2)
C170.112 (3)0.0534 (19)0.0414 (16)0.0049 (18)0.0030 (17)0.0042 (14)
C330.075 (2)0.0524 (19)0.072 (2)0.0125 (16)0.0024 (17)0.0101 (16)
C430.074 (2)0.093 (3)0.057 (2)0.022 (2)0.0118 (17)0.0258 (18)
C270.055 (2)0.107 (3)0.069 (2)0.001 (2)0.0270 (17)0.015 (2)
C240.0506 (18)0.085 (2)0.0585 (19)0.0097 (17)0.0088 (15)0.0137 (17)
C280.057 (2)0.107 (3)0.088 (3)0.007 (2)0.019 (2)0.039 (2)
C390.068 (2)0.071 (2)0.066 (2)0.0066 (17)0.0053 (16)0.0185 (17)
C20.0574 (19)0.073 (2)0.0520 (18)0.0008 (16)0.0031 (14)0.0007 (15)
C30.076 (3)0.085 (3)0.072 (2)0.008 (2)0.022 (2)0.0021 (19)
C290.065 (2)0.068 (2)0.097 (3)0.0170 (18)0.006 (2)0.018 (2)
C230.0428 (18)0.110 (3)0.089 (3)0.0174 (19)0.0091 (17)0.007 (2)
C210.059 (2)0.111 (3)0.060 (2)0.005 (2)0.0114 (16)0.0200 (19)
C40.051 (2)0.091 (3)0.115 (4)0.007 (2)0.019 (2)0.002 (2)
C100.101 (3)0.065 (2)0.076 (2)0.036 (2)0.040 (2)0.0163 (18)
C410.064 (2)0.128 (3)0.057 (2)0.006 (2)0.0167 (17)0.015 (2)
C110.058 (2)0.082 (3)0.128 (3)0.022 (2)0.031 (2)0.020 (2)
C50.045 (2)0.108 (3)0.111 (3)0.0058 (19)0.017 (2)0.005 (3)
C400.083 (3)0.101 (3)0.072 (2)0.000 (2)0.020 (2)0.035 (2)
C420.082 (3)0.130 (4)0.071 (2)0.043 (2)0.021 (2)0.027 (2)
Geometric parameters (Å, º) top
Ag1—P22.4671 (6)C30—H300.9300
Ag1—P12.4682 (7)C6—C51.391 (5)
Ag1—S12.6015 (8)C6—H60.9300
Ag1—Br12.7189 (3)C35—C341.365 (4)
P2—C311.827 (3)C35—H350.9300
P2—C191.829 (2)C20—C211.381 (4)
P2—C251.830 (3)C20—H200.9300
P1—C11.818 (3)C16—C171.374 (4)
P1—C71.827 (3)C16—H160.9300
P1—C131.828 (2)C34—C331.364 (4)
S1—C371.687 (3)C34—H340.9300
N1—C371.299 (4)C12—C111.380 (5)
N1—H1A0.852 (10)C12—H120.9300
N1—H1B0.854 (10)C22—C211.358 (5)
C31—C321.383 (3)C22—C231.361 (5)
C31—C361.386 (3)C22—H220.9300
C13—C181.378 (4)C17—H170.9300
C13—C141.384 (3)C33—H330.9300
C19—C201.371 (4)C43—C421.380 (5)
C19—C241.373 (4)C43—H430.9300
C25—C261.377 (4)C27—C281.361 (5)
C25—C301.385 (4)C27—H270.9300
C1—C61.373 (4)C24—C231.383 (4)
C1—C21.380 (4)C24—H240.9300
C7—C81.382 (4)C28—C291.372 (5)
C7—C121.383 (4)C28—H280.9300
C38—C431.370 (4)C39—C401.382 (4)
C38—C391.381 (4)C39—H390.9300
C38—C371.479 (4)C2—C31.380 (4)
C8—C91.393 (4)C2—H20.9300
C8—H80.9300C3—C41.355 (5)
C14—C151.372 (4)C3—H30.9300
C14—H140.9300C29—H290.9300
C26—C271.383 (4)C23—H230.9300
C26—H260.9300C21—H210.9300
C18—C171.384 (4)C4—C51.357 (5)
C18—H180.9300C4—H40.9300
C36—C351.385 (4)C10—C111.363 (5)
C36—H360.9300C10—H100.9300
C15—C161.363 (4)C41—C421.353 (5)
C15—H150.9300C41—C401.357 (5)
C32—C331.384 (4)C41—H410.9300
C32—H320.9300C11—H110.9300
C9—C101.352 (5)C5—H50.9300
C9—H90.9300C40—H400.9300
C30—C291.384 (4)C42—H420.9300
P2—Ag1—P1121.60 (2)C34—C35—C36120.6 (3)
P2—Ag1—S1108.40 (2)C34—C35—H35119.7
P1—Ag1—S1113.89 (3)C36—C35—H35119.7
P2—Ag1—Br1104.528 (18)C19—C20—C21121.3 (3)
P1—Ag1—Br197.338 (18)C19—C20—H20119.3
S1—Ag1—Br1109.550 (19)C21—C20—H20119.3
C31—P2—C19102.34 (11)C15—C16—C17120.2 (3)
C31—P2—C25105.36 (12)C15—C16—H16119.9
C19—P2—C25104.08 (11)C17—C16—H16119.9
C31—P2—Ag1113.69 (8)C33—C34—C35119.4 (3)
C19—P2—Ag1117.29 (8)C33—C34—H34120.3
C25—P2—Ag1112.76 (9)C35—C34—H34120.3
C1—P1—C7105.53 (12)C11—C12—C7120.1 (3)
C1—P1—C13104.41 (12)C11—C12—H12119.9
C7—P1—C13102.34 (11)C7—C12—H12119.9
C1—P1—Ag1110.20 (8)C21—C22—C23119.5 (3)
C7—P1—Ag1116.31 (8)C21—C22—H22120.3
C13—P1—Ag1116.78 (8)C23—C22—H22120.3
C37—S1—Ag1109.90 (10)C16—C17—C18119.9 (3)
C37—N1—H1A124 (2)C16—C17—H17120.1
C37—N1—H1B118 (2)C18—C17—H17120.1
H1A—N1—H1B117 (3)C34—C33—C32120.9 (3)
C32—C31—C36118.4 (2)C34—C33—H33119.5
C32—C31—P2118.3 (2)C32—C33—H33119.5
C36—C31—P2123.2 (2)C38—C43—C42121.3 (3)
C18—C13—C14118.7 (2)C38—C43—H43119.3
C18—C13—P1118.69 (19)C42—C43—H43119.3
C14—C13—P1122.6 (2)C28—C27—C26119.5 (3)
C20—C19—C24118.1 (2)C28—C27—H27120.2
C20—C19—P2124.1 (2)C26—C27—H27120.2
C24—C19—P2117.8 (2)C19—C24—C23120.3 (3)
C26—C25—C30118.1 (3)C19—C24—H24119.9
C26—C25—P2124.8 (2)C23—C24—H24119.9
C30—C25—P2117.1 (2)C27—C28—C29120.9 (3)
C6—C1—C2118.3 (3)C27—C28—H28119.6
C6—C1—P1121.9 (2)C29—C28—H28119.6
C2—C1—P1119.5 (2)C38—C39—C40120.5 (3)
C8—C7—C12118.5 (3)C38—C39—H39119.8
C8—C7—P1125.1 (2)C40—C39—H39119.8
C12—C7—P1116.3 (2)C1—C2—C3121.1 (3)
C43—C38—C39117.8 (3)C1—C2—H2119.5
C43—C38—C37120.7 (3)C3—C2—H2119.5
C39—C38—C37121.5 (3)C4—C3—C2119.8 (4)
C7—C8—C9120.2 (3)C4—C3—H3120.1
C7—C8—H8119.9C2—C3—H3120.1
C9—C8—H8119.9C28—C29—C30119.2 (3)
C15—C14—C13120.8 (3)C28—C29—H29120.4
C15—C14—H14119.6C30—C29—H29120.4
C13—C14—H14119.6C22—C23—C24120.8 (3)
N1—C37—C38117.5 (2)C22—C23—H23119.6
N1—C37—S1121.9 (2)C24—C23—H23119.6
C38—C37—S1120.6 (2)C22—C21—C20120.0 (3)
C25—C26—C27121.2 (3)C22—C21—H21120.0
C25—C26—H26119.4C20—C21—H21120.0
C27—C26—H26119.4C3—C4—C5120.4 (3)
C13—C18—C17120.3 (3)C3—C4—H4119.8
C13—C18—H18119.9C5—C4—H4119.8
C17—C18—H18119.9C9—C10—C11120.0 (3)
C35—C36—C31120.4 (3)C9—C10—H10120.0
C35—C36—H36119.8C11—C10—H10120.0
C31—C36—H36119.8C42—C41—C40120.1 (3)
C16—C15—C14120.0 (3)C42—C41—H41120.0
C16—C15—H15120.0C40—C41—H41120.0
C14—C15—H15120.0C10—C11—C12120.8 (3)
C31—C32—C33120.2 (3)C10—C11—H11119.6
C31—C32—H32119.9C12—C11—H11119.6
C33—C32—H32119.9C4—C5—C6120.3 (4)
C10—C9—C8120.3 (3)C4—C5—H5119.9
C10—C9—H9119.8C6—C5—H5119.9
C8—C9—H9119.8C41—C40—C39120.3 (3)
C29—C30—C25121.0 (3)C41—C40—H40119.8
C29—C30—H30119.5C39—C40—H40119.8
C25—C30—H30119.5C41—C42—C43119.9 (3)
C1—C6—C5120.2 (3)C41—C42—H42120.0
C1—C6—H6119.9C43—C42—H42120.0
C5—C6—H6119.9
C19—P2—C31—C32145.9 (2)P1—C13—C18—C17178.6 (2)
C25—P2—C31—C32105.5 (2)C32—C31—C36—C352.1 (4)
Ag1—P2—C31—C3218.4 (2)P2—C31—C36—C35178.9 (2)
C19—P2—C31—C3633.1 (2)C13—C14—C15—C160.8 (5)
C25—P2—C31—C3675.4 (2)C36—C31—C32—C332.1 (4)
Ag1—P2—C31—C36160.6 (2)P2—C31—C32—C33178.9 (2)
C1—P1—C13—C18119.0 (2)C7—C8—C9—C101.0 (4)
C7—P1—C13—C18131.2 (2)C26—C25—C30—C291.2 (4)
Ag1—P1—C13—C183.0 (3)P2—C25—C30—C29178.8 (2)
C1—P1—C13—C1460.7 (2)C2—C1—C6—C51.8 (5)
C7—P1—C13—C1449.1 (2)P1—C1—C6—C5175.4 (3)
Ag1—P1—C13—C14177.32 (19)C31—C36—C35—C340.7 (5)
C31—P2—C19—C20101.0 (3)C24—C19—C20—C210.8 (5)
C25—P2—C19—C208.6 (3)P2—C19—C20—C21179.1 (3)
Ag1—P2—C19—C20133.9 (2)C14—C15—C16—C170.2 (5)
C31—P2—C19—C2478.9 (2)C36—C35—C34—C330.6 (5)
C25—P2—C19—C24171.6 (2)C8—C7—C12—C110.3 (5)
Ag1—P2—C19—C2446.3 (3)P1—C7—C12—C11178.6 (3)
C31—P2—C25—C2624.4 (3)C15—C16—C17—C180.0 (5)
C19—P2—C25—C2682.9 (2)C13—C18—C17—C160.5 (5)
Ag1—P2—C25—C26148.9 (2)C35—C34—C33—C320.7 (5)
C31—P2—C25—C30155.6 (2)C31—C32—C33—C340.7 (5)
C19—P2—C25—C3097.1 (2)C39—C38—C43—C420.3 (6)
Ag1—P2—C25—C3031.0 (2)C37—C38—C43—C42179.7 (3)
C7—P1—C1—C6129.4 (2)C25—C26—C27—C280.3 (5)
C13—P1—C1—C621.9 (3)C20—C19—C24—C230.6 (5)
Ag1—P1—C1—C6104.2 (2)P2—C19—C24—C23179.2 (3)
C7—P1—C1—C257.0 (3)C26—C27—C28—C290.7 (6)
C13—P1—C1—C2164.5 (2)C43—C38—C39—C400.5 (5)
Ag1—P1—C1—C269.4 (2)C37—C38—C39—C40179.5 (3)
C1—P1—C7—C813.5 (3)C6—C1—C2—C32.1 (5)
C13—P1—C7—C895.4 (2)P1—C1—C2—C3175.9 (3)
Ag1—P1—C7—C8136.0 (2)C1—C2—C3—C41.1 (5)
C1—P1—C7—C12167.7 (2)C27—C28—C29—C301.3 (5)
C13—P1—C7—C1283.3 (2)C25—C30—C29—C281.6 (5)
Ag1—P1—C7—C1245.2 (2)C21—C22—C23—C240.6 (6)
C12—C7—C8—C90.6 (4)C19—C24—C23—C220.1 (6)
P1—C7—C8—C9179.4 (2)C23—C22—C21—C200.5 (6)
C18—C13—C14—C151.3 (4)C19—C20—C21—C220.2 (6)
P1—C13—C14—C15178.4 (2)C2—C3—C4—C50.3 (6)
C43—C38—C37—N1154.4 (3)C8—C9—C10—C110.4 (5)
C39—C38—C37—N125.6 (4)C9—C10—C11—C120.6 (6)
C43—C38—C37—S127.4 (4)C7—C12—C11—C100.9 (6)
C39—C38—C37—S1152.6 (3)C3—C4—C5—C60.6 (6)
Ag1—S1—C37—N119.3 (3)C1—C6—C5—C40.5 (6)
Ag1—S1—C37—C38162.44 (19)C42—C41—C40—C390.6 (7)
C30—C25—C26—C270.5 (4)C38—C39—C40—C410.1 (6)
P2—C25—C26—C27179.5 (2)C40—C41—C42—C430.8 (7)
C14—C13—C18—C171.2 (4)C38—C43—C42—C410.4 (7)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.85 (1)2.54 (1)3.357 (3)161 (3)
N1—H1B···Br10.85 (1)2.58 (1)3.413 (3)166 (3)
C17—H17···Br1i0.932.913.789 (3)158
C22—H22···Cg3ii0.932.943.78 (3)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We are grateful for financial support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, the Department of Chemistry and the Graduate school, Prince of Songkla University.

References

First citationAslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Läge, M. (1997). Inorg. Chim. Acta, 254, 277–284.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., Aslanidis, P., Karagiannidis, P. & Hadjikakou, S. (2000). Inorg. Chim. Acta, 310, 268–272.  Web of Science CSD CrossRef CAS Google Scholar
First citationDennehy, M., Quinzani, O. V. & Jennings, M. (2007). J. Mol. Struct. 841, 110–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcFarlane, W., Akrivos, P. D., Aslanidis, P., Karagiannidis, P., Hatzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). Polyhedron, 30, 1502–1506.  Web of Science CSD CrossRef CAS Google Scholar
First citationNomiya, K., Kasuga, N. C., Takamori, I. & Tsuda, K. (1998). Polyhedron, 17, 3519–3530.  CSD CrossRef CAS Google Scholar
First citationRuangwut, W. & Pakawatchai, C. (2014). Acta Cryst. E70, m310–m311.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationWattanakanjana, Y., Palamae, S., Ratthiwan, J. & Nimthong, R. (2014). Acta Cryst. E70, m61–m62.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds