research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(1E)-(5-Nitro­furan-2-yl)methyl­­idene]thio­phene-2-carbohydrazide: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aFundaçaö Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and eResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 June 2016; accepted 19 June 2016; online 24 June 2016)

In the title carbohydrazide, C10H7N3O4S, the dihedral angle between the terminal five-membered rings is 27.4 (2)°, with these lying to the same side of the plane through the central CN2C(=O) atoms (r.m.s. deviation = 0.0403 Å), leading to a curved mol­ecule. The conformation about the C=N imine bond [1.281 (5) Å] is E, and the carbonyl O and amide H atoms are anti. In the crystal, N—H⋯O hydrogen bonds lead to supra­molecular chains, generated by a 41 screw-axis along the c direction. A three-dimensional architecture is consolidated by thienyl-C—H⋯O(nitro) and furanyl-C—H⋯O(nitro) inter­actions, as well as ππ inter­actions between the thienyl and furanyl rings [inter-centroid distance = 3.515 (2) Å]. These, and other, weak inter­molecular inter­actions, e.g. nitro-N—O⋯π(thien­yl), have been investigated by Hirshfeld surface analysis, which confirms the dominance of the conventional N—H⋯O hydrogen bonding to the overall mol­ecular packing.

1. Chemical context

Thio­phene and its derivatives have been well studied as materials, e.g. in applications in organic electronics and photonics (Perepichka & Perepichka, 2009[Perepichka, I. F. & Perepichka, D. F. (2009). In Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, 2 Volume Set, Chichester: John Wiley & Sons.]) and in the medical area. In the latter context, the thio­phene nucleus is present in many natural and synthetic products having a wide range of pharmacological activities, such as anti-viral (Chan et al., 2004[Chan, L., Pereira, O., Reddy, T. J., Das, S. K., Poisson, C., Courchesne, M., Proulx, M., Siddiqui, A., Yannopoulos, C. G., Nguyen-Ba, N., Roy, C., Nasturica, D., Moinet, C., Bethell, R., Hamel, M., L'Heureux, L., David, M., Nicolas, O., Courtemanche-Asselin, P., Brunette, S., Bilimoria, D. & Bédard, J. (2004). Bioorg. Med. Chem. Lett. 14, 797-800.]), anti-cancer (Romagnoli et al., 2011[Romagnoli, R., Baraldi, P. G., Cruz-Lopez, P., Tolomeo, M., Di Cristina, A., Pipitone, R. M., Grimaudo, S., Balzarini, J., Brancale, A. & Hamel, E. (2011). Bioorg. Med. Chem. Lett. 21, 2746-2751.]), anti-bacterial (Sivadas et al., 2011[Sivadas, A., Satyaseela, M. P., Bharani, T., Upparapalli, S. K. & Subbarava, N. (2011). Int. J. Pharma Sci. Res, 2, 27-35.]; Jain et al., 2012[Jain, S., Babu, N., Jetti, S. R., Shah, H. & Dhaneria, S. P. (2012). Med. Chem. Res. 21, 2744-2748.]), anti-fungal (Jain et al., 2012[Jain, S., Babu, N., Jetti, S. R., Shah, H. & Dhaneria, S. P. (2012). Med. Chem. Res. 21, 2744-2748.]; Saeed et al., 2010[Saeed, S., Rashid, N., Ali, N., Hussain, R. & Jones, P. G. (2010). Eur. J. Chem. 1, 221-227.]), anti-inflammatory (Kumar et al., 2004[Rajender Kumar, P., Raju, S., Satish Goud, P., Sailaja, M., Sarma, M. R., Om Reddy, G., Prem Kumar, M., Reddy, V. V. R. M. K., Suresh, T. & Hegde, P. (2004). Bioorg. Med. Chem. 12, 1221-1230.]) and anti-microbial and anti-tuberculosis (anti-TB) activities (Abdel-Aal et al., 2010[Abdel-Aal, W. S., Hassan, H. Y., Aboul-Fadl, T. & Youssef, A. F. (2010). Eur. J. Med. Chem. 45, 1098-1106.]). Our inter­ests in the biological activities and structural chemistry of heterocyclic compounds have led us to investigate thio­phene and its derivatives as tuberculostatic agents. Thus, some of us have reported the anti-TB activities of acetamido derivatives, 2-(RR′NCOCH2)-thio­phene (Lourenço et al., 2007[Lourenço, M. C. S., Vicente, F. R., Henriques, M. G. M. O., Candéa, A. L. P., Golçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895-6898.]; de Sousa, Ferreira et al., 2008[Souza, M. V. N. de, Ferreira, M. L., Nogueira, T. C. M., Golçalves, R. S. B., Peralta, M. A., Lourenço, M. S. C. & Vicente, F. R. (2008). Lett. Drug. Des. Discov. 5, 221-224.]; de Sousa, Lourenço et al., 2008[Souza, M. V. N. de, Lourenço, M. C. S., Peralta, M. A., Golçalves, R. S. B., Nogueira, T. C. M., Lima, C. H. L., Ferreira, M. L. & Silva, E. T. (2008). Phosphorus Sulfur Silicon, 183, 2990-2997.]), aceto­hydrazide derivatives 2-(ArCH=N–NRCOCH2)-thio­phene, 1 (Cardoso et al., 2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.]; Cardoso et al., 2016a[Cardoso, L. N. de F., Nogueira, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016a). Mediterr. J. Chem. 5, 356-366.]) and 2-(ArCH=N–NRCO)-thio­phene, 2, R = H or Me (Cardoso et al., 2016a[Cardoso, L. N. de F., Nogueira, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016a). Mediterr. J. Chem. 5, 356-366.]). Herein, we wish to report the crystal structure of the title compound, (E)-N′-(5-nitro­furan-2-yl­methyl­ene)thio­phene-2-carbohydrazide, (I)[link], Scheme 1, as well as an analysis of its Hirshfeld surface. Crystal structures of 1: Ar = 5-nitro­thien-2-yl; R = H, Me (Cardoso et al., 2016b[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167-178.]), 2: Ar = 5-nitro­thien-2-yl; R = H Me (Cardoso et al., 2016b[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167-178.]) and 1: Ar = 5-HOC6H4: R = H (Cardoso et al., 2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.]) have been previously published.

[Scheme 1]

2. Structural commentary

In (I)[link], Fig. 1[link], the conformation about the C6=N2 bond [1.281 (5) Å] is E. A 5-nitro­furan-2-yl ring is connected at the C6 atom. The furanyl ring is almost planar [r.m.s deviation = 0.006 Å] and the nitro group is almost co-planar with its attached ring as seen in the O3—N3—C10—O2 torsion angle of −1.7 (5)°. The thienyl ring is also planar within experimental error [r.m.s. deviation = 0.005 Å] and orientated so that the sulfur atom is syn to the carbonyl-O1 atom. Overall, the mol­ecule is curved with the rings lying to the same side of the plane through the bridging CN2C(=O) atoms, r.m.s. deviation = 0.0403 Å, with twists noted in both the S1—C1—C5—O1 and N2—C6—C7—O2 torsion angles of −9.8 (5) and 5.4 (6)°, respectively; the dihedral angle between the five-membered rings is 27.4 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

The anti relationship between the carbonyl-O and amide-H atoms enables the formation of directional N—H⋯O hydrogen bonds leading to supra­molecular chains, generated by a 41 screw-axis propagating along the c-axis direction, Fig. 2[link]a and Table 1[link]. The chains are connected into a three-dimensional architecture by thienyl-C—H⋯O(nitro) and furanyl-C—H⋯O(nitro) inter­actions, involving the same nitro-O4 atom, Table 1[link]. In addition, ππ inter­actions are formed between the two five-membered rings with the inter-centroid distance being 3.515 (2) Å, and the angle of inclination is 3.9 (2)° for symmetry operation: (i) 1 − y, [{1\over 2}] − x, −[{1\over 4}] + z. A view of the unit-cell contents is shown in Fig. 2[link]b.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.87 (3) 2.05 (3) 2.882 (4) 159 (3)
C4—H4⋯O4ii 0.95 2.42 3.293 (6) 152
C8—H8⋯O4iii 0.95 2.53 3.242 (5) 132
Symmetry codes: (i) [-y+{\script{1\over 2}}, x, z-{\script{1\over 4}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing in (I)[link], showing (a) a view of a supra­molecular chain aligned along the c axis sustained by amide-NHO(carbon­yl) hydrogen bonds and (b) a view in projection down the c axis of the unit-cell contents; one chain has been highlighted in space-filling mode. The N—H⋯O, C—H⋯O and ππ inter­actions are shown as orange, blue and purple dashed lines, respectively. Colour code: S yellow, O red, N blue, C grey and H green.

4. Hirshfeld surface analysis

Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]) was used to generate Hirshfeld surfaces mapped over dnorm, de, shape-index, curvedness and electrostatic potential. The latter were calculated using TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO. Available at: https:// hirshfeldsurface. net/]) integrated into Crystal Explorer, wherein the experimental structure was used as the input geometry. In addition, the electrostatic potentials were mapped on Hirshfeld surfaces using the STO-3G basis set at Hartree–Fock level of theory over a range ±0.12 au. The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enable the analysis of inter­molecular inter­actions through the mapping of dnorm. The combination of de and di in the form of a two-dimensional fingerprint plot (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) provides a useful summary of inter­molecular contacts in the crystal.

Two views of Hirshfeld surfaces calculated for (I)[link], mapped over dnorm in the −0.1 to 1.2 Å range are shown in Fig. 3[link]. The bright-red spots near the amino-N—H and carbonyl-O atoms, labelled as `1' in Fig. 3[link], indicate their roles as respective donor and acceptor sites in the dominant N—H⋯O hydrogen bonding in the crystal. These also appear as blue and red regions, respectively, corresponding to positive and negative electrostatic potentials, respectively, on the Hirshfeld surface mapped over electrostatic potential in Fig. 4[link]. The light-red spots labelled as `2' and `3' in Fig. 3[link], and light-blue and light-red regions in Fig. 4[link], represent the inter­molecular thienyl-C—H⋯O(nitro) and furanyl-C—H⋯O(nitro) inter­actions involving the nitro-O4 atom as described above in Supra­molecular features. The immediate environment about the mol­ecule within dnorm mapped Hirshfeld surface mediated by the above inter­actions is illustrated in Fig. 5[link].

[Figure 3]
Figure 3
Two views of the Hirshfeld surface mapped over dnorm for (I)[link], with labels 1, 2, 3 and 4 indicating specific inter­molecular inter­actions discussed in the text.
[Figure 4]
Figure 4
A view of the Hirshfeld surface mapped over electrostatic potential for (I)[link]. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
A view of Hirshfeld surface mapped over dnorm for showing inter­molecular inter­actions about a reference mol­ecule of (I)[link].

The presence of a short inter­molecular C⋯C contact between thienyl-C2 and furanyl-C10 atoms, Table 2[link], which fall within ππ contact between the thienyl and furanyl rings can also be viewed as faint-red spots near these atoms, labelled as `4' in Fig. 3[link]. In the crystal, a comparatively weak N—O⋯π inter­action (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) between the nitro—O4 atom and a symmetry-related thienyl ring [N3⋯Cg(S1,C1–C4) = 3.506 (4) Å, O4⋯Cg(S1,C1–C4) = 3.639 (4) Å and N3—O4⋯Cg = 74.0 (2)°] is also evident from the light-blue and red regions corresponding to their respective potentials on the Hirshfeld surface mapped over electrostatic potential in Fig. 4[link].

Table 2
Summary of short inter­atomic contacts (Å) in the crystal of the title compound

Contact Distance Symmetry operation
C2⋯C10 3.361 (5) [{1\over 2}] − x, [{1\over 2}] − y, −[{1\over 2}] + z
C5⋯H2 2.89 [{1\over 2}] − x, y, [{1\over 4}] + z
N2⋯H6 2.72 [{1\over 2}] − x, y, [{1\over 4}] + z
N2⋯H1N 2.69 (4) [{1\over 2}] − x, y, [{1\over 4}] + z
O1⋯H2 2.68 [{1\over 2}] − x, y, [{1\over 4}] + z
O1⋯H6 2.68 [{1\over 2}] − x, y, [{1\over 4}] + z

The overall two-dimensional fingerprint plot is shown in Fig. 6[link]a and those delineated into O⋯H/H⋯O, H⋯H, N⋯H/H⋯N, C⋯H/H⋯C, C⋯C, C⋯O/O⋯C and S⋯H/H⋯S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bh, respectively; their relative contributions to the overall Hirshfeld surface are summarized in Table 3[link]. In the fingerprint plot delineated into O⋯H/H⋯O contacts, which make the greatest contribution to the Hirshfeld surface, i.e. 36.4%, arises from the N—H⋯O hydrogen bond and is viewed as a pair of spikes with tips at de + di ∼2.1 Å in Fig. 6b[link]. The C—H⋯O inter­actions, which are masked by the above inter­actions, appear as the groups of green points appearing in pairs in the plot. However, a forceps-like distribution of points in the fingerprint plot delineated into C⋯O/O⋯C contacts, Fig. 6[link]g, with the tips at de + di ∼2.3 Å is indicative of C—H⋯O inter­actions. In the fingerprint plot corresponding to H⋯H contacts, which make the next most significant contribution to the surface, Fig. 6[link]c, the points are scattered in the plot at (de, di) distances greater than their van der Waals separations with the comparatively low contribution, i.e. 13.6%, due to the relatively low hydrogen-atom content in the mol­ecule. The absence of characteristic wings in the fingerprint plot delineated into C⋯H/H⋯C and the low contribution to the Hirshfeld surface, Fig. 6[link]e and Table 3[link], clearly indicate the absence of C—H⋯π inter­actions in the crystal. However, a pair of thin edges with their ends at de + di ∼2.9 Å belong to short inter­atomic C⋯H contacts, Table 2[link]. The lung-shaped distribution of points with the bending at at de + di ∼2.7 Å in the fingerprint plot corresponding to N⋯H/H⋯N contacts, Fig. 6[link]e, with a 7.5% contribution to the Hirshfeld surface is the result of short inter­atomic N⋯H/H⋯N contacts, Table 2[link]. The C⋯C contacts assigned to the short C2⋯C10 contact and ππ stacking inter­actions appear as the distribution of points around de = di ∼1.7 Å, Fig. 6[link]f. The presence of ππ stacking inter­actions between the symmetry-related thienyl and furanyl rings is also indicated by the appearance of red and blue triangle pairs on the Hirshfeld surface mapped with the shape-index property identified with arrows in the images of Fig. 7[link], and in the flat region on the Hirshfeld surface mapped over curvedness in Fig. 8[link]. Finally, although the S⋯H/H⋯S contacts in the structure of (I)[link] make a 8.9% contribution to the surface, and also show a nearly symmetrical distribution of points in the corresponding fingerprint plot, Fig. 6[link]h, they do not have a significant influence on the mol­ecular packing as they are separated at distances greater than the sum of their van der Waals radii.

Table 3
Percentage contribution of the different inter­molecular inter­actions to the Hirshfeld surface of the title compound

Contact %
H⋯H 13.8
O⋯H/H⋯O 36.4
C⋯H/H⋯C 7.4
N⋯H/H⋯N 7.5
C⋯C 6.6
C⋯O/O⋯C 8.3
S⋯H/H⋯S 8.9
N⋯O/O⋯N 3.1
S⋯O/O⋯S 2.6
C⋯N/N⋯C 2.1
O⋯O 1.5
N⋯S/S⋯N 0.6
S⋯S 0.6
C⋯S/S⋯C 0.5
N⋯N 0.1
[Figure 6]
Figure 6
The two-dimensional fingerprint plots for (I)[link], showing (a) all inter­actions, and delineated into (b) O⋯H/H⋯O, (c) H⋯H, (d) N⋯H/H⋯N, (e) C⋯H/H⋯C, (f) C⋯C, (g) C⋯O/H⋯O and (h) S⋯H/H⋯S inter­actions.
[Figure 7]
Figure 7
Two views of Hirshfeld surface mapped with shape-index property for (I)[link]. The pairs of red and blue regions identified with arrows indicate ππ stacking inter­actions.
[Figure 8]
Figure 8
A view of Hirshfeld surface mapped over curvedness for (I)[link]. The flat regions highlight the involvement of rings in ππ stacking inter­actions.

The final analysis based on the Hirshfeld surfaces is an evaluation of enrichment ratios (ER) (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]); a list of the ER values is given in Table 4[link]. The low content of hydrogen in the mol­ecular structure of (I)[link] yields a very low ER, 0.72, indicating no propensity to form inter­molecular H⋯H contacts. The ER value of 1.55 from O⋯H/H⋯O contacts is in the expected 1.2–1.6 range and confirm their involvement in the N—H⋯O and C—H⋯O inter­actions. The presence of inter­molecular C—H⋯O inter­actions is also confirmed through the ER value near to unity i.e. 0.99, corresponding to the C⋯O/O⋯C contacts. The high propensity to form ππ stacking inter­actions between the thienyl and furanyl rings is reflected from the high enrichment ratio 2.66 for C⋯C contacts. The ER value of 1.26 resulting from 6.75% of the surface occupied by nitro­gen atoms and a 7.5% contribution to the Hirshfeld surface from N⋯H/H⋯N contacts is due to the presence of short N⋯H contacts in the structure, Table 2[link]. The ER values < 1 related to other contacts and low % contribution to the surface indicate their low significance in the crystal.

Table 4
Enrichment ratios (ER) for the title compound

Contact ER
H⋯H 0.72
O⋯H/H⋯O 1.55
N⋯H/H⋯N 1.26
C⋯C 2.66
C⋯O/O⋯C 0.99
C⋯H/H⋯C 0.53
S⋯O/O⋯S 0.71
N⋯O/O⋯N 0.86
S⋯H/H⋯S 0.64

5. Database survey

A search of the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals one closely related structure, namely the species with a methyl group rather than a nitro group, N′-[(5-methyl-2-fur­yl)methyl­ene]thio­phene-2-carbohydrazide [(II); Jiang, 2010[Jiang, J.-H. (2010). Acta Cryst. E66, o924.]].

[Scheme 2]

The relative dispositions of the heteroatoms in the two structures are the same but, the twist in (II) is significantly less as seen in the dihedral angle of 10.2 (6)° between the five-membered rings. This is highlighted in the overlay diagram in Fig. 9[link]. The mol­ecular structure of the all thienyl analogue of (I)[link] has been described recently (Cardoso et al., 2016b[Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167-178.]). There are two almost identical, near planar mol­ecules in the asymmetric unit and each adopts the conformation indicated in Scheme 2, which might be described as having the thienyl-S atoms syn. The intra­molecular S⋯S separations of 3.770 (4) and 3.879 (4) Å, are beyond the sum of their van der Waals radii. The conformational differences found for the thienyl mol­ecules is consistent with our NMR studies that indicate multiple conformations exist in solution for these compounds.

[Figure 9]
Figure 9
Overlay diagram of mol­ecules of (I)[link] (red image) and (II) (blue). The mol­ecules have been overlapped so that the five-membered rings are coincident.

6. Synthesis and crystallization

The title compound was prepared following a procedure outlined in Fig. 10[link]. Yellow rods of (I)[link] were grown by slow evaporation of a methanol solution held at room temperature. Yellow solid; m.p.: 528–529 K. IR νmax (cm−1; KBr disc): 1629 (C=O); 3209 (N—H). 1H NMR (400 MHz; DMSO) δ: 12.26 (1H; NH), 8.10–7.96 (3H; m; H-4′; H-8′ and H-9′), 7.81 (1H; d; JHH = 3.9 Hz; H-5), 7.28 (1H; d; JHH = 3.9 Hz; H-4), 7.26-7.24 (1H; m; H-3). 13C NMR (100 MHz DMSO) δ: 161.6 (C=O), 157.9 (C-2), 151.6 (C-4′), 137.5 (C-5′), 135.2 (C-3), 132.7 (C-2) 131.4 (C-7′), 129.7 (C-8′), 128.2 (C-9′), 127.1 (C-9′). HRMS m/z: 288.0082 [M + Na]+; (calculated for [C10H7N3O4S+Na]+: 288.0055.

[Figure 10]
Figure 10
Preparation of the title compound. Reagents: i = SO2Cl2, MeOH; ii = N2H2·H2O, EtOH; iii = 5-nitro­furan­carbaldehyde, EtOH.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located from a difference map and refined with (N—H = 0.88±0.01 Å), and with Uiso(H) = 1.2Ueq(C). The slightly elongated displacement ellipsoid for the C2 atom in the thienyl ring is likely due to unresolved disorder in the ring where the second, co-planar orientation related by 180° to that modelled is present. However, this was not modelled as the maximum residual electron density peak was only 0.46 e Å−3, 0.61 Å from the C2 atom. It is also noted that the relevant S—C and C—C bond lengths show the expected values.

Table 5
Experimental details

Crystal data
Chemical formula C10H7N3O4S
Mr 265.25
Crystal system, space group Tetragonal, I41cd
Temperature (K) 100
a, c (Å) 17.4072 (16), 14.4881 (10)
V3) 4390.0 (9)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.13 × 0.03 × 0.02
 
Data collection
Diffractometer Rigaku Saturn724+ (2x2 bin mode)
Absorption correction Multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.543, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10325, 2292, 2081
Rint 0.061
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.05
No. of reflections 2292
No. of parameters 166
No. of restraints 2
Δρmax, Δρmin (e Å−3) 0.46, −0.31
Absolute structure Flack x determined using 766 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al. 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.06 (6)
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

N'-[(1E)-(5-Nitrofuran-2-yl)methylidene]thiophene-2-carbohydrazide top
Crystal data top
C10H7N3O4SDx = 1.605 Mg m3
Mr = 265.25Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41cdCell parameters from 9311 reflections
a = 17.4072 (16) Åθ = 3.3–27.5°
c = 14.4881 (10) ŵ = 0.31 mm1
V = 4390.0 (9) Å3T = 100 K
Z = 16Rod, yellow
F(000) = 21760.13 × 0.03 × 0.02 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2292 independent reflections
Radiation source: Rotating Anode2081 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.061
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.3°
profile data from ω–scansh = 2222
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 2213
Tmin = 0.543, Tmax = 1.000l = 1518
10325 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters not defined?
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.066P)2 + 2.8065P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.46 e Å3
2292 reflectionsΔρmin = 0.31 e Å3
166 parametersAbsolute structure: Flack x determined using 766 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. 2013)
2 restraintsAbsolute structure parameter: 0.06 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48085 (6)0.10242 (6)0.44233 (8)0.0259 (3)
O10.36361 (17)0.16769 (16)0.56218 (18)0.0200 (6)
O20.22698 (16)0.39128 (15)0.66600 (18)0.0161 (6)
O30.25495 (19)0.40880 (19)0.8415 (2)0.0265 (7)
O40.18400 (18)0.51202 (19)0.8477 (2)0.0266 (7)
N10.31555 (19)0.25578 (19)0.4618 (2)0.0165 (7)
H1N0.319 (3)0.278 (2)0.4082 (17)0.020*
N20.28004 (19)0.29467 (19)0.5325 (2)0.0171 (7)
N30.2125 (2)0.4568 (2)0.8067 (2)0.0196 (7)
C10.4111 (2)0.1666 (2)0.4094 (3)0.0162 (8)
C20.4137 (2)0.1857 (2)0.3137 (3)0.0206 (9)
H20.37970.21950.28240.025*
C30.4770 (2)0.1443 (2)0.2728 (3)0.0221 (9)
H30.49010.14820.20930.027*
C40.5164 (3)0.0990 (2)0.3336 (3)0.0251 (10)
H40.55950.06860.31660.030*
C50.3616 (2)0.1960 (2)0.4838 (3)0.0158 (8)
C60.2361 (2)0.3499 (2)0.5074 (3)0.0170 (8)
H60.22470.35760.44390.020*
C70.2040 (2)0.4004 (2)0.5764 (3)0.0166 (8)
C80.1580 (2)0.4633 (2)0.5673 (3)0.0183 (8)
H80.13510.48150.51200.022*
C90.1511 (2)0.4962 (2)0.6561 (3)0.0181 (8)
H90.12280.54060.67310.022*
C100.1940 (2)0.4502 (2)0.7116 (3)0.0160 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0246 (6)0.0270 (6)0.0260 (5)0.0060 (4)0.0037 (5)0.0022 (4)
O10.0246 (16)0.0207 (15)0.0146 (14)0.0052 (11)0.0020 (11)0.0039 (11)
O20.0182 (14)0.0169 (14)0.0132 (13)0.0042 (10)0.0002 (11)0.0039 (11)
O30.0289 (17)0.0334 (18)0.0174 (15)0.0083 (13)0.0045 (13)0.0010 (13)
O40.0333 (18)0.0288 (18)0.0179 (15)0.0057 (14)0.0017 (13)0.0096 (13)
N10.0219 (17)0.0185 (17)0.0093 (15)0.0042 (13)0.0034 (13)0.0006 (13)
N20.0183 (17)0.0187 (16)0.0142 (16)0.0004 (13)0.0009 (13)0.0027 (13)
N30.0209 (17)0.0195 (18)0.0183 (17)0.0003 (13)0.0021 (14)0.0034 (13)
C10.0161 (18)0.0135 (18)0.0191 (19)0.0022 (14)0.0016 (15)0.0006 (14)
C20.020 (2)0.0125 (19)0.029 (2)0.0047 (14)0.0117 (17)0.0102 (16)
C30.028 (2)0.019 (2)0.020 (2)0.0015 (16)0.0085 (17)0.0002 (16)
C40.021 (2)0.027 (2)0.027 (2)0.0054 (17)0.0089 (18)0.0021 (18)
C50.0177 (19)0.0146 (18)0.0151 (18)0.0033 (14)0.0004 (15)0.0007 (14)
C60.0170 (19)0.019 (2)0.0150 (18)0.0014 (14)0.0004 (14)0.0017 (15)
C70.0176 (19)0.023 (2)0.0096 (18)0.0021 (15)0.0001 (14)0.0016 (15)
C80.018 (2)0.022 (2)0.0153 (19)0.0012 (14)0.0007 (15)0.0013 (16)
C90.020 (2)0.0170 (19)0.0176 (19)0.0015 (15)0.0042 (15)0.0017 (15)
C100.0156 (19)0.0174 (18)0.0150 (18)0.0003 (14)0.0021 (14)0.0013 (14)
Geometric parameters (Å, º) top
S1—C41.694 (5)C1—C51.472 (5)
S1—C11.718 (4)C2—C31.444 (6)
O1—C51.239 (5)C2—H20.9500
O2—C101.349 (5)C3—C41.367 (6)
O2—C71.367 (5)C3—H30.9500
O3—N31.225 (5)C4—H40.9500
O4—N31.234 (4)C6—C71.443 (5)
N1—C51.351 (5)C6—H60.9500
N1—N21.374 (5)C7—C81.364 (6)
N1—H1N0.870 (14)C8—C91.413 (6)
N2—C61.281 (5)C8—H80.9500
N3—C101.419 (5)C9—C101.358 (6)
C1—C21.427 (6)C9—H90.9500
C4—S1—C191.3 (2)S1—C4—H4123.4
C10—O2—C7104.6 (3)O1—C5—N1122.6 (4)
C5—N1—N2118.1 (3)O1—C5—C1121.1 (4)
C5—N1—H1N120 (3)N1—C5—C1116.3 (3)
N2—N1—H1N119 (3)N2—C6—C7119.4 (3)
C6—N2—N1115.3 (3)N2—C6—H6120.3
O3—N3—O4125.1 (4)C7—C6—H6120.3
O3—N3—C10118.9 (3)O2—C7—C8110.9 (3)
O4—N3—C10116.0 (3)O2—C7—C6118.3 (3)
C2—C1—C5130.5 (4)C8—C7—C6130.5 (4)
C2—C1—S1113.5 (3)C7—C8—C9106.7 (4)
C5—C1—S1115.9 (3)C7—C8—H8126.7
C1—C2—C3107.8 (4)C9—C8—H8126.7
C1—C2—H2126.1C10—C9—C8104.7 (4)
C3—C2—H2126.1C10—C9—H9127.6
C4—C3—C2114.0 (4)C8—C9—H9127.6
C4—C3—H3123.0O2—C10—C9113.1 (3)
C2—C3—H3123.0O2—C10—N3116.1 (3)
C3—C4—S1113.3 (3)C9—C10—N3130.7 (4)
C3—C4—H4123.4
C5—N1—N2—C6178.9 (3)C10—O2—C7—C80.1 (4)
C4—S1—C1—C20.7 (3)C10—O2—C7—C6174.1 (3)
C4—S1—C1—C5176.2 (3)N2—C6—C7—O25.4 (6)
C5—C1—C2—C3175.6 (4)N2—C6—C7—C8178.2 (4)
S1—C1—C2—C30.7 (4)O2—C7—C8—C90.1 (4)
C1—C2—C3—C40.4 (5)C6—C7—C8—C9173.3 (4)
C2—C3—C4—S10.2 (5)C7—C8—C9—C100.2 (4)
C1—S1—C4—C30.5 (3)C7—O2—C10—C90.2 (4)
N2—N1—C5—O111.6 (5)C7—O2—C10—N3176.4 (3)
N2—N1—C5—C1167.3 (3)C8—C9—C10—O20.3 (4)
C2—C1—C5—O1174.0 (4)C8—C9—C10—N3175.8 (4)
S1—C1—C5—O19.8 (5)O3—N3—C10—O21.7 (5)
C2—C1—C5—N17.1 (6)O4—N3—C10—O2178.1 (3)
S1—C1—C5—N1169.1 (3)O3—N3—C10—C9177.6 (4)
N1—N2—C6—C7172.1 (3)O4—N3—C10—C92.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (3)2.05 (3)2.882 (4)159 (3)
C4—H4···O4ii0.952.423.293 (6)152
C8—H8···O4iii0.952.533.242 (5)132
Symmetry codes: (i) y+1/2, x, z1/4; (ii) x+1/2, y1/2, z1/2; (iii) x, y+1, z1/2.
Summary of short interatomic contacts (Å) in the crystal of the title compound top
ContactDistanceSymmetry operation
C2···C103.361 (5)1/2 - x, 1/2 -y, -1/2 + z
C5···H22.891/2 - x, y, 1/4 + z
N2···H62.721/2 - x, y, 1/4 + z
N2···H1N2.69 (4)1/2 - x, y, 1/4 + z
O1···H22.681/2 - x, y, 1/4 + z
O1···H62.681/2 - x, y, 1/4 + z
Percentage contribution of the different intermolecular interactions to the Hirshfeld surface of the title compound. top
Contact%
H···H13.8
O···H/H···O36.4
C···H/H···C7.4
N···H/H···N7.5
C···C6.6
C···O/O···C8.3
S···H/H···S8.9
N···O/O···N3.1
S···O/O···S2.6
C···N/N···C2.1
O···O1.5
N···S/S···N0.6
S···S0.6
C···S/S···C0.5
N···N0.1
Enrichment ratios (ER) for the title compound top
ContactER
H···H0.72
O···H/H···O1.55
N···H/H···N1.26
C···C2.66
C···O/O···C0.99
C···H/H···C0.53
S···O/O···S0.71
N···O/O···N0.86
S···H/H···S0.64
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CNPq (Brazil).

References

First citationAbdel-Aal, W. S., Hassan, H. Y., Aboul-Fadl, T. & Youssef, A. F. (2010). Eur. J. Med. Chem. 45, 1098–1106.  CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432–448.  CrossRef CAS Google Scholar
First citationCardoso, L. N. de F., Nogueira, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016a). Mediterr. J. Chem. 5, 356–366.  CrossRef Google Scholar
First citationCardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167–178.  CAS Google Scholar
First citationChan, L., Pereira, O., Reddy, T. J., Das, S. K., Poisson, C., Courchesne, M., Proulx, M., Siddiqui, A., Yannopoulos, C. G., Nguyen-Ba, N., Roy, C., Nasturica, D., Moinet, C., Bethell, R., Hamel, M., L'Heureux, L., David, M., Nicolas, O., Courtemanche-Asselin, P., Brunette, S., Bilimoria, D. & Bédard, J. (2004). Bioorg. Med. Chem. Lett. 14, 797–800.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJain, S., Babu, N., Jetti, S. R., Shah, H. & Dhaneria, S. P. (2012). Med. Chem. Res. 21, 2744–2748.  CrossRef CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO. Available at: https:// hirshfeldsurface. net/  Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJiang, J.-H. (2010). Acta Cryst. E66, o924.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Ferreira, M. L., Nogueira, T. C. M., Golçalves, R. S. B., Peralta, M. A., Lourenço, M. S. C. & Vicente, F. R. (2008). Lett. Drug. Des. Discov. 5, 221–224.  Google Scholar
First citationSouza, M. V. N. de, Lourenço, M. C. S., Peralta, M. A., Golçalves, R. S. B., Nogueira, T. C. M., Lima, C. H. L., Ferreira, M. L. & Silva, E. T. (2008). Phosphorus Sulfur Silicon, 183, 2990–2997.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPerepichka, I. F. & Perepichka, D. F. (2009). In Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, 2 Volume Set, Chichester: John Wiley & Sons.  Google Scholar
First citationRajender Kumar, P., Raju, S., Satish Goud, P., Sailaja, M., Sarma, M. R., Om Reddy, G., Prem Kumar, M., Reddy, V. V. R. M. K., Suresh, T. & Hegde, P. (2004). Bioorg. Med. Chem. 12, 1221–1230.  CrossRef PubMed Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRomagnoli, R., Baraldi, P. G., Cruz-Lopez, P., Tolomeo, M., Di Cristina, A., Pipitone, R. M., Grimaudo, S., Balzarini, J., Brancale, A. & Hamel, E. (2011). Bioorg. Med. Chem. Lett. 21, 2746–2751.  CrossRef CAS PubMed Google Scholar
First citationSaeed, S., Rashid, N., Ali, N., Hussain, R. & Jones, P. G. (2010). Eur. J. Chem. 1, 221–227.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLourenço, M. C. S., Vicente, F. R., Henriques, M. G. M. O., Candéa, A. L. P., Golçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895–6898.  PubMed Google Scholar
First citationSivadas, A., Satyaseela, M. P., Bharani, T., Upparapalli, S. K. & Subbarava, N. (2011). Int. J. Pharma Sci. Res, 2, 27–35.  CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds