research communications
κ3N,N′,O}cobalt(III) nitrate dimethylformamide monosolvate
of bis{4-bromo-2-[(carbamimidamidoimino)methyl]phenolato-aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bCentre for Microscopy, Characterisation and Analysis, M313, University of Western Australia, Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua
The title compound, [Co(C8H8BrN4O)2]NO3·C3H7NO, is formed of discrete [CoL2]+ cations, nitrate anions and dimethylformamide (DMF) molecules of crystallization. The cation has no crystallographically imposed symmetry. The ligand molecules are deprotonated at the phenol O atom and octahedrally coordinate the CoIII atoms through the azomethine N and phenolate O atoms in a mer configuration. The deprotonated ligand molecules adopt an almost planar conformation. In the the cations are arranged in layers in the ab plane divided by the nitrate anions and solvent molecules. No π–π stacking is observed. All of the amine H atoms are involved in hydrogen bonding to nitrate, DMF or ligand O atoms or to one of the Br atoms, forming two-dimensional networks parallel to (100).
Keywords: crystal structure; monomeric octahedral CoIII complex; Schiff base ligand; aminoguanidine; 5-bromosalicylaldehyde.
CCDC reference: 1482509
1. Chemical context
Aminoguanidine (AG) has been extensively studied as one of the most promising compounds for the treatment of diabetic complications (Thornalley, 2003). AG-based have attracted much research attention owing to experimental evidence that a pyridoxal-aminoguanidine Schiff base adduct exhibited advanced glycation inhibitory activity comparable to that of AG, while causing no decrease in the liver pyridoxal phosphate content of normal mice (Taguchi et al., 1998, 1999). The study of the chelating properties of AG-based toward metal ions may help to understand the mechanism of action of drugs and possible benefits of therapy in diabetes (Nagai et al., 2012).
Multinuclear Schiff base metal complexes, coupled systems in particular, are also of special interest in materials science. During the last few years, we have been exploring the chemistry of transition metal complexes of Schiff base ligands with the aim of preparing heterometallic polynuclear compounds with diverse potential advantages. In these studies, we continued to apply direct synthesis of coordination compounds, an approach that employs zero-valent metal (metal oxide) as a source of metal ions along with a salt of another metal (Vinogradova et al., 2001; Buvaylo et al., 2009; Semenaka et al., 2010; Nesterov et al., 2011). The metal powder is oxidized during the synthesis by dioxygen from the air. The main advantage of this approach is generation of building blocks in situ, in one reaction vessel, thus eliminating separate steps in building-block construction. Reactions of a metal powder and another metal salt in air with a solution containing a pre-formed Schiff base ligand yielded a number of novel Cu/Cr and Co/Fe compounds (Nikitina et al., 2008; Chygorin et al., 2012).
The title compound was isolated in an attempt to prepare a heterometallic Co/Mn compound with the ligand, HL·HNO3 (Fig. 1) that was synthesized from Schiff base formation of 5-bromosalicylaldehyde with AG·HNO3. Mn powder and Co(NO3)2·6H2O were reacted with the Schiff base formed in situ in methanol/dimethylformamide (DMF) mixture in a 1:1:2 molar ratio. The isolated dark-red microcrystalline product was identified crystallographically to be the mononuclear CoIII Schiff base complex CoL2NO3·DMF (I) which did not contain any manganese.
2. Structural commentary
The title compound [Co(C8H8BrN4O)2]NO3·C3H7NO, (I), is formed of discrete [CoL2]+ cations, nitrate anions and DMF molecules of crystallization. The cation has no crystallographically imposed symmetry (Fig. 2). The ligand molecules are deprotonated at the phenol oxygen atom and coordinate to the CoIII atom through four azomethine N and two phenol O atoms in such a way that the CoIII atom is octahedrally surrounded by two anionic ligands in a mer configuration. The Co—N/O distances (Table 1) fall in the range 1.887 (2)–1.9135 (18) Å, the trans angles at the metal atom vary from 175.14 (9) to 177.14 (8)°, the cis angles lie in the range 82.62 (9) to 94.35 (8)°. The deprotonated ligand molecules adopt an almost planar conformation.
|
The coordination geometry around the metal atom has a close resemblance to that found in CoIII complexes with a very similar ligand which results from the condensation between salicylaldehyde and AG hydrochloride: bis{2-[(guanidinoimino)methyl]phenolato-κ3N,N′,O]}cobalt(III) chloride hemihydrate (CSD refcode MEXGED; Buvaylo et al., 2013), and its solvatomorph trihydrate (CSD refcode GEMJOY; Chumakov et al., 2006). Co—N/O distances in MEXGED, which possesses two independent cations, vary from 1.8863 (8) to 1.9290 (8) Å, the trans angles at the metal atoms fall in the range 172.24 (4)–176.71 (4)°, the cis angles are equal to 82.33 (4)–94.86 (4)°. Obviously, the use of the 5-bromo-derivative of salicylaldehyde in the present study does not change the coordination properties of the resulting Schiff base ligand compared to that of parent salicylaldehyde-aminoguanidine Schiff base.
3. Supramolecular features
In the ab plane divided by the nitrate anions and DMF molecules (Fig. 3). Interactions between cations are weak, the closest Co⋯Co intermolecular separation exceeds 5.76 Å. No π–π stacking is observed. All the amine hydrogen atoms are involved in hydrogen bonding to nitrate, DMF or ligand oxygen atoms or to one of the Br atoms, Br21, to form two-dimensional networks parallel to (100) (Fig. 4). Hydrogen-bonding geometrical details are listed in Table 2.
the cations are arranged in layers in the4. Database survey
Crystal structures of neither the ligand itself nor its metal complexes are found in the Cambridge Structure Database (Groom et al., 2016; CSD Version 5.37 plus one update). Eighteen reported structures of AG-based deposited in the Database incorporate various chloro, fluoro, hydroxy, methoxy, methylthio and nitro derivatives of benzaldehyde, pyridine and pyrimidine. These organic compounds exist as as well as chloride, nitrate, acetate, dihydrogenphosphate and sulfate salts in the solid state.
Of 18 crystal structures of Schiff base metal complexes derived from AG, six are Fe, Cu and Zn compounds that contain a pyridoxal-aminoguanidine ligand. The latter has been of much interest due to its suggested superiority to AG in the treatment of diabetic complications. The remaining 12 compounds are mostly mononuclear CuII complexes (four) and CuCl42– salts (four) with protonated Schiff base ligands as cations. Other mononuclear complexes and hybrid metal salts of AG-based Schiff base ligands comprise V, Co, and Ni, Cd structures, respectively. The Schiff base ligands derived from AG do not show any coordination variability in their metal complexes - the ligand tends to coordinate through two azomethine N atoms and phenoxy O atom from the ring if such one is present.
5. Synthesis and crystallization
Synthesis of (5-bromosalicylidene)aminoguanidine HNO3 (HL·HNO3) ligand: 5-Bromosalicylaldehyde (0.40 g, 2 mmol) in ethanol (10 ml) was poured into an aqueous solution (10 ml) of AG·HNO3 (0.35 g, 2 mmol) and 5 drops of concentrated nitric acid were added to the resulting clear solution. It was heated to 353 K under stirring for 20 min and then cooled in air. A white crystalline precipitate of HL·HNO3 deposited shortly. It was filtered off, washed with distilled water and dried out in air (yield: 82%).1H NMR (400 MHz, DMSO-d6, s, singlet; br, broad; d, doublet; Fig. 5): 11.55, s (1H, phenolic OH); 10.20, s (1H, NH); 8.34, s (1H, CH=N azomethine); 8.13, s (1H, C-6); 7.52, br (4H, NH2); 7.27, d (H, C-3, J = 8.8 Hz); 6.82, d (H, C-4, J = 8.8 Hz). FT–IR (solid) ν (cm−1): 3500w, 3446m, 3418m, 3322m, 3208s, 3124m, 2922m, 2892m, 2854m, 2816m, 1692s, 1632vs, 1476s, 1420s, 1384vs, 1346s, 1336s, 1256s, 1190m, 1048m, 956w, 904w, 836w, 820w, 654w, 622m, 538w, 480w.
Synthesis of 1: Mn powder (0.03 g, 0.5 mmol), Co(NO3)2·6H2O (0.15 g, 0.5 mmol) and HL·HNO3 (0.32 g, 1 mmol) were added to methanol (20 ml) and the mixture was heated to 323 K under stirring until total dissolution of the manganese powder was observed (1 h). The resulting red solution was filtered and allowed to stand at room temperature. Dark-red microcrystals of the title compound were formed over several days. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo (yield: 39%). FT–IR (solid) ν (cm−1): 3476m, 3406m, 3358m, 3226s, 3180s, 3092m, 3054m, 2998m, 2940m, 2900m, 2800m, 1660sh, 1650vs, 1596s, 1556s, 1522m, 1454s, 1384s, 1354m, 1334s, 1290s, 1250m, 1182m, 1134m, 1102m, 1046w, 926m, 822m, 969m, 656m, 620m, 574m, 526m, 468w.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms bound to carbon were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3). NH hydrogen atoms were refined with bond lengths restrained to ideal values (N—H = 0.88 Å). Anisotropic displacement parameters were employed for the non-hydrogen atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1482509
https://doi.org/10.1107/S2056989016008690/hg5475sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016008690/hg5475Isup2.hkl
IR spectrum of the ligand. DOI: https://doi.org/10.1107/S2056989016008690/hg5475sup3.tif
IR spectrum of the complex. DOI: https://doi.org/10.1107/S2056989016008690/hg5475sup4.tif
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Co(C8H8BrN4O)2]NO3·C3H7NO | F(000) = 1408 |
Mr = 706.22 | Dx = 1.845 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8612 reflections |
a = 13.5778 (3) Å | θ = 2.4–32.4° |
b = 9.9492 (3) Å | µ = 3.88 mm−1 |
c = 19.0240 (4) Å | T = 100 K |
β = 98.302 (2)° | Prism, dark_red |
V = 2542.99 (11) Å3 | 0.23 × 0.11 × 0.11 mm |
Z = 4 |
Oxford Diffraction Gemini diffractometer | 8094 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 6450 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
Detector resolution: 10.4738 pixels mm-1 | θmax = 31.0°, θmin = 2.6° |
ω scans | h = −19→19 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), analytical numeric absorption correction (Clark & Reid, 1995)] | k = −14→13 |
Tmin = 0.771, Tmax = 0.891 | l = −27→27 |
35245 measured reflections |
Refinement on F2 | 8 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0549P)2 + 1.1125P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
8094 reflections | Δρmax = 1.32 e Å−3 |
378 parameters | Δρmin = −0.68 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. NH hydrogen atoms were refined with bond distances restrained to ideal values. Two reflections which were considered to be masked by the beam stop were omitted from the refinement. Largest peak is 0.79 Angstroms from Br21. Largest trough is 0.64 Angstroms from Co1. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.40679 (2) | 0.49709 (3) | 0.27902 (2) | 0.01086 (8) | |
Br11 | 0.84873 (2) | 0.53347 (3) | 0.55431 (2) | 0.01994 (8) | |
Br21 | 0.02860 (2) | 1.02172 (3) | 0.19557 (2) | 0.02163 (8) | |
C111 | 0.59602 (18) | 0.5698 (3) | 0.35767 (13) | 0.0135 (5) | |
O111 | 0.52857 (13) | 0.59057 (19) | 0.30171 (9) | 0.0140 (4) | |
C112 | 0.58479 (18) | 0.4791 (3) | 0.41364 (13) | 0.0125 (5) | |
C113 | 0.6615 (2) | 0.4690 (3) | 0.47318 (13) | 0.0158 (5) | |
H113 | 0.6541 | 0.4095 | 0.5112 | 0.019* | |
C114 | 0.74582 (19) | 0.5454 (3) | 0.47532 (14) | 0.0171 (5) | |
C115 | 0.7590 (2) | 0.6339 (3) | 0.42019 (14) | 0.0174 (5) | |
H115 | 0.8182 | 0.6855 | 0.4224 | 0.021* | |
C116 | 0.68522 (19) | 0.6452 (3) | 0.36274 (14) | 0.0168 (5) | |
H116 | 0.6944 | 0.7053 | 0.3254 | 0.02* | |
C11 | 0.49888 (18) | 0.3939 (3) | 0.41404 (13) | 0.0137 (5) | |
H11 | 0.4961 | 0.3371 | 0.4538 | 0.016* | |
N12 | 0.42526 (15) | 0.3917 (2) | 0.36236 (11) | 0.0125 (4) | |
N13 | 0.34742 (16) | 0.3036 (2) | 0.36593 (11) | 0.0155 (4) | |
C14 | 0.27399 (18) | 0.3108 (3) | 0.30883 (13) | 0.0141 (5) | |
N15 | 0.28470 (15) | 0.4014 (2) | 0.26114 (11) | 0.0129 (4) | |
N16 | 0.19840 (18) | 0.2235 (3) | 0.30737 (13) | 0.0196 (5) | |
C211 | 0.27262 (18) | 0.7103 (3) | 0.29499 (13) | 0.0140 (5) | |
O211 | 0.34349 (13) | 0.63305 (19) | 0.32785 (9) | 0.0142 (4) | |
C212 | 0.26407 (18) | 0.7469 (3) | 0.22191 (13) | 0.0131 (5) | |
C213 | 0.19201 (19) | 0.8413 (3) | 0.19325 (14) | 0.0161 (5) | |
H213 | 0.1889 | 0.869 | 0.1452 | 0.019* | |
C214 | 0.1259 (2) | 0.8938 (3) | 0.23468 (14) | 0.0183 (5) | |
C215 | 0.1301 (2) | 0.8550 (3) | 0.30568 (15) | 0.0199 (6) | |
H215 | 0.0829 | 0.8888 | 0.3336 | 0.024* | |
C216 | 0.2033 (2) | 0.7672 (3) | 0.33485 (14) | 0.0190 (5) | |
H216 | 0.2071 | 0.7441 | 0.3836 | 0.023* | |
C21 | 0.32682 (18) | 0.6909 (3) | 0.17418 (13) | 0.0144 (5) | |
H21 | 0.3245 | 0.7289 | 0.1282 | 0.030 (9)* | |
N22 | 0.38606 (15) | 0.5908 (2) | 0.19178 (11) | 0.0120 (4) | |
N23 | 0.44539 (17) | 0.5417 (2) | 0.14357 (11) | 0.0142 (4) | |
C24 | 0.48136 (18) | 0.4152 (3) | 0.16206 (13) | 0.0132 (5) | |
N25 | 0.47343 (16) | 0.3738 (2) | 0.22568 (11) | 0.0128 (4) | |
N26 | 0.52409 (17) | 0.3479 (3) | 0.11301 (12) | 0.0172 (5) | |
N1 | 0.33098 (17) | 0.0191 (2) | 0.46915 (11) | 0.0156 (4) | |
O11 | 0.34224 (14) | −0.0888 (2) | 0.50414 (10) | 0.0183 (4) | |
O12 | 0.40449 (14) | 0.0966 (2) | 0.46727 (10) | 0.0203 (4) | |
O13 | 0.24818 (15) | 0.0494 (2) | 0.43623 (11) | 0.0269 (5) | |
C101 | 0.0924 (2) | 0.6797 (3) | 0.00598 (15) | 0.0256 (6) | |
H10A | 0.15 | 0.6444 | −0.0138 | 0.038* | |
H10B | 0.1041 | 0.774 | 0.0193 | 0.038* | |
H10C | 0.0328 | 0.6728 | −0.0297 | 0.038* | |
C102 | −0.0029 (2) | 0.6429 (3) | 0.10642 (16) | 0.0233 (6) | |
H10D | 0.0074 | 0.605 | 0.1545 | 0.035* | |
H10E | −0.0663 | 0.6105 | 0.0809 | 0.035* | |
H10F | −0.0043 | 0.7412 | 0.1093 | 0.035* | |
N10 | 0.07772 (16) | 0.6015 (3) | 0.06882 (12) | 0.0174 (5) | |
C10 | 0.1335 (2) | 0.4952 (3) | 0.08995 (15) | 0.0207 (6) | |
H10 | 0.1856 | 0.4733 | 0.0635 | 0.025* | |
O10 | 0.12327 (15) | 0.4225 (2) | 0.14103 (10) | 0.0229 (4) | |
H23 | 0.426 (3) | 0.562 (4) | 0.0989 (11) | 0.043 (11)* | |
H25 | 0.488 (2) | 0.2892 (19) | 0.2306 (16) | 0.011 (7)* | |
H26A | 0.556 (2) | 0.275 (2) | 0.1271 (15) | 0.015 (8)* | |
H26B | 0.522 (3) | 0.378 (4) | 0.0691 (12) | 0.050 (12)* | |
H13 | 0.358 (3) | 0.239 (3) | 0.3968 (17) | 0.038 (11)* | |
H15 | 0.2362 (18) | 0.412 (4) | 0.2266 (13) | 0.023 (9)* | |
H16A | 0.1505 (19) | 0.219 (4) | 0.2716 (14) | 0.027 (9)* | |
H16B | 0.200 (3) | 0.157 (4) | 0.337 (2) | 0.067 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01350 (17) | 0.01171 (17) | 0.00748 (15) | −0.00003 (12) | 0.00193 (12) | 0.00055 (11) |
Br11 | 0.01947 (14) | 0.02185 (16) | 0.01635 (14) | −0.00175 (10) | −0.00467 (10) | −0.00023 (10) |
Br21 | 0.02097 (15) | 0.02263 (16) | 0.01907 (14) | 0.00852 (10) | −0.00461 (10) | −0.00454 (10) |
C111 | 0.0173 (12) | 0.0106 (12) | 0.0125 (11) | 0.0010 (9) | 0.0022 (9) | −0.0001 (9) |
O111 | 0.0175 (9) | 0.0141 (10) | 0.0097 (8) | −0.0021 (7) | −0.0001 (6) | 0.0029 (7) |
C112 | 0.0105 (11) | 0.0154 (13) | 0.0114 (11) | −0.0003 (9) | 0.0012 (8) | −0.0009 (9) |
C113 | 0.0205 (13) | 0.0170 (14) | 0.0097 (11) | 0.0005 (10) | 0.0019 (9) | 0.0012 (9) |
C114 | 0.0173 (12) | 0.0190 (14) | 0.0142 (12) | 0.0016 (10) | −0.0007 (10) | −0.0005 (10) |
C115 | 0.0173 (12) | 0.0167 (14) | 0.0182 (12) | −0.0029 (10) | 0.0025 (10) | −0.0001 (10) |
C116 | 0.0179 (12) | 0.0171 (14) | 0.0157 (12) | −0.0037 (10) | 0.0036 (10) | 0.0027 (10) |
C11 | 0.0185 (12) | 0.0127 (13) | 0.0101 (11) | −0.0004 (9) | 0.0029 (9) | 0.0018 (9) |
N12 | 0.0141 (10) | 0.0125 (11) | 0.0113 (9) | −0.0016 (8) | 0.0030 (8) | −0.0004 (8) |
N13 | 0.0175 (11) | 0.0168 (12) | 0.0115 (10) | −0.0050 (8) | −0.0002 (8) | 0.0050 (8) |
C14 | 0.0153 (12) | 0.0166 (13) | 0.0107 (11) | −0.0008 (9) | 0.0026 (9) | −0.0015 (9) |
N15 | 0.0147 (10) | 0.0139 (11) | 0.0096 (9) | 0.0003 (8) | 0.0001 (8) | 0.0010 (8) |
N16 | 0.0191 (12) | 0.0234 (14) | 0.0155 (11) | −0.0078 (9) | 0.0000 (9) | 0.0024 (9) |
C211 | 0.0164 (12) | 0.0139 (13) | 0.0118 (11) | −0.0010 (9) | 0.0024 (9) | −0.0015 (9) |
O211 | 0.0181 (9) | 0.0147 (10) | 0.0099 (8) | 0.0024 (7) | 0.0029 (7) | −0.0017 (7) |
C212 | 0.0151 (11) | 0.0126 (12) | 0.0115 (11) | 0.0009 (9) | 0.0021 (9) | −0.0007 (9) |
C213 | 0.0207 (13) | 0.0142 (13) | 0.0127 (11) | 0.0000 (10) | 0.0001 (9) | −0.0012 (9) |
C214 | 0.0185 (13) | 0.0160 (14) | 0.0185 (13) | 0.0034 (10) | −0.0036 (10) | −0.0025 (10) |
C215 | 0.0230 (14) | 0.0199 (15) | 0.0185 (13) | 0.0050 (10) | 0.0088 (11) | −0.0011 (10) |
C216 | 0.0246 (14) | 0.0207 (15) | 0.0128 (12) | 0.0052 (11) | 0.0062 (10) | −0.0001 (10) |
C21 | 0.0173 (12) | 0.0155 (13) | 0.0108 (11) | 0.0006 (9) | 0.0028 (9) | 0.0014 (9) |
N22 | 0.0154 (10) | 0.0119 (11) | 0.0091 (9) | −0.0003 (8) | 0.0027 (7) | −0.0008 (7) |
N23 | 0.0196 (11) | 0.0149 (11) | 0.0088 (9) | 0.0041 (8) | 0.0050 (8) | 0.0019 (8) |
C24 | 0.0129 (11) | 0.0145 (13) | 0.0123 (11) | −0.0014 (9) | 0.0017 (9) | 0.0011 (9) |
N25 | 0.0161 (10) | 0.0130 (11) | 0.0098 (9) | 0.0014 (8) | 0.0037 (8) | 0.0015 (8) |
N26 | 0.0229 (12) | 0.0190 (12) | 0.0115 (10) | 0.0070 (9) | 0.0083 (9) | 0.0031 (9) |
N1 | 0.0179 (11) | 0.0207 (12) | 0.0089 (10) | −0.0002 (8) | 0.0043 (8) | −0.0001 (8) |
O11 | 0.0232 (10) | 0.0198 (11) | 0.0125 (9) | −0.0019 (8) | 0.0043 (7) | 0.0039 (7) |
O12 | 0.0192 (10) | 0.0215 (11) | 0.0202 (10) | −0.0032 (8) | 0.0024 (7) | 0.0033 (8) |
O13 | 0.0178 (10) | 0.0392 (14) | 0.0226 (11) | −0.0004 (9) | −0.0014 (8) | 0.0117 (9) |
C101 | 0.0290 (16) | 0.0304 (18) | 0.0189 (14) | −0.0005 (12) | 0.0082 (12) | 0.0085 (12) |
C102 | 0.0231 (14) | 0.0242 (16) | 0.0245 (14) | 0.0002 (11) | 0.0096 (11) | −0.0010 (12) |
N10 | 0.0183 (11) | 0.0191 (13) | 0.0156 (10) | 0.0013 (9) | 0.0052 (8) | 0.0021 (8) |
C10 | 0.0178 (13) | 0.0262 (16) | 0.0182 (13) | 0.0007 (11) | 0.0031 (10) | −0.0007 (11) |
O10 | 0.0239 (10) | 0.0259 (12) | 0.0188 (10) | 0.0003 (8) | 0.0022 (8) | 0.0053 (8) |
Co1—N12 | 1.887 (2) | C212—C213 | 1.408 (4) |
Co1—N22 | 1.889 (2) | C212—C21 | 1.444 (3) |
Co1—O111 | 1.8919 (18) | C213—C214 | 1.380 (4) |
Co1—N15 | 1.899 (2) | C213—H213 | 0.95 |
Co1—N25 | 1.902 (2) | C214—C215 | 1.398 (4) |
Co1—O211 | 1.9135 (18) | C215—C216 | 1.379 (4) |
Br11—C114 | 1.902 (3) | C215—H215 | 0.95 |
Br21—C214 | 1.906 (3) | C216—H216 | 0.95 |
C111—O111 | 1.317 (3) | C21—N22 | 1.294 (3) |
C111—C116 | 1.416 (4) | C21—H21 | 0.95 |
C111—C112 | 1.420 (4) | N22—N23 | 1.393 (3) |
C112—C113 | 1.427 (4) | N23—C24 | 1.377 (3) |
C112—C11 | 1.443 (3) | N23—H23 | 0.878 (18) |
C113—C114 | 1.371 (4) | C24—N25 | 1.298 (3) |
C113—H113 | 0.95 | C24—N26 | 1.346 (3) |
C114—C115 | 1.400 (4) | N25—H25 | 0.868 (17) |
C115—C116 | 1.376 (4) | N26—H26A | 0.872 (17) |
C115—H115 | 0.95 | N26—H26B | 0.883 (19) |
C116—H116 | 0.95 | N1—O13 | 1.242 (3) |
C11—N12 | 1.297 (3) | N1—O11 | 1.261 (3) |
C11—H11 | 0.95 | N1—O12 | 1.266 (3) |
N12—N13 | 1.382 (3) | C101—N10 | 1.464 (3) |
N13—C14 | 1.366 (3) | C101—H10A | 0.98 |
N13—H13 | 0.871 (18) | C101—H10B | 0.98 |
C14—N15 | 1.302 (3) | C101—H10C | 0.98 |
C14—N16 | 1.342 (3) | C102—N10 | 1.452 (3) |
N15—H15 | 0.867 (18) | C102—H10D | 0.98 |
N16—H16A | 0.871 (18) | C102—H10E | 0.98 |
N16—H16B | 0.86 (3) | C102—H10F | 0.98 |
C211—O211 | 1.317 (3) | N10—C10 | 1.328 (4) |
C211—C216 | 1.410 (3) | C10—O10 | 1.235 (3) |
C211—C212 | 1.426 (3) | C10—H10 | 0.95 |
N12—Co1—N22 | 175.76 (9) | C211—O211—Co1 | 122.07 (15) |
N12—Co1—O111 | 94.35 (8) | C213—C212—C211 | 120.1 (2) |
N22—Co1—O111 | 88.42 (8) | C213—C212—C21 | 117.0 (2) |
N12—Co1—N15 | 83.02 (9) | C211—C212—C21 | 122.8 (2) |
N22—Co1—N15 | 94.27 (9) | C214—C213—C212 | 120.3 (2) |
O111—Co1—N15 | 177.14 (8) | C214—C213—H213 | 119.9 |
N12—Co1—N25 | 94.23 (9) | C212—C213—H213 | 119.9 |
N22—Co1—N25 | 82.62 (9) | C213—C214—C215 | 120.5 (2) |
O111—Co1—N25 | 88.36 (9) | C213—C214—Br21 | 120.1 (2) |
N15—Co1—N25 | 92.93 (9) | C215—C214—Br21 | 119.4 (2) |
N12—Co1—O211 | 89.98 (8) | C216—C215—C214 | 119.4 (2) |
N22—Co1—O211 | 93.29 (8) | C216—C215—H215 | 120.3 |
O111—Co1—O211 | 88.90 (8) | C214—C215—H215 | 120.3 |
N15—Co1—O211 | 89.99 (9) | C215—C216—C211 | 122.4 (2) |
N25—Co1—O211 | 175.14 (9) | C215—C216—H216 | 118.8 |
O111—C111—C116 | 117.4 (2) | C211—C216—H216 | 118.8 |
O111—C111—C112 | 124.7 (2) | N22—C21—C212 | 122.4 (2) |
C116—C111—C112 | 118.0 (2) | N22—C21—H21 | 118.8 |
C111—O111—Co1 | 126.17 (16) | C212—C21—H21 | 118.8 |
C111—C112—C113 | 119.7 (2) | C21—N22—N23 | 119.8 (2) |
C111—C112—C11 | 123.5 (2) | C21—N22—Co1 | 127.99 (17) |
C113—C112—C11 | 116.9 (2) | N23—N22—Co1 | 112.24 (16) |
C114—C113—C112 | 119.7 (2) | C24—N23—N22 | 111.7 (2) |
C114—C113—H113 | 120.2 | C24—N23—H23 | 120 (3) |
C112—C113—H113 | 120.2 | N22—N23—H23 | 116 (3) |
C113—C114—C115 | 121.5 (2) | N25—C24—N26 | 126.2 (2) |
C113—C114—Br11 | 120.3 (2) | N25—C24—N23 | 117.0 (2) |
C115—C114—Br11 | 118.2 (2) | N26—C24—N23 | 116.8 (2) |
C116—C115—C114 | 119.3 (2) | C24—N25—Co1 | 113.73 (18) |
C116—C115—H115 | 120.3 | C24—N25—H25 | 111 (2) |
C114—C115—H115 | 120.3 | Co1—N25—H25 | 133.7 (19) |
C115—C116—C111 | 121.8 (2) | C24—N26—H26A | 117 (2) |
C115—C116—H116 | 119.1 | C24—N26—H26B | 122 (3) |
C111—C116—H116 | 119.1 | H26A—N26—H26B | 121 (3) |
N12—C11—C112 | 122.8 (2) | O13—N1—O11 | 120.3 (2) |
N12—C11—H11 | 118.6 | O13—N1—O12 | 119.9 (2) |
C112—C11—H11 | 118.6 | O11—N1—O12 | 119.8 (2) |
C11—N12—N13 | 119.0 (2) | N10—C101—H10A | 109.5 |
C11—N12—Co1 | 128.42 (18) | N10—C101—H10B | 109.5 |
N13—N12—Co1 | 112.57 (16) | H10A—C101—H10B | 109.5 |
C14—N13—N12 | 113.8 (2) | N10—C101—H10C | 109.5 |
C14—N13—H13 | 127 (3) | H10A—C101—H10C | 109.5 |
N12—N13—H13 | 117 (2) | H10B—C101—H10C | 109.5 |
N15—C14—N16 | 126.6 (2) | N10—C102—H10D | 109.5 |
N15—C14—N13 | 116.6 (2) | N10—C102—H10E | 109.5 |
N16—C14—N13 | 116.8 (2) | H10D—C102—H10E | 109.5 |
C14—N15—Co1 | 113.87 (17) | N10—C102—H10F | 109.5 |
C14—N15—H15 | 118 (2) | H10D—C102—H10F | 109.5 |
Co1—N15—H15 | 128 (2) | H10E—C102—H10F | 109.5 |
C14—N16—H16A | 122 (2) | C10—N10—C102 | 121.0 (2) |
C14—N16—H16B | 122 (3) | C10—N10—C101 | 122.1 (2) |
H16A—N16—H16B | 114 (4) | C102—N10—C101 | 116.9 (2) |
O211—C211—C216 | 118.5 (2) | O10—C10—N10 | 125.5 (3) |
O211—C211—C212 | 124.3 (2) | O10—C10—H10 | 117.3 |
C216—C211—C212 | 117.1 (2) | N10—C10—H10 | 117.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13···O12 | 0.871 (18) | 1.987 (19) | 2.851 (3) | 171 (3) |
N15—H15···O10 | 0.867 (18) | 2.072 (18) | 2.937 (3) | 175 (3) |
N16—H16A···Br21i | 0.871 (18) | 2.83 (3) | 3.529 (2) | 139 (3) |
N16—H16B···O13 | 0.86 (3) | 2.19 (3) | 2.998 (3) | 155 (4) |
N23—H23···O11ii | 0.878 (18) | 2.00 (2) | 2.854 (3) | 163 (4) |
N25—H25···O111iii | 0.868 (17) | 2.07 (2) | 2.865 (3) | 151 (3) |
N26—H26A···O211iii | 0.872 (17) | 2.058 (19) | 2.913 (3) | 166 (3) |
N26—H26B···O12ii | 0.883 (19) | 2.34 (3) | 3.054 (3) | 138 (3) |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z−1/2; (iii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, the University of Western Australia, a facility funded by the University, State and Commonwealth Governments.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m165–m166. CSD CrossRef IUCr Journals Google Scholar
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Eremenko, I. L., Jezierska, J. & Ozarowski, A. (2009). Inorg. Chem. 48, 11092–11097. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chumakov, Yu. M., Tsapkov, V. I., Bocelli, G., Antosyak, B. Ya., Shova, S. G. & Gulea, A. P. (2006). Crystallogr. Rep. 51, 60–67. Web of Science CrossRef CAS Google Scholar
Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boča, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386–396. Web of Science CSD CrossRef CAS PubMed Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nagai, R., Murray, D. B., Metz, T. O. & Baynes, J. W. (2012). Diabetes, 61, 549–559. Web of Science CrossRef CAS PubMed Google Scholar
Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401–4411. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430. Web of Science CSD CrossRef CAS Google Scholar
Semenaka, V. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Zubatyuk, R. I., Shishkin, O. V., Boča, R., Jezierska, J. & Ozarowski, A. (2010). Inorg. Chem. 49, 5460–5471. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Taguchi, T., Sugiura, M., Hamada, Y. & Miwa, I. (1998). Biochem. Pharmacol. 55, 1667–1671. Web of Science CrossRef CAS PubMed Google Scholar
Taguchi, T., Sugiura, M., Hamada, Y. & Miwa, I. (1999). Eur. J. Pharmacol. 378, 283–289. Web of Science CrossRef PubMed CAS Google Scholar
Thornalley, P. J. (2003). Arch. Biochem. Biophys. 419, 31–40. Web of Science CrossRef PubMed CAS Google Scholar
Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Squattrito, P. J., Reedijk, J., Van Albada, G. A., Linert, W., Tiwary, S. K. & Raithby, P. R. (2001). New J. Chem. 25, 949–953. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.