research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{4-bromo-2-[(carb­amim­id­amido­imino)­meth­yl]phenolato-κ3N,N′,O}cobalt(III) nitrate di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bCentre for Microscopy, Characterisation and Analysis, M313, University of Western Australia, Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by P. C. Healy, Griffith University, Australia (Received 24 May 2016; accepted 30 May 2016; online 10 June 2016)

The title compound, [Co(C8H8BrN4O)2]NO3·C3H7NO, is formed of discrete [CoL2]+ cations, nitrate anions and di­methyl­formamide (DMF) mol­ecules of crystallization. The cation has no crystallographically imposed symmetry. The ligand mol­ecules are deprotonated at the phenol O atom and octa­hedrally coordinate the CoIII atoms through the azomethine N and phenolate O atoms in a mer configuration. The deprotonated ligand mol­ecules adopt an almost planar conformation. In the crystal lattice, the cations are arranged in layers in the ab plane divided by the nitrate anions and solvent mol­ecules. No ππ stacking is observed. All of the amine H atoms are involved in hydrogen bonding to nitrate, DMF or ligand O atoms or to one of the Br atoms, forming two-dimensional networks parallel to (100).

1. Chemical context

Amino­guanidine (AG) has been extensively studied as one of the most promising compounds for the treatment of diabetic complications (Thornalley, 2003[Thornalley, P. J. (2003). Arch. Biochem. Biophys. 419, 31-40.]). AG-based Schiff bases have attracted much research attention owing to experimental evidence that a pyridoxal-amino­guanidine Schiff base adduct exhibited advanced glycation inhibitory activity comparable to that of AG, while causing no decrease in the liver pyridoxal phosphate content of normal mice (Taguchi et al., 1998[Taguchi, T., Sugiura, M., Hamada, Y. & Miwa, I. (1998). Biochem. Pharmacol. 55, 1667-1671.], 1999[Taguchi, T., Sugiura, M., Hamada, Y. & Miwa, I. (1999). Eur. J. Pharmacol. 378, 283-289.]). The study of the chelating properties of AG-based Schiff bases toward metal ions may help to understand the mechanism of action of drugs and possible benefits of chelation therapy in diabetes (Nagai et al., 2012[Nagai, R., Murray, D. B., Metz, T. O. & Baynes, J. W. (2012). Diabetes, 61, 549-559.]).

Multinuclear Schiff base metal complexes, coupled systems in particular, are also of special inter­est in materials science. During the last few years, we have been exploring the chemistry of transition metal complexes of Schiff base ligands with the aim of preparing heterometallic polynuclear compounds with diverse potential advantages. In these studies, we continued to apply direct synthesis of coordination compounds, an approach that employs zero-valent metal (metal oxide) as a source of metal ions along with a salt of another metal (Vinogradova et al., 2001[Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Squattrito, P. J., Reedijk, J., Van Albada, G. A., Linert, W., Tiwary, S. K. & Raithby, P. R. (2001). New J. Chem. 25, 949-953.]; Buvaylo et al., 2009[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Eremenko, I. L., Jezierska, J. & Ozarowski, A. (2009). Inorg. Chem. 48, 11092-11097.]; Semenaka et al., 2010[Semenaka, V. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Zubatyuk, R. I., Shishkin, O. V., Boča, R., Jezierska, J. & Ozarowski, A. (2010). Inorg. Chem. 49, 5460-5471.]; Nesterov et al., 2011[Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401-4411.]). The metal powder is oxidized during the synthesis by di­oxy­gen from the air. The main advantage of this approach is generation of building blocks in situ, in one reaction vessel, thus eliminating separate steps in building-block construction. Reactions of a metal powder and another metal salt in air with a solution containing a pre-formed Schiff base ligand yielded a number of novel Cu/Cr and Co/Fe compounds (Nikitina et al., 2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.]; Chygorin et al., 2012[Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boča, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386-396.]).

[Scheme 1]

The title compound was isolated in an attempt to prepare a heterometallic Co/Mn compound with the ligand, HL·HNO3 (Fig. 1[link]) that was synthesized from Schiff base formation of 5-bromo­salicyl­aldehyde with AG·HNO3. Mn powder and Co(NO3)2·6H2O were reacted with the Schiff base formed in situ in methanol/di­methyl­formamide (DMF) mixture in a 1:1:2 molar ratio. The isolated dark-red microcrystalline product was identified crystallographically to be the mononuclear CoIII Schiff base complex CoL2NO3·DMF (I)[link] which did not contain any manganese.

[Figure 1]
Figure 1
Scheme of HL·HNO3.

2. Structural commentary

The title compound [Co(C8H8BrN4O)2]NO3·C3H7NO, (I)[link], is formed of discrete [CoL2]+ cations, nitrate anions and DMF mol­ecules of crystallization. The cation has no crystallographically imposed symmetry (Fig. 2[link]). The ligand mol­ecules are deprotonated at the phenol oxygen atom and coordinate to the CoIII atom through four azomethine N and two phenol O atoms in such a way that the CoIII atom is octa­hedrally surrounded by two anionic ligands in a mer configuration. The Co—N/O distances (Table 1[link]) fall in the range 1.887 (2)–1.9135 (18) Å, the trans angles at the metal atom vary from 175.14 (9) to 177.14 (8)°, the cis angles lie in the range 82.62 (9) to 94.35 (8)°. The deprotonated ligand mol­ecules adopt an almost planar conformation.

Table 1
Selected geometric parameters (Å, °)

Co1—N12 1.887 (2) Co1—N15 1.899 (2)
Co1—N22 1.889 (2) Co1—N25 1.902 (2)
Co1—O111 1.8919 (18) Co1—O211 1.9135 (18)
       
N12—Co1—N22 175.76 (9) O111—Co1—N25 88.36 (9)
N12—Co1—O111 94.35 (8) N15—Co1—N25 92.93 (9)
N22—Co1—O111 88.42 (8) N12—Co1—O211 89.98 (8)
N12—Co1—N15 83.02 (9) N22—Co1—O211 93.29 (8)
N22—Co1—N15 94.27 (9) O111—Co1—O211 88.90 (8)
O111—Co1—N15 177.14 (8) N15—Co1—O211 89.99 (9)
N12—Co1—N25 94.23 (9) N25—Co1—O211 175.14 (9)
N22—Co1—N25 82.62 (9)    
[Figure 2]
Figure 2
The mol­ecular structure of the title complex, showing the atom-numbering scheme. Non-H atoms are shown with displacement ellipsoids at the 50% probability level.

The coordination geometry around the metal atom has a close resemblance to that found in CoIII complexes with a very similar ligand which results from the condensation between salicyl­aldehyde and AG hydro­chloride: bis­{2-[(guanidino­imino)­meth­yl]phenolato-κ3N,N′,O]}cobalt(III) chloride hemihydrate (CSD refcode MEXGED; Buvaylo et al., 2013[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m165-m166.]), and its solvatomorph trihydrate (CSD refcode GEMJOY; Chumakov et al., 2006[Chumakov, Yu. M., Tsapkov, V. I., Bocelli, G., Antosyak, B. Ya., Shova, S. G. & Gulea, A. P. (2006). Crystallogr. Rep. 51, 60-67.]). Co—N/O distances in MEXGED, which possesses two independent cations, vary from 1.8863 (8) to 1.9290 (8) Å, the trans angles at the metal atoms fall in the range 172.24 (4)–176.71 (4)°, the cis angles are equal to 82.33 (4)–94.86 (4)°. Obviously, the use of the 5-bromo-deriv­ative of salicyl­aldehyde in the present study does not change the coordination properties of the resulting Schiff base ligand compared to that of parent salicyl­aldehyde-amino­guanidine Schiff base.

3. Supra­molecular features

In the crystal lattice, the cations are arranged in layers in the ab plane divided by the nitrate anions and DMF mol­ecules (Fig. 3[link]). Inter­actions between cations are weak, the closest Co⋯Co inter­molecular separation exceeds 5.76 Å. No ππ stacking is observed. All the amine hydrogen atoms are involved in hydrogen bonding to nitrate, DMF or ligand oxygen atoms or to one of the Br atoms, Br21, to form two-dimensional networks parallel to (100) (Fig. 4[link]). Hydrogen-bonding geometrical details are listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O12 0.871 (18) 1.987 (19) 2.851 (3) 171 (3)
N15—H15⋯O10 0.867 (18) 2.072 (18) 2.937 (3) 175 (3)
N16—H16A⋯Br21i 0.871 (18) 2.83 (3) 3.529 (2) 139 (3)
N16—H16B⋯O13 0.86 (3) 2.19 (3) 2.998 (3) 155 (4)
N23—H23⋯O11ii 0.878 (18) 2.00 (2) 2.854 (3) 163 (4)
N25—H25⋯O111iii 0.868 (17) 2.07 (2) 2.865 (3) 151 (3)
N26—H26A⋯O211iii 0.872 (17) 2.058 (19) 2.913 (3) 166 (3)
N26—H26B⋯O12ii 0.883 (19) 2.34 (3) 3.054 (3) 138 (3)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing of (I)[link] showing the layered arrangement of [CoL2]+ cations in the ab plane. H atoms are not shown.
[Figure 4]
Figure 4
Part of the crystal structure with inter­molecular hydrogen bonds shown as blue dashed lines. CH hydrogen atoms have been omitted for clarity.

4. Database survey

Crystal structures of neither the ligand itself nor its metal complexes are found in the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; CSD Version 5.37 plus one update). Eighteen reported structures of AG-based Schiff bases deposited in the Database incorporate various chloro, fluoro, hy­droxy, meth­oxy, methyl­thio and nitro derivatives of benzaldehyde, pyridine and pyrimidine. These organic compounds exist as zwitterions as well as chloride, nitrate, acetate, di­hydrogenphosphate and sulfate salts in the solid state.

Of 18 crystal structures of Schiff base metal complexes derived from AG, six are Fe, Cu and Zn compounds that contain a pyridoxal-amino­guanidine ligand. The latter has been of much inter­est due to its suggested superiority to AG in the treatment of diabetic complications. The remaining 12 compounds are mostly mononuclear CuII complexes (four) and CuCl42– salts (four) with protonated Schiff base ligands as cations. Other mononuclear complexes and hybrid metal salts of AG-based Schiff base ligands comprise V, Co, and Ni, Cd structures, respectively. The Schiff base ligands derived from AG do not show any coordination variability in their metal complexes - the ligand tends to coordinate through two azomethine N atoms and phen­oxy O atom from the ring if such one is present.

5. Synthesis and crystallization

Synthesis of (5-bromo­salicyl­idene)amino­guanidine HNO3 (HL·HNO3) ligand: 5-Bromo­salicyl­aldehyde (0.40 g, 2 mmol) in ethanol (10 ml) was poured into an aqueous solution (10 ml) of AG·HNO3 (0.35 g, 2 mmol) and 5 drops of concentrated nitric acid were added to the resulting clear solution. It was heated to 353 K under stirring for 20 min and then cooled in air. A white crystalline precipitate of HL·HNO3 deposited shortly. It was filtered off, washed with distilled water and dried out in air (yield: 82%).1H NMR (400 MHz, DMSO-d6, s, singlet; br, broad; d, doublet; Fig. 5[link]): 11.55, s (1H, phenolic OH); 10.20, s (1H, NH); 8.34, s (1H, CH=N azomethine); 8.13, s (1H, C-6); 7.52, br (4H, NH2); 7.27, d (H, C-3, J = 8.8 Hz); 6.82, d (H, C-4, J = 8.8 Hz). FT–IR (solid) ν (cm−1): 3500w, 3446m, 3418m, 3322m, 3208s, 3124m, 2922m, 2892m, 2854m, 2816m, 1692s, 1632vs, 1476s, 1420s, 1384vs, 1346s, 1336s, 1256s, 1190m, 1048m, 956w, 904w, 836w, 820w, 654w, 622m, 538w, 480w.

[Figure 5]
Figure 5
400 MHz 1H NMR spectrum of HL·HNO3 in DMSO-d6 at 293 K in the range 12–6.5 p.p.m.

Synthesis of 1: Mn powder (0.03 g, 0.5 mmol), Co(NO3)2·6H2O (0.15 g, 0.5 mmol) and HL·HNO3 (0.32 g, 1 mmol) were added to methanol (20 ml) and the mixture was heated to 323 K under stirring until total dissolution of the manganese powder was observed (1 h). The resulting red solution was filtered and allowed to stand at room temperature. Dark-red microcrystals of the title compound were formed over several days. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo (yield: 39%). FT–IR (solid) ν (cm−1): 3476m, 3406m, 3358m, 3226s, 3180s, 3092m, 3054m, 2998m, 2940m, 2900m, 2800m, 1660sh, 1650vs, 1596s, 1556s, 1522m, 1454s, 1384s, 1354m, 1334s, 1290s, 1250m, 1182m, 1134m, 1102m, 1046w, 926m, 822m, 969m, 656m, 620m, 574m, 526m, 468w.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms bound to carbon were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3). NH hydrogen atoms were refined with bond lengths restrained to ideal values (N—H = 0.88 Å). Anisotropic displacement parameters were employed for the non-hydrogen atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Co(C8H8BrN4O)2]NO3·C3H7NO
Mr 706.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.5778 (3), 9.9492 (3), 19.0240 (4)
β (°) 98.302 (2)
V3) 2542.99 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.88
Crystal size (mm) 0.23 × 0.11 × 0.11
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Analytical [CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), analytical numeric absorption correction (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.771, 0.891
No. of measured, independent and observed [I > 2σ(I)] reflections 35245, 8094, 6450
Rint 0.061
(sin θ/λ)max−1) 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.110, 1.02
No. of reflections 8094
No. of parameters 378
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.32, −0.68
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{4-bromo-2-[(carbamimidamidoimino)methyl]phenolato-κ3N,N',O}cobalt(III) nitrate dimethylformamide monosolvate top
Crystal data top
[Co(C8H8BrN4O)2]NO3·C3H7NOF(000) = 1408
Mr = 706.22Dx = 1.845 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8612 reflections
a = 13.5778 (3) Åθ = 2.4–32.4°
b = 9.9492 (3) ŵ = 3.88 mm1
c = 19.0240 (4) ÅT = 100 K
β = 98.302 (2)°Prism, dark_red
V = 2542.99 (11) Å30.23 × 0.11 × 0.11 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer
8094 independent reflections
Radiation source: fine-focus sealed X-ray tube6450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 10.4738 pixels mm-1θmax = 31.0°, θmin = 2.6°
ω scansh = 1919
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), analytical numeric absorption correction (Clark & Reid, 1995)]
k = 1413
Tmin = 0.771, Tmax = 0.891l = 2727
35245 measured reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0549P)2 + 1.1125P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
8094 reflectionsΔρmax = 1.32 e Å3
378 parametersΔρmin = 0.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. NH hydrogen atoms were refined with bond distances restrained to ideal values. Two reflections which were considered to be masked by the beam stop were omitted from the refinement. Largest peak is 0.79 Angstroms from Br21. Largest trough is 0.64 Angstroms from Co1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.40679 (2)0.49709 (3)0.27902 (2)0.01086 (8)
Br110.84873 (2)0.53347 (3)0.55431 (2)0.01994 (8)
Br210.02860 (2)1.02172 (3)0.19557 (2)0.02163 (8)
C1110.59602 (18)0.5698 (3)0.35767 (13)0.0135 (5)
O1110.52857 (13)0.59057 (19)0.30171 (9)0.0140 (4)
C1120.58479 (18)0.4791 (3)0.41364 (13)0.0125 (5)
C1130.6615 (2)0.4690 (3)0.47318 (13)0.0158 (5)
H1130.65410.40950.51120.019*
C1140.74582 (19)0.5454 (3)0.47532 (14)0.0171 (5)
C1150.7590 (2)0.6339 (3)0.42019 (14)0.0174 (5)
H1150.81820.68550.42240.021*
C1160.68522 (19)0.6452 (3)0.36274 (14)0.0168 (5)
H1160.69440.70530.32540.02*
C110.49888 (18)0.3939 (3)0.41404 (13)0.0137 (5)
H110.49610.33710.45380.016*
N120.42526 (15)0.3917 (2)0.36236 (11)0.0125 (4)
N130.34742 (16)0.3036 (2)0.36593 (11)0.0155 (4)
C140.27399 (18)0.3108 (3)0.30883 (13)0.0141 (5)
N150.28470 (15)0.4014 (2)0.26114 (11)0.0129 (4)
N160.19840 (18)0.2235 (3)0.30737 (13)0.0196 (5)
C2110.27262 (18)0.7103 (3)0.29499 (13)0.0140 (5)
O2110.34349 (13)0.63305 (19)0.32785 (9)0.0142 (4)
C2120.26407 (18)0.7469 (3)0.22191 (13)0.0131 (5)
C2130.19201 (19)0.8413 (3)0.19325 (14)0.0161 (5)
H2130.18890.8690.14520.019*
C2140.1259 (2)0.8938 (3)0.23468 (14)0.0183 (5)
C2150.1301 (2)0.8550 (3)0.30568 (15)0.0199 (6)
H2150.08290.88880.33360.024*
C2160.2033 (2)0.7672 (3)0.33485 (14)0.0190 (5)
H2160.20710.74410.38360.023*
C210.32682 (18)0.6909 (3)0.17418 (13)0.0144 (5)
H210.32450.72890.12820.030 (9)*
N220.38606 (15)0.5908 (2)0.19178 (11)0.0120 (4)
N230.44539 (17)0.5417 (2)0.14357 (11)0.0142 (4)
C240.48136 (18)0.4152 (3)0.16206 (13)0.0132 (5)
N250.47343 (16)0.3738 (2)0.22568 (11)0.0128 (4)
N260.52409 (17)0.3479 (3)0.11301 (12)0.0172 (5)
N10.33098 (17)0.0191 (2)0.46915 (11)0.0156 (4)
O110.34224 (14)0.0888 (2)0.50414 (10)0.0183 (4)
O120.40449 (14)0.0966 (2)0.46727 (10)0.0203 (4)
O130.24818 (15)0.0494 (2)0.43623 (11)0.0269 (5)
C1010.0924 (2)0.6797 (3)0.00598 (15)0.0256 (6)
H10A0.150.64440.01380.038*
H10B0.10410.7740.01930.038*
H10C0.03280.67280.02970.038*
C1020.0029 (2)0.6429 (3)0.10642 (16)0.0233 (6)
H10D0.00740.6050.15450.035*
H10E0.06630.61050.08090.035*
H10F0.00430.74120.10930.035*
N100.07772 (16)0.6015 (3)0.06882 (12)0.0174 (5)
C100.1335 (2)0.4952 (3)0.08995 (15)0.0207 (6)
H100.18560.47330.06350.025*
O100.12327 (15)0.4225 (2)0.14103 (10)0.0229 (4)
H230.426 (3)0.562 (4)0.0989 (11)0.043 (11)*
H250.488 (2)0.2892 (19)0.2306 (16)0.011 (7)*
H26A0.556 (2)0.275 (2)0.1271 (15)0.015 (8)*
H26B0.522 (3)0.378 (4)0.0691 (12)0.050 (12)*
H130.358 (3)0.239 (3)0.3968 (17)0.038 (11)*
H150.2362 (18)0.412 (4)0.2266 (13)0.023 (9)*
H16A0.1505 (19)0.219 (4)0.2716 (14)0.027 (9)*
H16B0.200 (3)0.157 (4)0.337 (2)0.067 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01350 (17)0.01171 (17)0.00748 (15)0.00003 (12)0.00193 (12)0.00055 (11)
Br110.01947 (14)0.02185 (16)0.01635 (14)0.00175 (10)0.00467 (10)0.00023 (10)
Br210.02097 (15)0.02263 (16)0.01907 (14)0.00852 (10)0.00461 (10)0.00454 (10)
C1110.0173 (12)0.0106 (12)0.0125 (11)0.0010 (9)0.0022 (9)0.0001 (9)
O1110.0175 (9)0.0141 (10)0.0097 (8)0.0021 (7)0.0001 (6)0.0029 (7)
C1120.0105 (11)0.0154 (13)0.0114 (11)0.0003 (9)0.0012 (8)0.0009 (9)
C1130.0205 (13)0.0170 (14)0.0097 (11)0.0005 (10)0.0019 (9)0.0012 (9)
C1140.0173 (12)0.0190 (14)0.0142 (12)0.0016 (10)0.0007 (10)0.0005 (10)
C1150.0173 (12)0.0167 (14)0.0182 (12)0.0029 (10)0.0025 (10)0.0001 (10)
C1160.0179 (12)0.0171 (14)0.0157 (12)0.0037 (10)0.0036 (10)0.0027 (10)
C110.0185 (12)0.0127 (13)0.0101 (11)0.0004 (9)0.0029 (9)0.0018 (9)
N120.0141 (10)0.0125 (11)0.0113 (9)0.0016 (8)0.0030 (8)0.0004 (8)
N130.0175 (11)0.0168 (12)0.0115 (10)0.0050 (8)0.0002 (8)0.0050 (8)
C140.0153 (12)0.0166 (13)0.0107 (11)0.0008 (9)0.0026 (9)0.0015 (9)
N150.0147 (10)0.0139 (11)0.0096 (9)0.0003 (8)0.0001 (8)0.0010 (8)
N160.0191 (12)0.0234 (14)0.0155 (11)0.0078 (9)0.0000 (9)0.0024 (9)
C2110.0164 (12)0.0139 (13)0.0118 (11)0.0010 (9)0.0024 (9)0.0015 (9)
O2110.0181 (9)0.0147 (10)0.0099 (8)0.0024 (7)0.0029 (7)0.0017 (7)
C2120.0151 (11)0.0126 (12)0.0115 (11)0.0009 (9)0.0021 (9)0.0007 (9)
C2130.0207 (13)0.0142 (13)0.0127 (11)0.0000 (10)0.0001 (9)0.0012 (9)
C2140.0185 (13)0.0160 (14)0.0185 (13)0.0034 (10)0.0036 (10)0.0025 (10)
C2150.0230 (14)0.0199 (15)0.0185 (13)0.0050 (10)0.0088 (11)0.0011 (10)
C2160.0246 (14)0.0207 (15)0.0128 (12)0.0052 (11)0.0062 (10)0.0001 (10)
C210.0173 (12)0.0155 (13)0.0108 (11)0.0006 (9)0.0028 (9)0.0014 (9)
N220.0154 (10)0.0119 (11)0.0091 (9)0.0003 (8)0.0027 (7)0.0008 (7)
N230.0196 (11)0.0149 (11)0.0088 (9)0.0041 (8)0.0050 (8)0.0019 (8)
C240.0129 (11)0.0145 (13)0.0123 (11)0.0014 (9)0.0017 (9)0.0011 (9)
N250.0161 (10)0.0130 (11)0.0098 (9)0.0014 (8)0.0037 (8)0.0015 (8)
N260.0229 (12)0.0190 (12)0.0115 (10)0.0070 (9)0.0083 (9)0.0031 (9)
N10.0179 (11)0.0207 (12)0.0089 (10)0.0002 (8)0.0043 (8)0.0001 (8)
O110.0232 (10)0.0198 (11)0.0125 (9)0.0019 (8)0.0043 (7)0.0039 (7)
O120.0192 (10)0.0215 (11)0.0202 (10)0.0032 (8)0.0024 (7)0.0033 (8)
O130.0178 (10)0.0392 (14)0.0226 (11)0.0004 (9)0.0014 (8)0.0117 (9)
C1010.0290 (16)0.0304 (18)0.0189 (14)0.0005 (12)0.0082 (12)0.0085 (12)
C1020.0231 (14)0.0242 (16)0.0245 (14)0.0002 (11)0.0096 (11)0.0010 (12)
N100.0183 (11)0.0191 (13)0.0156 (10)0.0013 (9)0.0052 (8)0.0021 (8)
C100.0178 (13)0.0262 (16)0.0182 (13)0.0007 (11)0.0031 (10)0.0007 (11)
O100.0239 (10)0.0259 (12)0.0188 (10)0.0003 (8)0.0022 (8)0.0053 (8)
Geometric parameters (Å, º) top
Co1—N121.887 (2)C212—C2131.408 (4)
Co1—N221.889 (2)C212—C211.444 (3)
Co1—O1111.8919 (18)C213—C2141.380 (4)
Co1—N151.899 (2)C213—H2130.95
Co1—N251.902 (2)C214—C2151.398 (4)
Co1—O2111.9135 (18)C215—C2161.379 (4)
Br11—C1141.902 (3)C215—H2150.95
Br21—C2141.906 (3)C216—H2160.95
C111—O1111.317 (3)C21—N221.294 (3)
C111—C1161.416 (4)C21—H210.95
C111—C1121.420 (4)N22—N231.393 (3)
C112—C1131.427 (4)N23—C241.377 (3)
C112—C111.443 (3)N23—H230.878 (18)
C113—C1141.371 (4)C24—N251.298 (3)
C113—H1130.95C24—N261.346 (3)
C114—C1151.400 (4)N25—H250.868 (17)
C115—C1161.376 (4)N26—H26A0.872 (17)
C115—H1150.95N26—H26B0.883 (19)
C116—H1160.95N1—O131.242 (3)
C11—N121.297 (3)N1—O111.261 (3)
C11—H110.95N1—O121.266 (3)
N12—N131.382 (3)C101—N101.464 (3)
N13—C141.366 (3)C101—H10A0.98
N13—H130.871 (18)C101—H10B0.98
C14—N151.302 (3)C101—H10C0.98
C14—N161.342 (3)C102—N101.452 (3)
N15—H150.867 (18)C102—H10D0.98
N16—H16A0.871 (18)C102—H10E0.98
N16—H16B0.86 (3)C102—H10F0.98
C211—O2111.317 (3)N10—C101.328 (4)
C211—C2161.410 (3)C10—O101.235 (3)
C211—C2121.426 (3)C10—H100.95
N12—Co1—N22175.76 (9)C211—O211—Co1122.07 (15)
N12—Co1—O11194.35 (8)C213—C212—C211120.1 (2)
N22—Co1—O11188.42 (8)C213—C212—C21117.0 (2)
N12—Co1—N1583.02 (9)C211—C212—C21122.8 (2)
N22—Co1—N1594.27 (9)C214—C213—C212120.3 (2)
O111—Co1—N15177.14 (8)C214—C213—H213119.9
N12—Co1—N2594.23 (9)C212—C213—H213119.9
N22—Co1—N2582.62 (9)C213—C214—C215120.5 (2)
O111—Co1—N2588.36 (9)C213—C214—Br21120.1 (2)
N15—Co1—N2592.93 (9)C215—C214—Br21119.4 (2)
N12—Co1—O21189.98 (8)C216—C215—C214119.4 (2)
N22—Co1—O21193.29 (8)C216—C215—H215120.3
O111—Co1—O21188.90 (8)C214—C215—H215120.3
N15—Co1—O21189.99 (9)C215—C216—C211122.4 (2)
N25—Co1—O211175.14 (9)C215—C216—H216118.8
O111—C111—C116117.4 (2)C211—C216—H216118.8
O111—C111—C112124.7 (2)N22—C21—C212122.4 (2)
C116—C111—C112118.0 (2)N22—C21—H21118.8
C111—O111—Co1126.17 (16)C212—C21—H21118.8
C111—C112—C113119.7 (2)C21—N22—N23119.8 (2)
C111—C112—C11123.5 (2)C21—N22—Co1127.99 (17)
C113—C112—C11116.9 (2)N23—N22—Co1112.24 (16)
C114—C113—C112119.7 (2)C24—N23—N22111.7 (2)
C114—C113—H113120.2C24—N23—H23120 (3)
C112—C113—H113120.2N22—N23—H23116 (3)
C113—C114—C115121.5 (2)N25—C24—N26126.2 (2)
C113—C114—Br11120.3 (2)N25—C24—N23117.0 (2)
C115—C114—Br11118.2 (2)N26—C24—N23116.8 (2)
C116—C115—C114119.3 (2)C24—N25—Co1113.73 (18)
C116—C115—H115120.3C24—N25—H25111 (2)
C114—C115—H115120.3Co1—N25—H25133.7 (19)
C115—C116—C111121.8 (2)C24—N26—H26A117 (2)
C115—C116—H116119.1C24—N26—H26B122 (3)
C111—C116—H116119.1H26A—N26—H26B121 (3)
N12—C11—C112122.8 (2)O13—N1—O11120.3 (2)
N12—C11—H11118.6O13—N1—O12119.9 (2)
C112—C11—H11118.6O11—N1—O12119.8 (2)
C11—N12—N13119.0 (2)N10—C101—H10A109.5
C11—N12—Co1128.42 (18)N10—C101—H10B109.5
N13—N12—Co1112.57 (16)H10A—C101—H10B109.5
C14—N13—N12113.8 (2)N10—C101—H10C109.5
C14—N13—H13127 (3)H10A—C101—H10C109.5
N12—N13—H13117 (2)H10B—C101—H10C109.5
N15—C14—N16126.6 (2)N10—C102—H10D109.5
N15—C14—N13116.6 (2)N10—C102—H10E109.5
N16—C14—N13116.8 (2)H10D—C102—H10E109.5
C14—N15—Co1113.87 (17)N10—C102—H10F109.5
C14—N15—H15118 (2)H10D—C102—H10F109.5
Co1—N15—H15128 (2)H10E—C102—H10F109.5
C14—N16—H16A122 (2)C10—N10—C102121.0 (2)
C14—N16—H16B122 (3)C10—N10—C101122.1 (2)
H16A—N16—H16B114 (4)C102—N10—C101116.9 (2)
O211—C211—C216118.5 (2)O10—C10—N10125.5 (3)
O211—C211—C212124.3 (2)O10—C10—H10117.3
C216—C211—C212117.1 (2)N10—C10—H10117.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O120.871 (18)1.987 (19)2.851 (3)171 (3)
N15—H15···O100.867 (18)2.072 (18)2.937 (3)175 (3)
N16—H16A···Br21i0.871 (18)2.83 (3)3.529 (2)139 (3)
N16—H16B···O130.86 (3)2.19 (3)2.998 (3)155 (4)
N23—H23···O11ii0.878 (18)2.00 (2)2.854 (3)163 (4)
N25—H25···O111iii0.868 (17)2.07 (2)2.865 (3)151 (3)
N26—H26A···O211iii0.872 (17)2.058 (19)2.913 (3)166 (3)
N26—H26B···O12ii0.883 (19)2.34 (3)3.054 (3)138 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, the University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m165–m166.  CSD CrossRef IUCr Journals Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Eremenko, I. L., Jezierska, J. & Ozarowski, A. (2009). Inorg. Chem. 48, 11092–11097.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChumakov, Yu. M., Tsapkov, V. I., Bocelli, G., Antosyak, B. Ya., Shova, S. G. & Gulea, A. P. (2006). Crystallogr. Rep. 51, 60–67.  Web of Science CrossRef CAS Google Scholar
First citationChygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boča, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386–396.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNagai, R., Murray, D. B., Metz, T. O. & Baynes, J. W. (2012). Diabetes, 61, 549–559.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401–4411.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationSemenaka, V. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Zubatyuk, R. I., Shishkin, O. V., Boča, R., Jezierska, J. & Ozarowski, A. (2010). Inorg. Chem. 49, 5460–5471.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaguchi, T., Sugiura, M., Hamada, Y. & Miwa, I. (1998). Biochem. Pharmacol. 55, 1667–1671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTaguchi, T., Sugiura, M., Hamada, Y. & Miwa, I. (1999). Eur. J. Pharmacol. 378, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThornalley, P. J. (2003). Arch. Biochem. Biophys. 419, 31–40.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Squattrito, P. J., Reedijk, J., Van Albada, G. A., Linert, W., Tiwary, S. K. & Raithby, P. R. (2001). New J. Chem. 25, 949–953.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds