research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(4-acetyl­anilino)-2-oxo­ethyl 3-(4-hy­dr­oxy­phen­yl)propionate

CROSSMARK_Color_square_no_text.svg

aDepartment of Biology, College of Natural Sciences, Kongju National University, Gongju 314-701, Republic of Korea, bDepartment of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan, and cDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by H. Ishida, Okayama University, Japan (Received 5 May 2016; accepted 3 June 2016; online 10 June 2016)

In the title compound, C19H19NO5, the amide carbonyl O atom is positioned anti to the other two carbonyl O atoms. The 4-hy­droxy­hydro­cinnamate fragment is disordered over two positions with an occupancy ratio of 0.729 (12):0.271 (12). The N—(C=O)—C plane of the acetamide group and the acetate O—(C=O)—C plane are almost co-planar; the acetamide plane makes dihedral angles of 1.9 (6) and 16.0 (19)°, respectively, with the acetate planes of the major and minor occupancy components. In the crystal, N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular sheet structure parallel to (102).

1. Chemical context

Hy­droxy-substituted aromatic compounds with additional ester and amide functionalities have been reported to be potential tyrosinase inhibitors (Miliovsky et al., 2013[Miliovsky, M., Svinyarov, I., Mitrev, Y., Evstatieva, Y., Nikolova, D., Chochkova, M. & Bogdanov, M. G. (2013). Eur. J. Med. Chem. 66, 185-192.]; Takahashi & Miyazawa, 2011[Takahashi, T. & Miyazawa, M. (2011). Bioorg. Med. Chem. Lett. 21, 1983-1986.]). Tyrosinase is a key enzyme present in melanocytes, which is involved in the biosynthesis of melanin. The abnormal production and accumulation of melanin causes a number of hyperpigmentation disorders such as freckles, melasma, lentigo senilis and pigmented acne scars (Lynde et al., 2006[Lynde, C. B., Kraft, J. N. & Lynde, C. W. (2006). Skin Therapy Lett. 11, 1-6.]; Cullen, 1998[Cullen, M. K. (1998). The Pigmentary System: Physiology and Pathophysiology, edited by J. J. Norlund, R. E. Boissy, V. J. Hearing, R. A. King & J. P. Ortonne, pp. 760-766. New York: Oxford University Press Inc.]). Tyrosinase has also been linked to melanoma, a skin-cancer type that arises from the aberrant proliferation of melanocytes (Uong & Zon, 2010[Uong, A. & Zon, L. I. (2010). J. Cell. Physiol. 222, 38-41.]). It has also been reported that tyrosinase is one of the main causes of most fruit and vegetable damage during post-harvest handling and processing, leading to quicker degradation and shorter shelf life (Yi et al., 2010[Yi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem. 45, 639-646.]). Therefore, the synthesis of safe and effective tyrosinase inhibitors is of great concern in the medical, agricultural and cosmetic industries. The synthesis and tyrosinase inhibitory activity of hy­droxy-substituted phenyl esters is currently an ongoing research topic in our lab (Ashraf et al., 2015[Ashraf, Z., Rafiq, M., Seo, S. Y., Kwon, K. S., Babar, M. M. & Zaidi, N. S. (2015). Eur. J. Med. Chem. 98, 203-211.]). In view of the tyrosinase inhibitory potential of hy­droxy-substituted aromatic compounds, the title compound (Fig. 1[link]) has been synthesized and characterized by single crystal X-ray diffraction.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Only the major occupancy disorder component is shown.

2. Structural commentary

The fragment O1/O12/N10/C2–C9/C11/C13 including the acetamide group is almost planar with an r.m.s. deviation of 0.034 (11) Å. The 4-hy­droxy­hydro­cinnamate fragment is disordered over two positions with occupancy ratio of 0.729 (12):0.271 (12). The acetamide plane O12/N10/C11/C12 makes dihedral angles of 1.9 (6) and 16.0 (19)°, respectively, with the disordered acetate planes O14/O16/C15/C17 and O14A/O16A/C15A/C17A. The carbonyl O1 and O16 atoms are positioned anti with respect to the carbonyl O12 atom. These C=O bond lengths are in the range 1.176 (12)–1.226 (6) Å.

3. Supra­molecular features

In the crystal, mol­ecules are linked via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds (N10—H10⋯O1i, O25—H25⋯O12ii, C4—H4A⋯O16iii and C24—H24⋯O12ii; Table 1[link]), forming a sheet parallel to (102) (Fig. 2[link]). In the sheet, these hydrogen bonds form R21(6), R33(19) and R33(31) graph-set motifs. There are also weak C—H⋯O hydrogen bonds (C13—H13B⋯O25iv and C13—H13B⋯O25Aiv; Table 1[link]) between the sheets (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯O1i 0.86 (5) 2.11 (5) 2.925 (5) 159 (4)
O25—H25⋯O12ii 0.95 (12) 1.93 (11) 2.87 (3) 172 (13)
C4—H4A⋯O16iii 0.96 2.59 3.416 (10) 144
C13—H13B⋯O25iv 0.97 2.60 3.458 (17) 147
C13—H13B⋯O25Aiv 0.97 2.50 3.34 (4) 145
C24—H24⋯O12ii 0.93 2.57 3.284 (11) 133
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The sheet structure of mol­ecules linked by N—H⋯O, O—H⋯O, and C—H⋯O hydrogen bonds (dashed lines). Only the major occupancy disorder components are shown.
[Figure 3]
Figure 3
Part of the packing diagram of the title compound, showing the C—H⋯O hydrogen bonds (dashed lines) between the hydrogen-bonded sheets. Only the major disorder components are shown.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37 with two updates, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned three entries for crystal structures with ethyl hydro­cinnamate as the main skeleton (BESTIC: Böjthe-Horváth et al., 1982[Böjthe-Horváth, K., Kocsis, Á., Párkány, L. & Simon, K. (1982). Tetrahedron Lett. 23, 965-966.]; FUZYOQ: Wang et al., 2015[Wang, J., Lu, L., Ma, A. Q., Wu, W. P., Xie, B. & Wu, Y. (2015). Russ. J. Coord. Chem. 41, 618-623.]; NAXVIR: Hassan & Wang, 1997[Hassan, A. & Wang, S. (1997). J. Chem. Soc. Dalton Trans. pp. 2009-2018.]). There are 76 entries of organic compounds with the 4-acetyl­anilino group.

5. Synthesis and crystallization

The title compound was synthesized by direct condensation of 4-hy­droxy­phenyl propanoic acid with N-(4-acetyl­phen­yl)-2-chloro­acetamide in the presence of dimethyl formamide (DMF) solvent and tri­ethyl­amine base (Fig. 4[link]). The reaction mixture was stirred overnight at room temperature. Then the mixture was poured into finely crushed ice and extracted with ethyl acetate. It was washed with 5% HCl and 5% sodium hydroxide, and finally with aqueous NaCl solution. The organic layer was dried over anhydrous magnesium sulfate, filtered and the solvent was removed under reduced pressure to afford the crude product. The title compound was purified by silica gel column chromatography using ethyl acetate and n-hexane (3:1) as eluent. The single crystals were obtained from a solvent mixture of ethyl acetate/n-hexane (3:1) upon slow evaporation at room temperature (yield 78%, m.p. 419–421 K). FTIR νmax cm−1: 3428 (N—H), 3354 (O—H), 2971 (sp2 C—H), 2887 (sp3 C—H), 1735 (C=O ester), 1646 (C=O amide), 1601 (C=C aromatic), 1154 (C—O, ester).

[Figure 4]
Figure 4
Reaction scheme for the synthesis of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The 4-hy­droxy­hydro­cinnamate fragment, O16/O25/C15–C24, was found to be disordered over two positions and the occupancy ratio was refined to 0.729 (12):0.271 (12). Atoms O16A, O25A and C15A–C24A of the minor component were refined isotropically. Planarity restraints were applied for atoms C18–C24, O25, C18A–C24A and O25A. Bond-distance restraints were also applied for C20, C22, C23, O16A and C15A–C24A. H10 and H25 of the NH and OH groups, respectively, were located in a difference Fourier map and the coordinates were refined with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O) [N—H = 0.86 (5) Å and O—H = 0.95 (12) Å]. H25A of the minor occupancy OH group was refined with a restraint of O—H = 0.90 (2) Å, and with Uiso(H) = 1.5Ueq(O). All other H atoms were included as riding atoms, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise.

Table 2
Experimental details

Crystal data
Chemical formula C19H19NO5
Mr 341.35
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 5.510 (3), 14.809 (9), 10.824 (7)
β (°) 100.757 (7)
V3) 867.7 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.26 × 0.25 × 0.23
 
Data collection
Diffractometer Bruker SMART CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 6909, 3403, 1798
Rint 0.031
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.126, 1.00
No. of reflections 3403
No. of parameters 276
No. of restraints 25
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.17
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip,2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip,2010).

2-(4-Acetylanilino)-2-oxoethyl 3-(4-hydroxyphenyl)propionate top
Crystal data top
C19H19NO5F(000) = 360
Mr = 341.35Dx = 1.306 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.510 (3) ÅCell parameters from 1529 reflections
b = 14.809 (9) Åθ = 2.4–20.5°
c = 10.824 (7) ŵ = 0.10 mm1
β = 100.757 (7)°T = 296 K
V = 867.7 (9) Å3Block, colourless
Z = 20.26 × 0.25 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.031
Radiation source: fine-focus sealed tubeθmax = 26.5°, θmin = 1.9°
φ and ω scansh = 66
6909 measured reflectionsk = 1818
3403 independent reflectionsl = 1313
1798 reflections with I > 2σ(I)
Refinement top
Refinement on F225 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.0787P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3403 reflectionsΔρmax = 0.14 e Å3
276 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.0367 (8)1.4286 (2)0.0585 (4)0.0831 (15)
C20.8795 (10)1.3999 (4)0.1151 (5)0.0551 (15)
C30.8377 (10)1.3024 (3)0.1253 (5)0.0451 (14)
C40.7281 (11)1.4662 (3)0.1753 (6)0.0689 (18)
H4A0.77111.52670.15590.103*
H4B0.76151.45780.26480.103*
H4C0.55571.45620.14340.103*
C50.9784 (9)1.2426 (4)0.0675 (5)0.0555 (16)
H51.09861.26510.02580.067*
C60.9408 (10)1.1512 (3)0.0717 (5)0.0523 (15)
H61.03751.11230.03390.063*
C70.7613 (9)1.1162 (3)0.1315 (5)0.0459 (14)
C80.6218 (11)1.1739 (3)0.1902 (5)0.0572 (17)
H80.50161.15090.23150.069*
C90.6618 (9)1.2656 (3)0.1872 (5)0.0540 (16)
H90.56841.30390.22780.065*
N100.7347 (8)1.0214 (3)0.1292 (4)0.0511 (13)
H100.836 (9)0.995 (4)0.089 (4)0.061*
C110.5765 (10)0.9683 (4)0.1782 (5)0.0500 (15)
O120.4168 (7)0.9955 (2)0.2321 (4)0.0621 (11)
C130.6264 (11)0.8699 (3)0.1599 (5)0.0509 (15)
H13A0.61340.85700.07100.061*
H13B0.79230.85480.20240.061*
O140.4514 (7)0.8175 (2)0.2098 (4)0.0650 (12)
C150.4672 (17)0.7263 (6)0.1902 (11)0.044 (3)0.729 (12)
O160.631 (3)0.6938 (5)0.1497 (16)0.074 (4)0.729 (12)
C170.2874 (14)0.6724 (5)0.2509 (9)0.048 (2)0.729 (12)
H17A0.24460.61690.20420.058*0.729 (12)
H17B0.13720.70700.24870.058*0.729 (12)
C180.4021 (15)0.6501 (7)0.3868 (8)0.070 (3)0.729 (12)
H18A0.56590.62540.38930.084*0.729 (12)
H18B0.42000.70540.43560.084*0.729 (12)
C190.2509 (13)0.5829 (7)0.4479 (7)0.063 (3)0.729 (12)
C200.2881 (15)0.4932 (7)0.4377 (8)0.065 (3)0.729 (12)
H200.40610.47320.39280.078*0.729 (12)
C210.0769 (17)0.6103 (8)0.5129 (10)0.063 (3)0.729 (12)
H210.04790.67170.52020.076*0.729 (12)
C220.154 (2)0.4300 (8)0.4927 (10)0.085 (3)0.729 (12)
H220.18370.36860.48520.102*0.729 (12)
C230.024 (2)0.4599 (14)0.5590 (11)0.065 (6)0.729 (12)
C240.059 (2)0.5493 (11)0.5684 (12)0.060 (4)0.729 (12)
H240.17590.57040.61300.072*0.729 (12)
O250.156 (4)0.389 (2)0.6129 (17)0.079 (6)0.729 (12)
H250.24 (2)0.420 (8)0.669 (14)0.119*0.729 (12)
C15A0.526 (5)0.7305 (17)0.239 (2)0.033 (7)*0.271 (12)
O16A0.647 (11)0.698 (3)0.164 (6)0.13 (2)*0.271 (12)
C17A0.344 (5)0.6930 (19)0.317 (3)0.055 (8)*0.271 (12)
H17C0.38410.71560.40290.066*0.271 (12)
H17D0.17700.71160.28130.066*0.271 (12)
C18A0.363 (4)0.5920 (18)0.317 (2)0.075 (8)*0.271 (12)
H18C0.53480.57490.34200.090*0.271 (12)
H18D0.30550.57020.23210.090*0.271 (12)
C19A0.215 (3)0.5467 (15)0.4037 (16)0.044 (7)*0.271 (12)
C20A0.256 (4)0.4531 (14)0.412 (2)0.045*0.271 (12)
H20A0.36440.42590.36720.054*0.271 (12)
C21A0.054 (5)0.5854 (17)0.471 (2)0.050 (9)*0.271 (12)
H21A0.02730.64740.46490.060*0.271 (12)
C22A0.135 (5)0.4023 (14)0.487 (2)0.042*0.271 (12)
H22A0.16090.34030.49420.050*0.271 (12)
C23A0.024 (5)0.444 (3)0.553 (2)0.037 (12)*0.271 (12)
C24A0.071 (6)0.535 (2)0.548 (3)0.071 (18)*0.271 (12)
H24A0.17940.56190.59320.085*0.271 (12)
O25A0.135 (10)0.397 (6)0.622 (5)0.061 (13)*0.271 (12)
H25A0.18 (5)0.439 (15)0.67 (3)0.091*0.271 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.110 (3)0.049 (2)0.112 (4)0.013 (2)0.075 (3)0.007 (2)
C20.060 (4)0.049 (3)0.063 (4)0.004 (3)0.027 (3)0.003 (3)
C30.057 (4)0.034 (3)0.048 (4)0.000 (2)0.018 (3)0.007 (2)
C40.080 (4)0.040 (3)0.097 (5)0.001 (3)0.040 (4)0.002 (3)
C50.054 (4)0.052 (4)0.070 (4)0.000 (3)0.034 (3)0.005 (3)
C60.063 (4)0.035 (3)0.069 (4)0.009 (3)0.039 (3)0.002 (3)
C70.052 (3)0.037 (3)0.056 (4)0.001 (3)0.030 (3)0.002 (2)
C80.070 (4)0.035 (3)0.079 (4)0.003 (3)0.047 (3)0.001 (3)
C90.059 (4)0.038 (3)0.076 (4)0.004 (3)0.043 (3)0.001 (3)
N100.069 (3)0.030 (2)0.067 (3)0.003 (2)0.046 (3)0.001 (2)
C110.052 (3)0.044 (3)0.058 (4)0.003 (3)0.021 (3)0.001 (3)
O120.073 (3)0.040 (2)0.088 (3)0.0043 (18)0.054 (2)0.0006 (19)
C130.061 (4)0.037 (3)0.063 (4)0.001 (3)0.033 (3)0.000 (2)
O140.074 (3)0.040 (2)0.098 (3)0.0014 (18)0.058 (2)0.0079 (19)
C150.044 (6)0.046 (6)0.038 (6)0.011 (4)0.004 (5)0.017 (5)
O160.076 (6)0.022 (3)0.148 (10)0.006 (3)0.081 (6)0.012 (3)
C170.046 (5)0.045 (5)0.053 (6)0.006 (4)0.008 (4)0.010 (4)
C180.070 (6)0.0760.067 (7)0.017 (5)0.020 (5)0.015 (5)
C190.054 (6)0.090 (7)0.044 (6)0.025 (5)0.009 (4)0.012 (5)
C200.063 (5)0.0640.083 (7)0.008 (5)0.052 (5)0.002 (6)
C210.059 (6)0.081 (7)0.050 (7)0.016 (5)0.012 (5)0.014 (6)
C220.089 (7)0.0850.093 (8)0.010 (7)0.048 (6)0.002 (7)
C230.056 (8)0.088 (12)0.057 (8)0.004 (6)0.031 (5)0.018 (6)
C240.051 (7)0.071 (8)0.066 (7)0.005 (5)0.033 (5)0.013 (6)
O250.085 (8)0.064 (9)0.108 (10)0.001 (5)0.068 (6)0.018 (6)
Geometric parameters (Å, º) top
O1—C21.226 (6)C18—H18B0.9700
C2—C31.471 (7)C19—C211.352 (13)
C2—C41.512 (7)C19—C201.353 (13)
C3—C91.389 (6)C20—C221.391 (12)
C3—C51.398 (7)C20—H200.9300
C4—H4A0.9600C21—C241.378 (13)
C4—H4B0.9600C21—H210.9300
C4—H4C0.9600C22—C231.391 (13)
C5—C61.372 (7)C22—H220.9300
C5—H50.9300C23—C241.35 (2)
C6—C71.380 (7)C23—O251.46 (3)
C6—H60.9300C24—H240.9300
C7—C81.381 (7)O25—H250.95 (12)
C7—N101.411 (6)C15A—O16A1.24 (3)
C8—C91.377 (7)C15A—C17A1.53 (2)
C8—H80.9300C17A—C18A1.50 (4)
C9—H90.9300C17A—H17C0.9700
N10—C111.354 (6)C17A—H17D0.9700
N10—H100.86 (5)C18A—C19A1.51 (3)
C11—O121.212 (6)C18A—H18C0.9700
C11—C131.503 (7)C18A—H18D0.9700
C13—O141.421 (5)C19A—C21A1.37 (2)
C13—H13A0.9700C19A—C20A1.41 (2)
C13—H13B0.9700C20A—C22A1.37 (2)
O14—C15A1.37 (3)C20A—H20A0.9300
O14—C151.373 (11)C21A—C24A1.39 (3)
C15—O161.176 (12)C21A—H21A0.9300
C15—C171.514 (10)C22A—C23A1.38 (2)
C17—C181.525 (13)C22A—H22A0.9300
C17—H17A0.9700C23A—O25A1.26 (7)
C17—H17B0.9700C23A—C24A1.37 (3)
C18—C191.525 (11)C24A—H24A0.9300
C18—H18A0.9700O25A—H25A0.90 (3)
O1—C2—C3120.8 (5)H18A—C18—H18B107.7
O1—C2—C4119.3 (5)C21—C19—C20118.0 (8)
C3—C2—C4119.9 (5)C21—C19—C18121.9 (9)
C9—C3—C5117.6 (4)C20—C19—C18120.1 (9)
C9—C3—C2123.7 (4)C19—C20—C22121.7 (8)
C5—C3—C2118.7 (5)C19—C20—H20119.2
C2—C4—H4A109.5C22—C20—H20119.2
C2—C4—H4B109.5C19—C21—C24121.7 (12)
H4A—C4—H4B109.5C19—C21—H21119.2
C2—C4—H4C109.5C24—C21—H21119.2
H4A—C4—H4C109.5C20—C22—C23119.2 (11)
H4B—C4—H4C109.5C20—C22—H22120.4
C6—C5—C3120.6 (5)C23—C22—H22120.4
C6—C5—H5119.7C24—C23—C22118.5 (12)
C3—C5—H5119.7C24—C23—O25126.0 (17)
C5—C6—C7120.8 (5)C22—C23—O25115.6 (19)
C5—C6—H6119.6C23—C24—C21121.0 (12)
C7—C6—H6119.6C23—C24—H24119.5
C6—C7—C8119.5 (4)C21—C24—H24119.5
C6—C7—N10116.5 (4)C23—O25—H25105 (8)
C8—C7—N10124.0 (4)O16A—C15A—O14113 (3)
C9—C8—C7119.6 (5)O16A—C15A—C17A135 (3)
C9—C8—H8120.2O14—C15A—C17A105.6 (19)
C7—C8—H8120.2C18A—C17A—C15A108 (2)
C8—C9—C3121.8 (5)C18A—C17A—H17C110.1
C8—C9—H9119.1C15A—C17A—H17C110.1
C3—C9—H9119.1C18A—C17A—H17D110.1
C11—N10—C7130.0 (4)C15A—C17A—H17D110.1
C11—N10—H10118 (4)H17C—C17A—H17D108.4
C7—N10—H10112 (4)C17A—C18A—C19A113 (2)
O12—C11—N10125.0 (5)C17A—C18A—H18C108.9
O12—C11—C13123.6 (5)C19A—C18A—H18C108.9
N10—C11—C13111.4 (4)C17A—C18A—H18D108.9
O14—C13—C11109.0 (4)C19A—C18A—H18D108.9
O14—C13—H13A109.9H18C—C18A—H18D107.7
C11—C13—H13A109.9C21A—C19A—C20A119 (2)
O14—C13—H13B109.9C21A—C19A—C18A128 (2)
C11—C13—H13B109.9C20A—C19A—C18A112.3 (19)
H13A—C13—H13B108.3C22A—C20A—C19A119 (2)
C15A—O14—C13113.9 (10)C22A—C20A—H20A120.3
C15—O14—C13114.3 (5)C19A—C20A—H20A120.3
O16—C15—O14122.3 (8)C19A—C21A—C24A122 (2)
O16—C15—C17123.7 (9)C19A—C21A—H21A118.8
O14—C15—C17112.7 (8)C24A—C21A—H21A118.8
C15—C17—C18110.2 (7)C20A—C22A—C23A119 (2)
C15—C17—H17A109.6C20A—C22A—H22A120.5
C18—C17—H17A109.6C23A—C22A—H22A120.5
C15—C17—H17B109.6O25A—C23A—C24A117 (5)
C18—C17—H17B109.6O25A—C23A—C22A119 (5)
H17A—C17—H17B108.1C24A—C23A—C22A124 (3)
C19—C18—C17113.5 (5)C23A—C24A—C21A116 (3)
C19—C18—H18A108.9C23A—C24A—H24A122.0
C17—C18—H18A108.9C21A—C24A—H24A122.0
C19—C18—H18B108.9C23A—O25A—H25A103 (10)
C17—C18—H18B108.9
O1—C2—C3—C9179.6 (5)C17—C18—C19—C2088.3 (8)
C4—C2—C3—C90.7 (8)C21—C19—C20—C220.5 (5)
O1—C2—C3—C50.9 (9)C18—C19—C20—C22179.7 (3)
C4—C2—C3—C5179.3 (5)C20—C19—C21—C240.5 (8)
C9—C3—C5—C60.5 (8)C18—C19—C21—C24179.7 (5)
C2—C3—C5—C6178.2 (5)C19—C20—C22—C230.6 (7)
C3—C5—C6—C70.9 (8)C20—C22—C23—C240.6 (9)
C5—C6—C7—C81.5 (9)C20—C22—C23—O25179.7 (5)
C5—C6—C7—N10179.1 (5)C22—C23—C24—C210.6 (10)
C6—C7—C8—C90.7 (9)O25—C23—C24—C21179.7 (6)
N10—C7—C8—C9180.0 (5)C19—C21—C24—C230.6 (10)
C7—C8—C9—C30.8 (9)C15—O14—C15A—O16A60 (4)
C5—C3—C9—C81.3 (8)C13—O14—C15A—O16A36 (4)
C2—C3—C9—C8177.3 (6)C15—O14—C15A—C17A96 (3)
C6—C7—N10—C11179.6 (5)C13—O14—C15A—C17A167.6 (15)
C8—C7—N10—C111.0 (10)O16A—C15A—C17A—C18A14 (7)
C7—N10—C11—O122.6 (10)O14—C15A—C17A—C18A162 (2)
C7—N10—C11—C13176.3 (5)C15A—C17A—C18A—C19A173.0 (16)
O12—C11—C13—O142.7 (7)C17A—C18A—C19A—C21A6 (2)
N10—C11—C13—O14178.4 (5)C17A—C18A—C19A—C20A174 (2)
C11—C13—O14—C15A158.1 (12)C21A—C19A—C20A—C22A0.1 (5)
C11—C13—O14—C15175.5 (7)C18A—C19A—C20A—C22A179.9 (4)
C15A—O14—C15—O1685 (3)C20A—C19A—C21A—C24A0.0 (8)
C13—O14—C15—O169.0 (15)C18A—C19A—C21A—C24A180.0 (5)
C15A—O14—C15—C1782 (3)C19A—C20A—C22A—C23A0.1 (8)
C13—O14—C15—C17176.8 (6)C20A—C22A—C23A—O25A179.9 (6)
O16—C15—C17—C1880.5 (15)C20A—C22A—C23A—C24A0.1 (11)
O14—C15—C17—C1887.2 (10)O25A—C23A—C24A—C21A179.9 (7)
C15—C17—C18—C19170.4 (8)C22A—C23A—C24A—C21A0.1 (11)
C17—C18—C19—C2191.5 (8)C19A—C21A—C24A—C23A0.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O1i0.86 (5)2.11 (5)2.925 (5)159 (4)
O25—H25···O12ii0.95 (12)1.93 (11)2.87 (3)172 (13)
C4—H4A···O16iii0.962.593.416 (10)144
C13—H13B···O25iv0.972.603.458 (17)147
C13—H13B···O25Aiv0.972.503.34 (4)145
C24—H24···O12ii0.932.573.284 (11)133
Symmetry codes: (i) x+2, y1/2, z; (ii) x, y1/2, z+1; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1.
 

Acknowledgements

This work was supported by the research fund of Chungnam National University.

References

First citationAshraf, Z., Rafiq, M., Seo, S. Y., Kwon, K. S., Babar, M. M. & Zaidi, N. S. (2015). Eur. J. Med. Chem. 98, 203–211.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBöjthe-Horváth, K., Kocsis, Á., Párkány, L. & Simon, K. (1982). Tetrahedron Lett. 23, 965–966.  Google Scholar
First citationBruker (2012). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCullen, M. K. (1998). The Pigmentary System: Physiology and Pathophysiology, edited by J. J. Norlund, R. E. Boissy, V. J. Hearing, R. A. King & J. P. Ortonne, pp. 760–766. New York: Oxford University Press Inc.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, A. & Wang, S. (1997). J. Chem. Soc. Dalton Trans. pp. 2009–2018.  CSD CrossRef Web of Science Google Scholar
First citationLynde, C. B., Kraft, J. N. & Lynde, C. W. (2006). Skin Therapy Lett. 11, 1–6.  PubMed CAS Google Scholar
First citationMiliovsky, M., Svinyarov, I., Mitrev, Y., Evstatieva, Y., Nikolova, D., Chochkova, M. & Bogdanov, M. G. (2013). Eur. J. Med. Chem. 66, 185–192.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, T. & Miyazawa, M. (2011). Bioorg. Med. Chem. Lett. 21, 1983–1986.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUong, A. & Zon, L. I. (2010). J. Cell. Physiol. 222, 38–41.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, J., Lu, L., Ma, A. Q., Wu, W. P., Xie, B. & Wu, Y. (2015). Russ. J. Coord. Chem. 41, 618–623.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem. 45, 639–646.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds