research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-amino-5-chloro-2,6-di­methyl­pyrimidinium thio­phene-2,5-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by A. J. Lough, University of Toronto, Canada (Received 21 May 2016; accepted 21 June 2016; online 24 June 2016)

In the title salt, C6H9ClN3+·C6H3O4S, the cations and anions are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming R66(37) ring motifs that are inter­connected with each other, producing sheets. Separate parallel inversion-related sheets are linked through N—H⋯N and ππ stacking inter­actions [centroid–centroid distance = 3.5414 (13) Å], forming double layers parallel to (101). Weak C—H⋯O and C—H⋯S hydrogen bonds, as well as C—H⋯π inter­actions, connect the double layers into a three-dimensional network.

1. Chemical context

In crystal engineering, non-covalent inter­actions, such as hydrogen bonding, play a key role in mol­ecular recognition processes (Desiraju, 1989[Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). Pyrimidine derivatives have gained considerable importance because of their remarkable bio­logical properties, for example as anti-fungal, anti­viral, anti­cancer and anti-allergenic agents (Ding et al., 2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]). Thio­phene­carb­oxy­lic acid and its derivatives have attracted attention because of their wide range of pharmacological properties and numerous applications, such as the preparation of DNA hybridization indicators, single-mol­ecule magnets, photoluminescence materials and the treatment of osteoporosis as inhibitors of bone resorption in the tissue culture (Bharti et al., 2003[Bharti, S.-N., Naqvi, F. & Azam, A. (2003). Bioorg. Med. Chem. Lett. 13, 689-692.]; Taş et al., 2014[Taş, M., Topal, S., Çamur, S., Yolcu, Z. & Çelik, O. (2014). Main Group Met. Chem. 37, 39-47.]; Boulsourani et al., 2011[Boulsourani, Z., Geromichalos, G. D., Repana, K., Yiannaki, E., Psycharis, V., Raptopoulou, C., Hadjipavlou-Litina, D., Pontiki, E. & Dendrinou-Samara, C. (2011). J. Inorg. Biochem. 105, 839-849.]). The present study investigates the hydrogen-bonding patterns in 4-amino-5-chloro-2,6-di­methyl­pyrimidinium thio­phene-2,5-di­carboxyl­ate (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of C6H9ClN3+·C6H3O4S, (I)[link], contains one 4-amino-5-chloro-2,6-di­methyl­pyrimidinium cation and one thio­phene-2,5-di­carboxyl­ate anion (Fig. 1[link]). Protonation of the pyrimidine occurs at atom N1, leading to a C2B—N1B—C6B angle of 122.5 (2)° which an increase of ca 3.8° compared to the C2B—N3B—C4B angle 118.7 (2)° involving the unprotonated N3 atom.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

3. Supra­molecular features

The carboxyl­ate group of the thio­phene-2,5-di­carboxyl­ate anion inter­acts with the protonated N1 atom of the pyrimidinium moiety with a single point heterosynthon via N—H⋯O hydrogen bonds (Table 1[link]). In addition, the components are connected through O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]) to form an R66(37) ring graph set motif. This motif includes anions connected by O—H.·O hydrogen bonds along [10[\overline{1}]] and involves the cations along [010] to form a 2D sheet (Fig. 2[link]). Two separate 2D sheets (which are indicated in red and yellow in Fig. 3[link]) are inter­connected by a self-complementary base pair between the pyrimidinium moiety through N—H⋯N hydrogen bond inter­actions with an R22(8) ring graph set motif and ππ stacking inter­actions between the pyrimidinium ring and the thio­phene ring with an observed inter­planar distance of 3.4188 (10) Å, a centroid-to-centroid (Cg1–Cg2) distance of 3.5414 (13) Å (where Cg1 is the centroid of the ring N1B/C2B–C6B and Cg2 is the centroid of the ring S1A/C2A–C5A) and slip angle (the angle between the centroid vector and the normal to the plane) of 18.0°; these are typical aromatic stacking values (Hunter, 1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]). Through these inter­actions, parallel inversion-related sheets are connected into double layers parallel to (101). In addition, weak C—H⋯O, C—H⋯S and C—H⋯π inter­molecular inter­actions connect the double layers into a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the S1A/C2A–C5A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3A⋯O2Ai 1.04 (4) 1.44 (4) 2.475 (2) 176 (4)
N1B—H1B⋯O1A 0.85 (3) 1.87 (3) 2.719 (3) 178 (3)
N4B—H4B1⋯N3Bii 0.86 (3) 2.40 (3) 3.218 (3) 158 (3)
N4B—H4B2⋯O4Aiii 0.94 (3) 1.86 (3) 2.784 (3) 170 (3)
C7B—H7BB⋯S1Aiv 0.98 2.86 3.807 (2) 164
C8B—H8BB⋯O3Av 0.98 2.53 3.281 (3) 134
C8B—H8BC⋯O2Avi 0.98 2.47 3.301 (3) 143
C7B—H7BBCgiv 0.98 2.69 3.556 (3) 148
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing diagram for (I)[link], viewed along the a axis, showing a single sheet formed by O—H⋯O and N—H⋯O hydrogen bonds. Symmetry codes are given in Table 1[link]. Dashed lines represent hydrogen bonds.
[Figure 3]
Figure 3
A view along the b axis, showing double layers (indicated in red and yellow) formed by hydrogen bonds and ππ stacking inter­actions. The weak C—H⋯O and C—H⋯S hydrogen bonds connect the double layers to form a three-dimensional network. Dotted lines represent N—H⋯N, C—H⋯O and C—H⋯S inter­actions. Solid lines indicate the stacking inter­actions.

4. Database survey

The crystal structures of amino­pyrimidine derivatives (Schwalbe & Williams, 1982[Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840-1843.]) and amino­pyrimidine carboxyl­ates (Hu et al., 2002[Hu, M.-L., Ye, M.-D., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1005-o1007.]), have been reported. Several co-crystals/salts of amino­pyrimidine derivatives have been reported from our laboratory including co-crystals/salts of amino­pyrimidines with carb­oxy­lic acid (Mu­thiah et al., 2006[Muthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605-o607.]; Devi & Mu­thiah, 2007[Devi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822-o4823.]; Subashini et al., 2008[Subashini, A., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o426.]; Thanigaimani et al., 2009[Thanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, o42-o45.]; Ebenezer & Mu­thiah, 2010[Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516.], 2012[Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766-3785.]; Ebenezer et al., 2011[Ebenezer, S., Muthiah, P. T. & Butcher, R. J. (2011). Cryst. Growth Des. 11, 3579-3592.]), amino­pyrimidines–thio­phene­carb­oxy­lic acid (Jegan Jennifer et al., 2014[Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.]), the crystal structure of 2-amino-4,6-di­meth­oxy­pyrimidiniumthio­phene-2-carboxyl­ate (Rajam et al., 2015[Rajam, A., Muthiah, P. T., Butcher, R. J. & Jasinski, J. P. (2015). Acta Cryst. E71, o479-o480.]) and metal complexes with 4-amino-5-chloro-2,6-di­methyl­pyrimidine (Karthikeyan et al., 2016[Karthikeyan, A., Zeller, M. & Thomas Muthiah, P. (2016). Acta Cryst. C72, 337-340.])

5. Synthesis and crystallization

A hot DMF solution of 4-amino-5-chloro-2,6-di­methyl­pyrimidine (39 mg, Alfa Aesar) and thio­phene-2,5-di­carb­oxy­lic acid (43 mg, Alfa Aesar) were mixed and warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless plate-like crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H and O—H H atoms were located in difference Fourier maps and refined isotropically. All other H atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.95 Å (CH) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. Idealized Me H atoms were refined as rotating groups. There are larger than expected residual density peaks close to the Cl and S atoms but these are not chemically sensible and are assumed to be related to the quality of the crystal.

Table 2
Experimental details

Crystal data
Chemical formula C6H9ClN3+·C6H3O4S
Mr 329.76
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.9948 (3), 11.3928 (4), 15.7757 (6)
β (°) 98.520 (2)
V3) 1421.04 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.23 × 0.19 × 0.06
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.424, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10749, 3911, 2862
Rint 0.053
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.185, 1.10
No. of reflections 3911
No. of parameters 208
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.59, −0.69
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

4-Amino-5-chloro-2,6-dimethylpyrimidinium thiophene-2,5-dicarboxylate top
Crystal data top
C6H9ClN3+·C6H3O4SF(000) = 680
Mr = 329.76Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9948 (3) ÅCell parameters from 6601 reflections
b = 11.3928 (4) Åθ = 3.1–30.0°
c = 15.7757 (6) ŵ = 0.44 mm1
β = 98.520 (2)°T = 100 K
V = 1421.04 (9) Å3Plate, colourless
Z = 40.23 × 0.19 × 0.06 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
3911 independent reflections
Radiation source: I-mu-S microsource X-ray tube2862 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.053
ω and φ scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 119
Tmin = 0.424, Tmax = 0.746k = 1516
10749 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: mixed
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1146P)2]
where P = (Fo2 + 2Fc2)/3
3911 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 1.59 e Å3
0 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.83375 (7)0.63795 (4)0.43028 (4)0.01808 (18)
O1A0.6790 (2)0.57301 (14)0.58125 (10)0.0252 (4)
O2A0.6743 (2)0.75418 (14)0.63699 (10)0.0218 (4)
O3A1.0617 (2)0.81066 (15)0.26723 (10)0.0227 (4)
H3A1.110 (5)0.780 (3)0.214 (2)0.060 (11)*
O4A0.9244 (3)0.63757 (15)0.25678 (12)0.0309 (4)
C1A0.7104 (3)0.6802 (2)0.58237 (14)0.0178 (4)
C2A0.7953 (3)0.7287 (2)0.51203 (14)0.0187 (4)
C3A0.8446 (3)0.84283 (19)0.49963 (15)0.0204 (5)
H3AA0.83250.90540.53810.024*
C4A0.9151 (3)0.85594 (18)0.42313 (15)0.0199 (5)
H4AA0.95680.92820.40460.024*
C5A0.9166 (3)0.75252 (19)0.37866 (14)0.0182 (4)
C6A0.9689 (3)0.7288 (2)0.29484 (14)0.0198 (5)
Cl1B0.43554 (7)0.14586 (5)0.77201 (3)0.02236 (18)
N1B0.6246 (2)0.34003 (17)0.60286 (13)0.0206 (4)
H1B0.639 (4)0.413 (3)0.5956 (19)0.031 (7)*
N3B0.6059 (2)0.14982 (16)0.54703 (13)0.0205 (4)
N4B0.5127 (3)0.00013 (17)0.62434 (14)0.0242 (4)
H4B10.512 (4)0.043 (3)0.5793 (19)0.040 (9)*
H4B20.478 (4)0.039 (3)0.671 (2)0.045 (9)*
C2B0.6450 (3)0.2616 (2)0.54118 (15)0.0204 (5)
C4B0.5460 (3)0.1121 (2)0.61845 (15)0.0205 (5)
C5B0.5201 (3)0.1938 (2)0.68398 (14)0.0196 (4)
C6B0.5592 (3)0.3099 (2)0.67489 (15)0.0191 (4)
C7B0.7142 (3)0.3044 (2)0.46395 (15)0.0235 (5)
H7BA0.69410.24530.41850.035*
H7BB0.83600.31810.47870.035*
H7BC0.65790.37780.44390.035*
C8B0.5357 (3)0.4046 (2)0.73702 (15)0.0250 (5)
H8BA0.41980.40190.75020.037*
H8BB0.55630.48100.71200.037*
H8BC0.61560.39310.78980.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0222 (3)0.0148 (3)0.0193 (3)0.00038 (18)0.0096 (2)0.00055 (19)
O1A0.0324 (9)0.0188 (8)0.0273 (9)0.0044 (7)0.0142 (7)0.0021 (7)
O2A0.0242 (8)0.0230 (8)0.0207 (8)0.0008 (6)0.0118 (6)0.0003 (6)
O3A0.0267 (8)0.0229 (8)0.0217 (8)0.0026 (7)0.0140 (7)0.0021 (7)
O4A0.0445 (11)0.0221 (9)0.0308 (10)0.0068 (7)0.0212 (8)0.0064 (7)
C1A0.0186 (9)0.0192 (10)0.0164 (10)0.0001 (8)0.0054 (8)0.0009 (8)
C2A0.0169 (9)0.0197 (10)0.0207 (10)0.0010 (8)0.0064 (8)0.0006 (9)
C3A0.0234 (11)0.0193 (10)0.0199 (11)0.0029 (8)0.0078 (9)0.0015 (8)
C4A0.0208 (10)0.0183 (11)0.0218 (11)0.0040 (8)0.0076 (9)0.0013 (8)
C5A0.0166 (9)0.0184 (10)0.0210 (11)0.0010 (8)0.0081 (8)0.0002 (8)
C6A0.0212 (10)0.0203 (11)0.0197 (11)0.0030 (8)0.0089 (8)0.0015 (9)
Cl1B0.0281 (3)0.0207 (3)0.0200 (3)0.0013 (2)0.0090 (2)0.0002 (2)
N1B0.0218 (9)0.0168 (9)0.0239 (10)0.0020 (7)0.0055 (8)0.0024 (8)
N3B0.0225 (9)0.0188 (10)0.0212 (10)0.0004 (7)0.0059 (8)0.0018 (7)
N4B0.0349 (11)0.0171 (10)0.0227 (10)0.0003 (8)0.0116 (9)0.0000 (8)
C2B0.0165 (9)0.0210 (11)0.0235 (11)0.0009 (8)0.0021 (8)0.0015 (9)
C4B0.0183 (10)0.0215 (11)0.0228 (11)0.0013 (8)0.0071 (8)0.0006 (9)
C5B0.0201 (10)0.0187 (10)0.0207 (11)0.0003 (8)0.0050 (8)0.0002 (9)
C6B0.0176 (9)0.0163 (10)0.0233 (11)0.0006 (8)0.0026 (8)0.0003 (9)
C7B0.0240 (10)0.0208 (11)0.0273 (12)0.0000 (9)0.0094 (9)0.0024 (10)
C8B0.0327 (12)0.0177 (11)0.0256 (12)0.0009 (9)0.0078 (10)0.0044 (9)
Geometric parameters (Å, º) top
S1A—C2A1.716 (2)N1B—H1B0.85 (3)
S1A—C5A1.722 (2)N3B—C2B1.318 (3)
O1A—C1A1.247 (3)N3B—C4B1.358 (3)
O2A—C1A1.269 (3)N4B—C4B1.312 (3)
O3A—C6A1.306 (3)N4B—H4B10.86 (3)
O3A—H3A1.04 (4)N4B—H4B20.94 (3)
O4A—C6A1.226 (3)C2B—C7B1.492 (3)
C1A—C2A1.490 (3)C4B—C5B1.429 (3)
C2A—C3A1.381 (3)C5B—C6B1.372 (3)
C3A—C4A1.414 (3)C6B—C8B1.488 (3)
C3A—H3AA0.9500C7B—H7BA0.9800
C4A—C5A1.372 (3)C7B—H7BB0.9800
C4A—H4AA0.9500C7B—H7BC0.9800
C5A—C6A1.470 (3)C8B—H8BA0.9800
Cl1B—C5B1.721 (2)C8B—H8BB0.9800
N1B—C2B1.348 (3)C8B—H8BC0.9800
N1B—C6B1.363 (3)
C2A—S1A—C5A91.32 (10)H4B1—N4B—H4B2115 (3)
C6A—O3A—H3A109 (2)N3B—C2B—N1B122.3 (2)
O1A—C1A—O2A126.5 (2)N3B—C2B—C7B119.5 (2)
O1A—C1A—C2A117.76 (19)N1B—C2B—C7B118.2 (2)
O2A—C1A—C2A115.72 (19)N4B—C4B—N3B117.9 (2)
C3A—C2A—C1A128.7 (2)N4B—C4B—C5B122.1 (2)
C3A—C2A—S1A111.97 (17)N3B—C4B—C5B120.0 (2)
C1A—C2A—S1A119.24 (16)C6B—C5B—C4B119.5 (2)
C2A—C3A—C4A112.3 (2)C6B—C5B—Cl1B120.89 (18)
C2A—C3A—H3AA123.9C4B—C5B—Cl1B119.55 (17)
C4A—C3A—H3AA123.9N1B—C6B—C5B116.8 (2)
C5A—C4A—C3A112.36 (19)N1B—C6B—C8B117.9 (2)
C5A—C4A—H4AA123.8C5B—C6B—C8B125.2 (2)
C3A—C4A—H4AA123.8C2B—C7B—H7BA109.5
C4A—C5A—C6A130.0 (2)C2B—C7B—H7BB109.5
C4A—C5A—S1A112.08 (16)H7BA—C7B—H7BB109.5
C6A—C5A—S1A117.83 (16)C2B—C7B—H7BC109.5
O4A—C6A—O3A125.4 (2)H7BA—C7B—H7BC109.5
O4A—C6A—C5A119.7 (2)H7BB—C7B—H7BC109.5
O3A—C6A—C5A114.8 (2)C6B—C8B—H8BA109.5
C2B—N1B—C6B122.5 (2)C6B—C8B—H8BB109.5
C2B—N1B—H1B121 (2)H8BA—C8B—H8BB109.5
C6B—N1B—H1B116 (2)C6B—C8B—H8BC109.5
C2B—N3B—C4B118.7 (2)H8BA—C8B—H8BC109.5
C4B—N4B—H4B1118 (2)H8BB—C8B—H8BC109.5
C4B—N4B—H4B2127 (2)
O1A—C1A—C2A—C3A179.2 (2)C4B—N3B—C2B—N1B1.3 (3)
O2A—C1A—C2A—C3A2.2 (3)C4B—N3B—C2B—C7B178.83 (19)
O1A—C1A—C2A—S1A3.9 (3)C6B—N1B—C2B—N3B1.3 (3)
O2A—C1A—C2A—S1A174.75 (16)C6B—N1B—C2B—C7B178.6 (2)
C5A—S1A—C2A—C3A0.03 (18)C2B—N3B—C4B—N4B177.9 (2)
C5A—S1A—C2A—C1A177.43 (18)C2B—N3B—C4B—C5B2.5 (3)
C1A—C2A—C3A—C4A177.4 (2)N4B—C4B—C5B—C6B179.2 (2)
S1A—C2A—C3A—C4A0.4 (3)N3B—C4B—C5B—C6B1.2 (3)
C2A—C3A—C4A—C5A0.6 (3)N4B—C4B—C5B—Cl1B2.4 (3)
C3A—C4A—C5A—C6A176.1 (2)N3B—C4B—C5B—Cl1B177.20 (17)
C3A—C4A—C5A—S1A0.6 (3)C2B—N1B—C6B—C5B2.4 (3)
C2A—S1A—C5A—C4A0.31 (18)C2B—N1B—C6B—C8B177.5 (2)
C2A—S1A—C5A—C6A176.79 (17)C4B—C5B—C6B—N1B1.2 (3)
C4A—C5A—C6A—O4A162.8 (2)Cl1B—C5B—C6B—N1B179.59 (16)
S1A—C5A—C6A—O4A13.7 (3)C4B—C5B—C6B—C8B178.8 (2)
C4A—C5A—C6A—O3A17.1 (3)Cl1B—C5B—C6B—C8B0.4 (3)
S1A—C5A—C6A—O3A166.44 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1A/C2A–C5A ring.
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O2Ai1.04 (4)1.44 (4)2.475 (2)176 (4)
N1B—H1B···O1A0.85 (3)1.87 (3)2.719 (3)178 (3)
N4B—H4B1···N3Bii0.86 (3)2.40 (3)3.218 (3)158 (3)
N4B—H4B2···O4Aiii0.94 (3)1.86 (3)2.784 (3)170 (3)
C7B—H7BB···S1Aiv0.982.863.807 (2)164
C8B—H8BB···O3Av0.982.533.281 (3)134
C8B—H8BC···O2Avi0.982.473.301 (3)143
C7B—H7BB···Cgiv0.982.693.556 (3)148
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x1/2, y+3/2, z+1/2; (vi) x+3/2, y1/2, z+3/2.
 

Acknowledgements

PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. The authors wish to acknowledge the United States National Science Foundation (grant No. 1337296) for funds to purchase the diffractometer.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBharti, S.-N., Naqvi, F. & Azam, A. (2003). Bioorg. Med. Chem. Lett. 13, 689–692.  CrossRef PubMed CAS Google Scholar
First citationBoulsourani, Z., Geromichalos, G. D., Repana, K., Yiannaki, E., Psycharis, V., Raptopoulou, C., Hadjipavlou-Litina, D., Pontiki, E. & Dendrinou-Samara, C. (2011). J. Inorg. Biochem. 105, 839–849.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationDevi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822–o4823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785.  Web of Science CSD CrossRef CAS Google Scholar
First citationEbenezer, S., Muthiah, P. T. & Butcher, R. J. (2011). Cryst. Growth Des. 11, 3579–3592.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, M.-L., Ye, M.-D., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1005–o1007.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationJennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKarthikeyan, A., Zeller, M. & Thomas Muthiah, P. (2016). Acta Cryst. C72, 337–340.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605–o607.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRajam, A., Muthiah, P. T., Butcher, R. J. & Jasinski, J. P. (2015). Acta Cryst. E71, o479–o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840–1843.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o426.  CSD CrossRef IUCr Journals Google Scholar
First citationTaş, M., Topal, S., Çamur, S., Yolcu, Z. & Çelik, O. (2014). Main Group Met. Chem. 37, 39–47.  Google Scholar
First citationThanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, o42–o45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds