research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an unknown solvate of (piperazine-κN){5,10,15,20-tetra­kis­[4-(benzo­yl­oxy)phen­yl]porphyrinato-κ4N}zinc

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, University of Monastir, Tunisia, bFaculty of Chemistry, Wroław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroław, Poland, and cCentre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS–Université de, Rennes, 1, Campus de Beaulieu, 35042 Rennes Cedex, France
*Correspondence e-mail: nn.soumaya@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 26 May 2016; accepted 7 June 2016; online 14 June 2016)

The title compound, [Zn(C72H44N4O8)(C4H10N2)] or [Zn(TPBP)(pipz] (where TPBP and pipz are 5,10,15,20-tetra­kis­[4-(benzo­yloxy)phen­yl]porphyrinato and piperazine ligands respectively), features a distorted square-pyramidal coordin­ation geometry about the central ZnII atom. This central atom is chelated by the four N atoms of the porphyrinate anion and further coordinated by a nitro­gen atom of the piperazine axial ligand, which adopts a chair confirmation. The average Zn—N(pyrrole) bond length is 2.078 (7) Å and the Zn— N(pipz) bond length is 2.1274 (19) Å. The zinc cation is displaced by 0.4365 (4) Å from the N4C20 mean plane of the porphyrinate anion toward the piperazine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling deformations. In the crystal, the supra­molecular structure is made by parallel pairs of layers along (100), with an inter­layer distance of 4.100 Å while the distance between two pairs of layers is 4.047 Å. A region of electron density was treated with the SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] procedure in PLATON following unsuccessful attempts to model it as being part of disordered n-hexane solvent and water mol­ecules. The given chemical formula and other crystal data do not take into account these solvent mol­ecules.

1. Chemical context

The ZnII ion is one of the most prevalent metal ions as the metal center of a metalloporphyrin. Indeed, zinc porphyrin complexes provide simpler systems than those of iron, cobalt, or other d transition metals to evaluate the influence of a wide range of different ligands on the spectroscopic and structural properties of complexed porphyrins. The metal ion is unambiguously in the +II oxidation state; in most cases, four-coord­inate (porphyrinato) zinc complexes will accept one axial ligand to form complexes with a coordination number of five for the metal (Denden et al., 2015[Denden, Z., Ezzayani, K., Saint-Aman, E., Loiseau, F., Najmudin, S., Bonifácio, C., Daran, J.-C. & Nasri, H. (2015). Eur. J. Inorg. Chem. 2596-2610.]). Nevertheless, zinc porphyrins with a coordination number of six for the metal have also been reported (Shukla et al., 2000[Shukla, A. D., Dave, P. C., Suresh, E., Das, A. & Dastidar, P. (2000). J. Chem. Soc. Dalton Trans. pp. 4459-4463.]; Oberda et al., 2013[Oberda, K., Deperasińska, I., Nizhnik, Y. P. & Szemik-Hojniak, A. (2013). Polyhedron, 51, 61-69.]).

[Scheme 2]
[Scheme 1]

In the literature, an important number of zinc–pyridine (and substituted pyridines) metalloporphyrins have been reported, e.g. [Zn(TPP)(py)] (TPP = 5,10,15,20-tetra­phenyl­porphyrinato) (Devillers et al., 2013[Devillers, C. H., Dimé, A. K. D., Cattey, H. & Lucas, D. (2013). C. R. Chim. 16, 540-549.]). This is also the case for other related cyclic N-donor ligands such as dabco (1,4-di­aza­bicyclo­[2.2.2]octa­ne) and pyz (pyrazine)[link], e.g. [Zn(OEP)(dabco)] (OEP = octa­ethyl­porphyrinato) (Konarev et al., 2009[Konarev, D. V., Khasanov, S. S., Saito, G. & Lyubovskaya, R. N. (2009). Cryst. Growth Des. 9, 1170-1181.]) and [Zn(TPP)(pyz)] (Byrn et al., 1993[Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.]). Notably, to date no zinc–piperazine porphyrin structure has been reported in the literature. In this work, we have focused on the crystal structure and the UV–visible characterizations of the new zinc porphyrin title complex, namely the (piperazine){5,10,15,20-tetra­kis­[4-(benzo­yloxy)phen­yl]porphyrinato}zinc complex (I)[link].

2. Structural commentary

The ZnII cation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a nitro­gen atom of the piperazine axial ligand in a distorted square-pyramidal geometry. The piperazine ligand adopts the usual chair conformation (Fig. 1[link]). The Zn__N(pipz) bond length [2.1274 (19) Å] is considerably longer than the related non-porphyrinic zinc–pipz distances which are in the range 2.039 (3)–2.064 (2) Å (Suen et al., 2002[Suen, M.-C., Keng, T.-C. & Wang, J.-C. (2002). Polyhedron, 21, 2705-2710.]; Nguyen et al., 2006[Nguyen, D.-T., Chew, E., Zhang, Q., Choi, A. & Bu, X. (2006). Inorg. Chem. 45, 10722-10727.]) but shorter than that of the zinc–di­methyl­piperazine [{Zn(TPP})2(μ2-N,N′-di­methyl­piperazine)] [2.250 (2) Å; Konarev et al., 2007[Konarev, D. V., Khasanov, S. S., Saito, G., Otsuka, A. & Lyubovskaya, R. N. (2007). Inorg. Chem. 46, 7601-7609.]]. The average equatorial zinc–N(pyrrole) distance (Zn—Np) is 2.078 (7) Å, which is close to those of related zinc metalloporphyrins of type [Zn(Porph)(L)] (Porph and L are a porphyrinato and a monodentate neutral ligand, respectively; Byrn et al., 1993; Lipstman et al., 2006[Lipstman, S., Muniappan, S. & Goldberg, I. (2006). Acta Cryst. E62, m2330-m2332.]). Fig. 2[link] is a formal diagram of the porphyrinato core atoms of (I)[link] showing the displacements of each atom from the mean plane of the 24-atom porphyrin macrocycle in units of 0.01 Å. The zinc atom is displaced by 0.4365 (4) Å from the 24-atom porphyrin mean plane (PC). This Zn__PC distance is close to those of [Zn(OEP)(dabco)] (Konarev et al., 2009[Konarev, D. V., Khasanov, S. S., Saito, G. & Lyubovskaya, R. N. (2009). Cryst. Growth Des. 9, 1170-1181.]) and [Zn(TPP)(pyridine)] which are 0.572 and 0.418 Å, respectively (Furuta et al., 2002[Furuta, H., Ishizuka, T. & Osuka, A. (2002). J. Am. Chem. Soc. 124, 5622-5623.]). The porphyrin core presents a major saddle and a moderate ruffling distortion (Scheidt & Lee, 1987[Scheidt, W. R. & Lee, Y. (1987). Struct. Bonding (Berlin), 64, 1-7.]). The saddle deformation is due to the displacement of the pyrrole rings alternately above and below the mean porphyrin macrocycle so that the pyrrole nitro­gen atoms are out of the mean plane. The ruffling distortion is indicated by the high values of the displacement of the meso-carbon atoms above and below the porphyrin mean plane.

[Figure 1]
Figure 1
An ORTEP view of the mol­ecular structure of the [Zn(TPBP)(pipz)] complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Formal diagram of the porphyrinate core illustrating the displacements of each atom from the 24-atom core plane in units of 0.01 Å.

3. Supra­molecular features

In the crystal of compound (I)[link], the [Zn(TPBP)(pipz)] mol­ecules are linked together in such way to make a pair of layers, parallel to (100), which are parallel to other pairs. The overall supra­molecular architecture in (I)[link] is two-dimensional (Fig. 3[link]). The distance between two layers is 4.100 Å while the pairs of layers are spaced apart by 4.047 Å. Within a layer, the linkage of the [Zn(TPBP)(pipz)] mol­ecules is accomplished by C__H⋯π inter­actions between the carbon atom C56 of a phenyl ring of one TPBP porphyrinate and the centroid Cg10 of a phenyl ring of an adjacent TPBP species [C56__H56⋯Cg10 = 3.623 (3) Å; Table 1[link]). Each pair of layers is stabilized by N__H⋯O hydrogen bonds, C__H⋯O and C__H⋯π inter­molecular inter­actions (Table 1[link], Figs. 4[link] and 5[link]). The values of these bond lengths are 2.904 (3) Å for N5__H5⋯O4, 3.284 (4) Å for C51__H51⋯O8, 3.566 (3) Å for C64__H64⋯Cg15 and 3.672 (3) Å for C69__H69⋯Cg11 (Table 1[link], Fig. 4[link]). The parallel pairs of layers are sustained by the N6__H6⋯N1 weak hydrogen bond [3.434 (4) Å], the C63__H62⋯O6 [3.339 (4) Å], the C39__H39⋯Cg3 [3.392 (2) Å], the C48__H48⋯Cg12 [3.755 (3) Å] and the C49__H49⋯Cg17 [3.804 (3) Å] inter­molecular inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the N3/C11–C14 pyrrole ring. Cg10, Cg11, Cg12, Cg15 and Cg17 are the centroids of the C21–C26, C28–C33, C34–C39, C54–59 and C67–C72 phenyl rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O4i 0.80 (3) 2.15 (3) 2.904 (3) 158 (3)
N6—H6⋯N1ii 0.96 (2) 2.57 (3) 3.434 (4) 151 (3)
C51—H51⋯O8iii 0.95 2.47 3.284 (4) 144
C62—H62⋯O6iv 0.95 2.45 3.339 (4) 155
C39—H39⋯Cg3v 0.95 2.81 3.392 (2) 120
C48—H48⋯Cg12v 0.95 2.88 3.755 (3) 153
C49—H49⋯Cg17iv 0.95 2.90 3.804 (3) 160
C56—H56⋯Cg10vi 0.95 2.78 3.623 (3) 147
C64—H64⋯Cg15iii 0.95 2.64 3.566 (3) 164
C69—H69⋯Cg11vii 0.95 2.95 3.672 (3) 134
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+2, -z+1; (v) -x, -y+1, -z+1; (vi) x, y, z-1; (vii) -x+1, -y+2, -z+2.
[Figure 3]
Figure 3
The packing of (I)[link] viewed along [010] showing the two-dimensional superstructure formed by pairs of layers.
[Figure 4]
Figure 4
The packing of (I)[link] viewed along [100] showing the inter­molecular inter­actions between two layers and between two pairs of layers.
[Figure 5]
Figure 5
A drawing of (I)[link] viewed along the [100] direction showing the inter­molecular inter­actions between two layers and between two pairs of layers.

4. Synthesis and crystallization

4.1. Synthesis of the starting materials

The {5,10,15,20-tetra­kis­[4-(benzo­yloxy)phen­yl]porphyrin} (H2TPBP) and the [Zn(TPBP)] starting complex were synthesized using modified reported methods (Adler et al., 1967[Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476-476.]; Oberda et al., 2011[Oberda, K., Deperasińska, I., Nizhnik, Y., Jerzykiewicz, L. & Szemik- Hojniak, A. (2011). Polyhedron, 2011, 30, 2391-2399.]).

4.2. Synthesis of the Synthesis and crystallization of the title complex (I)

To a solution of the [Zn(TPBP)] starting material (100 mg, 0.086 mmol) in chloro­form (5 mL) was added an excess of piperazine hexa­hydrate (200 mg, 1.0297 mmol). The reaction mixture was stirred at room temperature for 2 h. Crystals of the title complex were obtained by diffusion of hexa­nes through the chloro­form solution. UV/Vis (CHCl3/solid), λmax: 430/445, 563/568, 603/609.

5. UV-visible spectra

The UV–visible spectra (CHCl3 solution/solid state) were recorded on a WinASPECT PLUS (validation for SPECORD PLUS version 4.2) scanning spectrophotometer. Fig. 6[link] illustrates the electronic spectra of the solid [Zn(TPBP)] complex, used as starting material, and complex (I)[link] which shows that the Soret and Q band of the latter species is red-shifted compared to those of the starting material. Thus, the λmax (in nm) values of the Soret and Q bands of [Zn(TPBP)] and (I)[link] are 438/445, 563/568 and 606/609 respectively. By the other hand, for (I)[link], the values of theses absorption bands in chloro­form are blue-shifted compared to those in the solid state. In fact the λmax (in nm) values are 430/445 for the Soret band and 563/568 and 603/609 for the Q bands.

[Figure 6]
Figure 6
Solid UV–visible spectra of the [Zn(TPBP)] starting material (black) and complex (I)[link] (red).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the final refinement of (I)[link] four reflections, viz. (121), (1[\overline{2}]1), ([\overline{1}]24) and (700), were omitted owing to poor agreements between observed and calculated intensities.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C72H44N4O8)(C4H10N2)]
Mr 1244.62
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.4332 (8), 20.1895 (17), 21.0104 (19)
α, β, γ (°) 102.338 (3), 100.996 (3), 98.412 (3)
V3) 3364.6 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.30 × 0.20 × 0.16
 
Data collection
Diffractometer D8 VENTURE Bruker AXS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.684, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 60504, 13198, 11791
Rint 0.028
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.05
No. of reflections 13198
No. of parameters 827
No. of restraints 43
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.54
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2015 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). Report ORNL-6895, Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methyl­ene) and 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(C). The two H atoms of the piperazine axial ligand were found in the difference Fourier map and the hydrogen atom of the nitro­gen N5 of the piperazine ligand coordinating to the Zn2+ atom was freely refined while the hydrogen atom of the second nitro­gen (N6) of the piperazine ligand was refined with fixed isotropic displacement parameters with Uiso =1.2Ueq(N6). The bond length N5__H5 of the piperzine axial ligand was restrained to ensure proper geometry using DFIX instruction of SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The anisotropic displacement ellipsoids of the carbon and nitro­gen atoms of the same piperazine ligand were very elongated, which indicates static disorder. For these atoms, a SIMU restraint was applied (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). An unknown n-hexane and water disordered mol­ecules were difficult to model, therefore solvent contributions to the scattering have been removed using the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). SQUEEZE calculated a void volume of approximately 530 Å3 occupied by 60 electrons per unit cell, which points to the presence of approximately a half n-hexane and a water mol­ecule per formula unit. Fig. 7[link] shows the positions of the voids within the unit cell.

[Figure 7]
Figure 7
Packing diagram of (I)[link] showing the voids in the structure represented in orange. Voids were calculated for a ball radius of 1.2 Å and a grid of 0.7 Å.

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2015); cell refinement: APEX3 (Bruker, 2015) and SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SIR2004-1.0 (Burla et al., 2005); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(Piperazine-κN){5,10,15,20-tetrakis[4-(benzoyloxy)phenyl]porphyrinato-κ4N}zinc unknown solvate top
Crystal data top
[Zn(C72H44N4O8)(C4H10N2)]Z = 2
Mr = 1244.62F(000) = 1292
Triclinic, P1Dx = 1.229 Mg m3
a = 8.4332 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 20.1895 (17) ÅCell parameters from 9221 reflections
c = 21.0104 (19) Åθ = 2.5–27.5°
α = 102.338 (3)°µ = 0.43 mm1
β = 100.996 (3)°T = 150 K
γ = 98.412 (3)°Prism, blue
V = 3364.6 (5) Å30.30 × 0.20 × 0.16 mm
Data collection top
D8 VENTURE Bruker AXS
diffractometer
11791 reflections with I > 2σ(I)
rotation images scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 26.0°, θmin = 2.9°
Tmin = 0.684, Tmax = 0.746h = 1010
60504 measured reflectionsk = 2324
13198 independent reflectionsl = 2525
Refinement top
Refinement on F243 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0565P)2 + 3.3556P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
13198 reflectionsΔρmax = 0.63 e Å3
827 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.31335 (3)0.69459 (2)0.65779 (2)0.01812 (7)
N10.2782 (2)0.75429 (8)0.74622 (8)0.0211 (3)
N20.2627 (2)0.60823 (8)0.69420 (8)0.0206 (3)
N30.2614 (2)0.62837 (8)0.56245 (8)0.0197 (3)
N40.2644 (2)0.77404 (8)0.61332 (8)0.0194 (3)
N50.5751 (2)0.71283 (11)0.67848 (10)0.0301 (4)
H50.602 (4)0.7385 (17)0.6565 (17)0.056 (9)*
N60.8803 (3)0.6862 (3)0.74598 (19)0.0930 (13)
H60.997 (2)0.692 (2)0.754 (2)0.112*
O10.2385 (2)0.60093 (8)1.05857 (7)0.0349 (4)
O20.2374 (3)0.49041 (10)1.01050 (9)0.0596 (6)
O30.2188 (2)0.22666 (7)0.51518 (8)0.0293 (3)
O40.2934 (4)0.22820 (11)0.41963 (11)0.0704 (8)
O50.2117 (2)0.75993 (8)0.23573 (7)0.0282 (3)
O60.1746 (3)0.86806 (10)0.27232 (9)0.0504 (5)
O70.2304 (2)1.14575 (8)0.80769 (9)0.0390 (4)
O80.3722 (3)1.17651 (10)0.73573 (13)0.0715 (8)
C10.2767 (3)0.82347 (10)0.76077 (10)0.0230 (4)
C20.2803 (3)0.84814 (11)0.83101 (11)0.0319 (5)
H20.28030.89420.85380.038*
C30.2836 (3)0.79322 (11)0.85815 (11)0.0309 (5)
H30.28720.79340.90370.037*
C40.2804 (3)0.73428 (11)0.80492 (10)0.0228 (4)
C50.2646 (2)0.66604 (11)0.81071 (10)0.0215 (4)
C60.2465 (2)0.60762 (10)0.75811 (10)0.0204 (4)
C70.2050 (3)0.53744 (11)0.76309 (10)0.0257 (4)
H70.18610.52300.80160.031*
C80.1981 (3)0.49601 (11)0.70258 (11)0.0262 (4)
H80.17200.44690.69040.031*
C90.2378 (2)0.54025 (10)0.65971 (10)0.0208 (4)
C100.2509 (2)0.51649 (10)0.59287 (10)0.0211 (4)
C110.2661 (2)0.55911 (10)0.54829 (10)0.0206 (4)
C120.2819 (3)0.53651 (11)0.48024 (10)0.0252 (4)
H120.29200.49150.45850.030*
C130.2798 (3)0.59145 (11)0.45319 (10)0.0251 (4)
H130.28600.59200.40860.030*
C140.2662 (2)0.64918 (10)0.50448 (9)0.0204 (4)
C150.2564 (2)0.71571 (10)0.49630 (9)0.0198 (4)
C160.2521 (2)0.77297 (10)0.54688 (9)0.0200 (4)
C170.2310 (3)0.83986 (11)0.53666 (10)0.0266 (4)
H170.21740.85260.49530.032*
C180.2342 (3)0.88089 (11)0.59688 (11)0.0288 (5)
H180.22460.92810.60590.035*
C190.2547 (2)0.83975 (10)0.64507 (10)0.0220 (4)
C200.2640 (3)0.86390 (10)0.71389 (10)0.0234 (4)
C210.2579 (3)0.65248 (10)0.87802 (10)0.0226 (4)
C220.1093 (3)0.63974 (14)0.89588 (11)0.0364 (5)
H220.01110.64330.86710.044*
C230.1023 (3)0.62159 (14)0.95589 (12)0.0379 (6)
H230.00020.61230.96800.045*
C240.2450 (3)0.61738 (11)0.99694 (10)0.0290 (5)
C250.3944 (3)0.63187 (16)0.98167 (13)0.0460 (7)
H250.49260.62981.01150.055*
C260.4004 (3)0.64969 (16)0.92169 (13)0.0417 (6)
H260.50370.66010.91060.050*
C270.2413 (3)0.53406 (12)1.05929 (11)0.0334 (5)
C280.2507 (3)0.52300 (11)1.12744 (10)0.0274 (4)
C290.2114 (3)0.56867 (13)1.17817 (11)0.0352 (5)
H290.17660.60961.17080.042*
C300.2235 (4)0.55373 (15)1.24035 (12)0.0439 (6)
H300.19640.58481.27560.053*
C310.2737 (3)0.49517 (14)1.25143 (12)0.0402 (6)
H310.27930.48521.29390.048*
C320.3166 (4)0.45029 (14)1.20094 (14)0.0474 (7)
H320.35490.41021.20910.057*
C330.3039 (4)0.46368 (13)1.13876 (13)0.0409 (6)
H330.33150.43251.10370.049*
C340.2463 (2)0.44089 (10)0.56896 (10)0.0213 (4)
C350.3511 (3)0.40835 (11)0.60647 (10)0.0259 (4)
H350.42940.43520.64560.031*
C360.3427 (3)0.33756 (11)0.58756 (11)0.0269 (4)
H360.41340.31590.61370.032*
C370.2300 (3)0.29906 (10)0.53018 (10)0.0235 (4)
C380.1260 (2)0.32938 (10)0.49152 (10)0.0229 (4)
H380.04990.30230.45200.028*
C390.1346 (2)0.40020 (10)0.51142 (10)0.0224 (4)
H390.06280.42140.48520.027*
C400.2577 (3)0.19646 (11)0.45797 (11)0.0280 (4)
C410.2568 (3)0.12180 (11)0.44955 (12)0.0327 (5)
C420.2004 (6)0.08583 (16)0.4910 (2)0.0737 (11)
H420.16030.10800.52760.088*
C430.2028 (9)0.0150 (2)0.4782 (3)0.123 (2)
H430.16360.01130.50650.148*
C440.2613 (7)0.01704 (18)0.4251 (2)0.0913 (15)
H440.26080.06520.41680.110*
C450.3189 (4)0.01918 (15)0.38517 (17)0.0591 (8)
H450.36210.00270.34940.071*
C460.3148 (3)0.08787 (14)0.39637 (14)0.0445 (6)
H460.35240.11320.36710.053*
C470.2435 (2)0.72691 (10)0.42727 (9)0.0202 (4)
C480.1063 (3)0.69477 (11)0.37587 (10)0.0257 (4)
H480.02020.66410.38400.031*
C490.0934 (3)0.70708 (11)0.31222 (10)0.0278 (4)
H490.00150.68580.27740.033*
C500.2210 (3)0.75070 (10)0.30097 (10)0.0232 (4)
C510.3586 (3)0.78352 (11)0.35088 (10)0.0256 (4)
H510.44510.81350.34220.031*
C520.3682 (3)0.77189 (11)0.41419 (10)0.0240 (4)
H520.46150.79500.44920.029*
C530.1959 (3)0.82397 (12)0.22857 (10)0.0289 (5)
C540.2081 (3)0.83278 (12)0.16118 (11)0.0305 (5)
C550.2608 (4)0.78526 (13)0.11602 (12)0.0428 (6)
H550.28430.74360.12620.051*
C560.2791 (5)0.79915 (16)0.05560 (15)0.0667 (10)
H560.31540.76690.02420.080*
C570.2445 (6)0.85958 (18)0.04113 (15)0.0726 (11)
H570.25900.86910.00000.087*
C580.1895 (5)0.90623 (18)0.08526 (15)0.0632 (9)
H580.16410.94740.07440.076*
C590.1714 (4)0.89299 (15)0.14549 (13)0.0454 (6)
H590.13370.92520.17630.055*
C600.2566 (3)0.93847 (10)0.73884 (10)0.0240 (4)
C610.1139 (3)0.96266 (11)0.71824 (11)0.0304 (5)
H610.02030.93140.68900.036*
C620.1066 (3)1.03198 (12)0.73989 (12)0.0328 (5)
H620.00961.04840.72510.039*
C630.2414 (3)1.07619 (11)0.78290 (12)0.0325 (5)
C640.3835 (3)1.05388 (12)0.80529 (13)0.0392 (6)
H640.47511.08530.83570.047*
C650.3910 (3)0.98463 (12)0.78275 (12)0.0346 (5)
H650.48900.96880.79750.042*
C660.3034 (3)1.19226 (12)0.77925 (13)0.0366 (5)
C670.2864 (3)1.26376 (11)0.80969 (12)0.0314 (5)
C680.3596 (3)1.31723 (13)0.78607 (14)0.0403 (6)
H680.41841.30740.75200.048*
C690.3464 (3)1.38420 (13)0.81222 (14)0.0429 (6)
H690.39531.42050.79570.051*
C700.2631 (4)1.39908 (12)0.86208 (13)0.0431 (6)
H700.25651.44560.88040.052*
C710.1888 (4)1.34650 (13)0.88561 (13)0.0436 (6)
H710.12991.35680.91960.052*
C720.2004 (3)1.27843 (12)0.85936 (12)0.0340 (5)
H720.14961.24220.87540.041*
C730.6390 (3)0.64968 (16)0.65693 (17)0.0507 (7)
H73A0.60170.63250.60770.061*
H73B0.59190.61360.67710.061*
C740.8263 (3)0.6608 (2)0.67635 (19)0.0639 (9)
H74A0.86230.61660.66200.077*
H74B0.87490.69430.65370.077*
C750.8406 (4)0.7520 (3)0.7659 (2)0.0875 (13)
H75A0.88960.78370.74170.105*
H75B0.88650.77140.81450.105*
C760.6495 (4)0.7452 (2)0.74997 (16)0.0702 (10)
H76A0.60230.71700.77750.084*
H76B0.62220.79170.76200.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02219 (12)0.01640 (12)0.01721 (12)0.00479 (8)0.00457 (8)0.00655 (8)
N10.0273 (9)0.0183 (8)0.0195 (8)0.0045 (7)0.0062 (7)0.0074 (6)
N20.0251 (8)0.0202 (8)0.0187 (8)0.0057 (7)0.0077 (6)0.0064 (6)
N30.0253 (8)0.0167 (8)0.0193 (8)0.0053 (6)0.0061 (6)0.0075 (6)
N40.0246 (8)0.0162 (8)0.0180 (8)0.0049 (6)0.0038 (6)0.0058 (6)
N50.0250 (9)0.0386 (11)0.0312 (10)0.0037 (8)0.0063 (7)0.0200 (9)
N60.0299 (14)0.187 (4)0.087 (2)0.0221 (19)0.0123 (14)0.087 (3)
O10.0634 (11)0.0264 (8)0.0203 (7)0.0121 (7)0.0129 (7)0.0126 (6)
O20.125 (2)0.0288 (9)0.0314 (10)0.0182 (11)0.0311 (11)0.0086 (8)
O30.0429 (9)0.0174 (7)0.0303 (8)0.0061 (6)0.0134 (7)0.0073 (6)
O40.142 (2)0.0429 (12)0.0652 (14)0.0478 (13)0.0744 (15)0.0320 (11)
O50.0431 (9)0.0264 (8)0.0173 (7)0.0075 (6)0.0096 (6)0.0076 (6)
O60.0925 (15)0.0484 (11)0.0311 (9)0.0468 (11)0.0282 (10)0.0194 (8)
O70.0599 (11)0.0186 (8)0.0464 (10)0.0098 (7)0.0293 (9)0.0085 (7)
O80.113 (2)0.0356 (11)0.1010 (18)0.0283 (12)0.0867 (17)0.0282 (11)
C10.0288 (10)0.0186 (9)0.0211 (10)0.0043 (8)0.0053 (8)0.0043 (8)
C20.0510 (14)0.0212 (10)0.0223 (10)0.0068 (9)0.0089 (10)0.0024 (8)
C30.0491 (14)0.0250 (11)0.0189 (10)0.0076 (10)0.0083 (9)0.0057 (8)
C40.0273 (10)0.0229 (10)0.0191 (9)0.0049 (8)0.0055 (8)0.0072 (8)
C50.0225 (10)0.0251 (10)0.0197 (9)0.0063 (8)0.0059 (7)0.0095 (8)
C60.0217 (9)0.0223 (10)0.0211 (9)0.0060 (8)0.0073 (7)0.0101 (8)
C70.0351 (11)0.0218 (10)0.0255 (10)0.0060 (8)0.0121 (9)0.0121 (8)
C80.0345 (11)0.0188 (10)0.0285 (10)0.0054 (8)0.0102 (9)0.0100 (8)
C90.0243 (10)0.0168 (9)0.0238 (10)0.0057 (7)0.0074 (8)0.0075 (8)
C100.0225 (9)0.0182 (9)0.0246 (10)0.0059 (7)0.0072 (8)0.0066 (8)
C110.0232 (9)0.0190 (9)0.0212 (9)0.0063 (7)0.0072 (7)0.0053 (7)
C120.0340 (11)0.0194 (10)0.0260 (10)0.0079 (8)0.0140 (9)0.0054 (8)
C130.0346 (11)0.0228 (10)0.0223 (10)0.0074 (8)0.0144 (8)0.0070 (8)
C140.0226 (9)0.0211 (10)0.0187 (9)0.0041 (7)0.0068 (7)0.0059 (7)
C150.0211 (9)0.0213 (10)0.0185 (9)0.0029 (7)0.0054 (7)0.0083 (7)
C160.0224 (9)0.0197 (9)0.0197 (9)0.0049 (7)0.0041 (7)0.0087 (7)
C170.0382 (12)0.0229 (10)0.0225 (10)0.0105 (9)0.0069 (9)0.0108 (8)
C180.0445 (13)0.0191 (10)0.0264 (10)0.0118 (9)0.0083 (9)0.0094 (8)
C190.0276 (10)0.0169 (9)0.0213 (10)0.0052 (8)0.0040 (8)0.0051 (7)
C200.0281 (10)0.0183 (10)0.0226 (10)0.0047 (8)0.0038 (8)0.0041 (8)
C210.0310 (11)0.0197 (9)0.0192 (9)0.0056 (8)0.0071 (8)0.0077 (8)
C220.0295 (12)0.0573 (16)0.0253 (11)0.0065 (11)0.0043 (9)0.0192 (11)
C230.0377 (13)0.0534 (15)0.0268 (11)0.0044 (11)0.0127 (10)0.0175 (11)
C240.0492 (13)0.0226 (10)0.0176 (9)0.0068 (9)0.0086 (9)0.0094 (8)
C250.0402 (14)0.0713 (19)0.0387 (14)0.0205 (13)0.0070 (11)0.0348 (14)
C260.0321 (12)0.0675 (18)0.0386 (13)0.0183 (12)0.0133 (10)0.0309 (13)
C270.0529 (15)0.0245 (11)0.0262 (11)0.0075 (10)0.0133 (10)0.0101 (9)
C280.0342 (11)0.0259 (11)0.0246 (10)0.0052 (9)0.0068 (9)0.0119 (8)
C290.0499 (14)0.0353 (13)0.0296 (12)0.0208 (11)0.0127 (10)0.0161 (10)
C300.0678 (18)0.0473 (15)0.0268 (12)0.0234 (13)0.0192 (12)0.0152 (11)
C310.0515 (15)0.0436 (14)0.0281 (12)0.0071 (12)0.0042 (11)0.0201 (11)
C320.0670 (18)0.0365 (14)0.0441 (15)0.0163 (13)0.0062 (13)0.0233 (12)
C330.0658 (17)0.0263 (12)0.0359 (13)0.0152 (11)0.0149 (12)0.0120 (10)
C340.0247 (10)0.0187 (9)0.0236 (10)0.0052 (8)0.0101 (8)0.0071 (8)
C350.0269 (10)0.0236 (10)0.0254 (10)0.0067 (8)0.0031 (8)0.0036 (8)
C360.0306 (11)0.0242 (10)0.0280 (10)0.0109 (8)0.0056 (9)0.0079 (8)
C370.0291 (10)0.0170 (9)0.0276 (10)0.0055 (8)0.0127 (8)0.0065 (8)
C380.0244 (10)0.0219 (10)0.0210 (9)0.0004 (8)0.0063 (8)0.0039 (8)
C390.0239 (10)0.0240 (10)0.0235 (10)0.0073 (8)0.0083 (8)0.0107 (8)
C400.0320 (11)0.0251 (11)0.0283 (11)0.0075 (9)0.0081 (9)0.0069 (9)
C410.0325 (12)0.0216 (11)0.0393 (13)0.0048 (9)0.0024 (10)0.0031 (9)
C420.129 (3)0.0330 (16)0.085 (2)0.0285 (18)0.066 (2)0.0252 (16)
C430.251 (7)0.038 (2)0.126 (4)0.044 (3)0.118 (5)0.041 (2)
C440.158 (4)0.0319 (17)0.100 (3)0.036 (2)0.057 (3)0.0154 (19)
C450.072 (2)0.0359 (15)0.064 (2)0.0163 (14)0.0177 (16)0.0066 (14)
C460.0512 (16)0.0350 (14)0.0434 (14)0.0151 (12)0.0075 (12)0.0003 (11)
C470.0261 (10)0.0186 (9)0.0191 (9)0.0074 (8)0.0081 (8)0.0071 (7)
C480.0286 (11)0.0256 (10)0.0222 (10)0.0006 (8)0.0085 (8)0.0059 (8)
C490.0318 (11)0.0292 (11)0.0191 (10)0.0023 (9)0.0036 (8)0.0037 (8)
C500.0359 (11)0.0218 (10)0.0168 (9)0.0116 (8)0.0101 (8)0.0073 (7)
C510.0273 (10)0.0277 (11)0.0264 (10)0.0052 (8)0.0101 (8)0.0133 (8)
C520.0240 (10)0.0256 (10)0.0228 (10)0.0041 (8)0.0035 (8)0.0093 (8)
C530.0361 (12)0.0341 (12)0.0223 (10)0.0142 (9)0.0092 (9)0.0121 (9)
C540.0364 (12)0.0334 (12)0.0218 (10)0.0030 (9)0.0067 (9)0.0098 (9)
C550.0736 (19)0.0261 (12)0.0275 (12)0.0007 (12)0.0199 (12)0.0037 (9)
C560.131 (3)0.0374 (16)0.0344 (15)0.0052 (17)0.0406 (18)0.0028 (12)
C570.140 (4)0.0543 (19)0.0299 (14)0.011 (2)0.0318 (18)0.0190 (13)
C580.109 (3)0.0567 (19)0.0386 (15)0.0280 (19)0.0227 (17)0.0297 (14)
C590.0637 (18)0.0512 (16)0.0337 (13)0.0245 (14)0.0170 (12)0.0224 (12)
C600.0345 (11)0.0174 (10)0.0214 (10)0.0063 (8)0.0070 (8)0.0058 (8)
C610.0378 (12)0.0231 (11)0.0277 (11)0.0079 (9)0.0047 (9)0.0018 (9)
C620.0418 (13)0.0270 (11)0.0330 (12)0.0149 (10)0.0107 (10)0.0070 (9)
C630.0510 (14)0.0172 (10)0.0344 (12)0.0094 (9)0.0201 (10)0.0059 (9)
C640.0418 (14)0.0210 (11)0.0474 (14)0.0012 (10)0.0055 (11)0.0015 (10)
C650.0357 (12)0.0232 (11)0.0409 (13)0.0054 (9)0.0028 (10)0.0047 (10)
C660.0428 (13)0.0264 (12)0.0482 (14)0.0080 (10)0.0248 (11)0.0120 (10)
C670.0317 (11)0.0204 (10)0.0411 (13)0.0052 (9)0.0065 (10)0.0072 (9)
C680.0373 (13)0.0316 (13)0.0561 (16)0.0067 (10)0.0138 (12)0.0171 (11)
C690.0402 (14)0.0244 (12)0.0576 (16)0.0008 (10)0.0049 (12)0.0155 (11)
C700.0583 (16)0.0189 (11)0.0414 (14)0.0103 (11)0.0087 (12)0.0009 (10)
C710.0610 (17)0.0329 (13)0.0353 (13)0.0183 (12)0.0070 (12)0.0027 (10)
C720.0428 (13)0.0235 (11)0.0340 (12)0.0046 (9)0.0066 (10)0.0065 (9)
C730.0308 (13)0.0567 (17)0.0788 (19)0.0193 (12)0.0164 (13)0.0365 (15)
C740.0311 (14)0.094 (2)0.089 (2)0.0219 (14)0.0167 (14)0.0610 (19)
C750.0387 (17)0.146 (4)0.056 (2)0.015 (2)0.0030 (15)0.014 (2)
C760.0332 (15)0.114 (3)0.0484 (17)0.0048 (16)0.0007 (12)0.0094 (18)
Geometric parameters (Å, º) top
Zn—N22.0697 (16)C31—H310.9500
Zn—N42.0747 (16)C32—C331.377 (4)
Zn—N32.0836 (16)C32—H320.9500
Zn—N12.0856 (17)C33—H330.9500
Zn—N52.1274 (19)C34—C391.392 (3)
N1—C11.367 (3)C34—C351.400 (3)
N1—C41.375 (2)C35—C361.386 (3)
N2—C91.373 (3)C35—H350.9500
N2—C61.378 (2)C36—C371.381 (3)
N3—C111.374 (2)C36—H360.9500
N3—C141.376 (2)C37—C381.379 (3)
N4—C191.373 (2)C38—C391.388 (3)
N4—C161.375 (2)C38—H380.9500
N5—C731.472 (4)C39—H390.9500
N5—C761.476 (4)C40—C411.478 (3)
N5—H50.80 (3)C41—C421.356 (4)
N6—C741.403 (5)C41—C461.391 (4)
N6—C751.412 (6)C42—C431.402 (5)
N6—H60.955 (19)C42—H420.9500
O1—C271.357 (3)C43—C441.380 (6)
O1—C241.413 (2)C43—H430.9500
O2—C271.192 (3)C44—C451.337 (5)
O3—C401.349 (3)C44—H440.9500
O3—C371.413 (2)C45—C461.363 (4)
O4—C401.186 (3)C45—H450.9500
O5—C531.356 (3)C46—H460.9500
O5—C501.412 (2)C47—C481.389 (3)
O6—C531.196 (3)C47—C521.394 (3)
O7—C661.352 (3)C48—C491.399 (3)
O7—C631.413 (3)C48—H480.9500
O8—C661.186 (3)C49—C501.378 (3)
C1—C201.406 (3)C49—H490.9500
C1—C21.446 (3)C50—C511.378 (3)
C2—C31.352 (3)C51—C521.389 (3)
C2—H20.9500C51—H510.9500
C3—C41.442 (3)C52—H520.9500
C3—H30.9500C53—C541.485 (3)
C4—C51.398 (3)C54—C551.384 (3)
C5—C61.401 (3)C54—C591.387 (3)
C5—C211.506 (3)C55—C561.388 (4)
C6—C71.440 (3)C55—H550.9500
C7—C81.350 (3)C56—C571.376 (5)
C7—H70.9500C56—H560.9500
C8—C91.446 (3)C57—C581.371 (5)
C8—H80.9500C57—H570.9500
C9—C101.415 (3)C58—C591.379 (4)
C10—C111.411 (3)C58—H580.9500
C10—C341.494 (3)C59—H590.9500
C11—C121.443 (3)C60—C651.389 (3)
C12—C131.351 (3)C60—C611.392 (3)
C12—H120.9500C61—C621.390 (3)
C13—C141.443 (3)C61—H610.9500
C13—H130.9500C62—C631.368 (3)
C14—C151.402 (3)C62—H620.9500
C15—C161.403 (3)C63—C641.376 (4)
C15—C471.501 (3)C64—C651.392 (3)
C16—C171.443 (3)C64—H640.9500
C17—C181.349 (3)C65—H650.9500
C17—H170.9500C66—C671.488 (3)
C18—C191.442 (3)C67—C721.386 (3)
C18—H180.9500C67—C681.394 (3)
C19—C201.407 (3)C68—C691.376 (4)
C20—C601.499 (3)C68—H680.9500
C21—C221.379 (3)C69—C701.375 (4)
C21—C261.382 (3)C69—H690.9500
C22—C231.395 (3)C70—C711.383 (4)
C22—H220.9500C70—H700.9500
C23—C241.366 (3)C71—C721.392 (3)
C23—H230.9500C71—H710.9500
C24—C251.364 (4)C72—H720.9500
C25—C261.390 (3)C73—C741.524 (4)
C25—H250.9500C73—H73A0.9900
C26—H260.9500C73—H73B0.9900
C27—C281.485 (3)C74—H74A0.9900
C28—C291.379 (3)C74—H74B0.9900
C28—C331.389 (3)C75—C761.562 (5)
C29—C301.391 (3)C75—H75A0.9900
C29—H290.9500C75—H75B0.9900
C30—C311.363 (4)C76—H76A0.9900
C30—H300.9500C76—H76B0.9900
C31—C321.382 (4)
N2—Zn—N4157.48 (7)C36—C35—H35119.4
N2—Zn—N387.83 (6)C34—C35—H35119.4
N4—Zn—N388.49 (6)C37—C36—C35118.99 (19)
N2—Zn—N188.20 (6)C37—C36—H36120.5
N4—Zn—N187.89 (6)C35—C36—H36120.5
N3—Zn—N1160.46 (7)C38—C37—C36121.55 (19)
N2—Zn—N5101.14 (7)C38—C37—O3121.41 (19)
N4—Zn—N5101.38 (7)C36—C37—O3116.93 (18)
N3—Zn—N599.26 (7)C37—C38—C39118.86 (19)
N1—Zn—N5100.27 (7)C37—C38—H38120.6
C1—N1—C4106.42 (16)C39—C38—H38120.6
C1—N1—Zn126.77 (13)C38—C39—C34121.44 (18)
C4—N1—Zn125.96 (13)C38—C39—H39119.3
C9—N2—C6106.21 (16)C34—C39—H39119.3
C9—N2—Zn127.12 (13)O4—C40—O3122.2 (2)
C6—N2—Zn126.67 (13)O4—C40—C41124.1 (2)
C11—N3—C14106.69 (16)O3—C40—C41113.66 (19)
C11—N3—Zn125.75 (13)C42—C41—C46119.6 (2)
C14—N3—Zn124.90 (13)C42—C41—C40122.5 (2)
C19—N4—C16106.66 (16)C46—C41—C40117.9 (2)
C19—N4—Zn126.93 (13)C41—C42—C43118.1 (3)
C16—N4—Zn126.10 (13)C41—C42—H42121.0
C73—N5—C76109.9 (2)C43—C42—H42121.0
C73—N5—Zn112.62 (16)C44—C43—C42120.8 (4)
C76—N5—Zn111.88 (17)C44—C43—H43119.6
C73—N5—H5107 (2)C42—C43—H43119.6
C76—N5—H5109 (2)C45—C44—C43120.5 (3)
Zn—N5—H5106 (2)C45—C44—H44119.7
C74—N6—C75109.8 (3)C43—C44—H44119.7
C74—N6—H6104 (3)C44—C45—C46119.2 (3)
C75—N6—H6108 (3)C44—C45—H45120.4
C27—O1—C24115.51 (17)C46—C45—H45120.4
C40—O3—C37117.59 (16)C45—C46—C41121.7 (3)
C53—O5—C50115.50 (16)C45—C46—H46119.2
C66—O7—C63116.07 (18)C41—C46—H46119.2
N1—C1—C20125.22 (18)C48—C47—C52118.63 (18)
N1—C1—C2109.82 (17)C48—C47—C15121.26 (17)
C20—C1—C2124.87 (19)C52—C47—C15120.07 (18)
C3—C2—C1106.97 (19)C47—C48—C49120.79 (19)
C3—C2—H2126.5C47—C48—H48119.6
C1—C2—H2126.5C49—C48—H48119.6
C2—C3—C4107.00 (19)C50—C49—C48118.75 (19)
C2—C3—H3126.5C50—C49—H49120.6
C4—C3—H3126.5C48—C49—H49120.6
N1—C4—C5125.06 (18)C49—C50—C51121.91 (18)
N1—C4—C3109.77 (18)C49—C50—O5118.55 (18)
C5—C4—C3124.86 (18)C51—C50—O5119.51 (18)
C4—C5—C6125.52 (18)C50—C51—C52118.71 (19)
C4—C5—C21118.37 (17)C50—C51—H51120.6
C6—C5—C21116.05 (17)C52—C51—H51120.6
N2—C6—C5125.73 (18)C51—C52—C47121.18 (19)
N2—C6—C7109.93 (17)C51—C52—H52119.4
C5—C6—C7124.34 (18)C47—C52—H52119.4
C8—C7—C6106.98 (18)O6—C53—O5122.91 (19)
C8—C7—H7126.5O6—C53—C54124.4 (2)
C6—C7—H7126.5O5—C53—C54112.71 (18)
C7—C8—C9107.27 (18)C55—C54—C59120.1 (2)
C7—C8—H8126.4C55—C54—C53122.6 (2)
C9—C8—H8126.4C59—C54—C53117.3 (2)
N2—C9—C10125.67 (17)C54—C55—C56119.3 (3)
N2—C9—C8109.56 (17)C54—C55—H55120.4
C10—C9—C8124.77 (18)C56—C55—H55120.4
C11—C10—C9124.40 (18)C57—C56—C55120.0 (3)
C11—C10—C34119.01 (17)C57—C56—H56120.0
C9—C10—C34116.59 (17)C55—C56—H56120.0
N3—C11—C10124.88 (17)C58—C57—C56120.9 (3)
N3—C11—C12109.46 (17)C58—C57—H57119.5
C10—C11—C12125.61 (18)C56—C57—H57119.5
C13—C12—C11107.13 (18)C57—C58—C59119.5 (3)
C13—C12—H12126.4C57—C58—H58120.2
C11—C12—H12126.4C59—C58—H58120.2
C12—C13—C14107.36 (18)C58—C59—C54120.2 (3)
C12—C13—H13126.3C58—C59—H59119.9
C14—C13—H13126.3C54—C59—H59119.9
N3—C14—C15125.27 (17)C65—C60—C61118.7 (2)
N3—C14—C13109.28 (17)C65—C60—C20120.99 (19)
C15—C14—C13125.44 (18)C61—C60—C20120.28 (19)
C14—C15—C16125.66 (17)C62—C61—C60120.9 (2)
C14—C15—C47117.88 (17)C62—C61—H61119.6
C16—C15—C47116.43 (17)C60—C61—H61119.6
N4—C16—C15125.72 (17)C63—C62—C61118.9 (2)
N4—C16—C17109.40 (17)C63—C62—H62120.5
C15—C16—C17124.87 (18)C61—C62—H62120.5
C18—C17—C16107.19 (18)C62—C63—C64121.8 (2)
C18—C17—H17126.4C62—C63—O7118.7 (2)
C16—C17—H17126.4C64—C63—O7119.4 (2)
C17—C18—C19107.28 (18)C63—C64—C65119.1 (2)
C17—C18—H18126.4C63—C64—H64120.5
C19—C18—H18126.4C65—C64—H64120.5
N4—C19—C20125.76 (18)C60—C65—C64120.6 (2)
N4—C19—C18109.44 (17)C60—C65—H65119.7
C20—C19—C18124.79 (18)C64—C65—H65119.7
C1—C20—C19125.24 (18)O8—C66—O7122.9 (2)
C1—C20—C60117.55 (18)O8—C66—C67125.6 (2)
C19—C20—C60117.20 (18)O7—C66—C67111.55 (19)
C22—C21—C26118.97 (19)C72—C67—C68119.7 (2)
C22—C21—C5120.72 (19)C72—C67—C66122.7 (2)
C26—C21—C5120.25 (19)C68—C67—C66117.6 (2)
C21—C22—C23120.5 (2)C69—C68—C67119.9 (3)
C21—C22—H22119.7C69—C68—H68120.1
C23—C22—H22119.7C67—C68—H68120.1
C24—C23—C22118.9 (2)C70—C69—C68120.6 (2)
C24—C23—H23120.6C70—C69—H69119.7
C22—C23—H23120.6C68—C69—H69119.7
C25—C24—C23121.9 (2)C69—C70—C71120.2 (2)
C25—C24—O1119.1 (2)C69—C70—H70119.9
C23—C24—O1118.9 (2)C71—C70—H70119.9
C24—C25—C26118.8 (2)C70—C71—C72119.9 (3)
C24—C25—H25120.6C70—C71—H71120.1
C26—C25—H25120.6C72—C71—H71120.1
C21—C26—C25120.8 (2)C67—C72—C71119.8 (2)
C21—C26—H26119.6C67—C72—H72120.1
C25—C26—H26119.6C71—C72—H72120.1
O2—C27—O1123.0 (2)N5—C73—C74113.2 (3)
O2—C27—C28125.2 (2)N5—C73—H73A108.9
O1—C27—C28111.80 (18)C74—C73—H73A108.9
C29—C28—C33120.4 (2)N5—C73—H73B108.9
C29—C28—C27123.0 (2)C74—C73—H73B108.9
C33—C28—C27116.6 (2)H73A—C73—H73B107.8
C28—C29—C30118.8 (2)N6—C74—C73109.3 (3)
C28—C29—H29120.6N6—C74—H74A109.8
C30—C29—H29120.6C73—C74—H74A109.8
C31—C30—C29121.0 (2)N6—C74—H74B109.8
C31—C30—H30119.5C73—C74—H74B109.8
C29—C30—H30119.5H74A—C74—H74B108.3
C30—C31—C32120.0 (2)N6—C75—C76109.6 (3)
C30—C31—H31120.0N6—C75—H75A109.8
C32—C31—H31120.0C76—C75—H75A109.8
C33—C32—C31120.0 (2)N6—C75—H75B109.8
C33—C32—H32120.0C76—C75—H75B109.8
C31—C32—H32120.0H75A—C75—H75B108.2
C32—C33—C28119.8 (2)N5—C76—C75111.5 (3)
C32—C33—H33120.1N5—C76—H76A109.3
C28—C33—H33120.1C75—C76—H76A109.3
C39—C34—C35118.02 (18)N5—C76—H76B109.3
C39—C34—C10121.99 (18)C75—C76—H76B109.3
C35—C34—C10119.92 (18)H76A—C76—H76B108.0
C36—C35—C34121.14 (19)
C4—N1—C1—C20175.8 (2)C33—C28—C29—C301.0 (4)
Zn—N1—C1—C2014.2 (3)C27—C28—C29—C30179.8 (2)
C4—N1—C1—C20.8 (2)C28—C29—C30—C310.2 (4)
Zn—N1—C1—C2169.15 (15)C29—C30—C31—C321.3 (5)
N1—C1—C2—C30.2 (3)C30—C31—C32—C331.9 (5)
C20—C1—C2—C3176.5 (2)C31—C32—C33—C281.1 (4)
C1—C2—C3—C40.5 (3)C29—C28—C33—C320.3 (4)
C1—N1—C4—C5172.7 (2)C27—C28—C33—C32179.6 (3)
Zn—N1—C4—C517.2 (3)C11—C10—C34—C3953.7 (3)
C1—N1—C4—C31.1 (2)C9—C10—C34—C39125.6 (2)
Zn—N1—C4—C3168.92 (15)C11—C10—C34—C35129.3 (2)
C2—C3—C4—N11.1 (3)C9—C10—C34—C3551.3 (3)
C2—C3—C4—C5172.8 (2)C39—C34—C35—C360.9 (3)
N1—C4—C5—C61.0 (3)C10—C34—C35—C36176.17 (19)
C3—C4—C5—C6173.9 (2)C34—C35—C36—C370.8 (3)
N1—C4—C5—C21175.88 (19)C35—C36—C37—C380.1 (3)
C3—C4—C5—C212.9 (3)C35—C36—C37—O3176.19 (18)
C9—N2—C6—C5179.07 (19)C40—O3—C37—C3866.6 (3)
Zn—N2—C6—C51.2 (3)C40—O3—C37—C36117.3 (2)
C9—N2—C6—C71.9 (2)C36—C37—C38—C390.6 (3)
Zn—N2—C6—C7177.78 (14)O3—C37—C38—C39175.36 (17)
C4—C5—C6—N29.0 (3)C37—C38—C39—C340.5 (3)
C21—C5—C6—N2174.09 (18)C35—C34—C39—C380.3 (3)
C4—C5—C6—C7169.9 (2)C10—C34—C39—C38176.78 (18)
C21—C5—C6—C77.1 (3)C37—O3—C40—O43.1 (3)
N2—C6—C7—C80.7 (2)C37—O3—C40—C41174.80 (18)
C5—C6—C7—C8179.7 (2)O4—C40—C41—C42173.6 (3)
C6—C7—C8—C90.8 (2)O3—C40—C41—C428.6 (4)
C6—N2—C9—C10176.66 (19)O4—C40—C41—C465.6 (4)
Zn—N2—C9—C103.6 (3)O3—C40—C41—C46172.3 (2)
C6—N2—C9—C82.4 (2)C46—C41—C42—C430.0 (6)
Zn—N2—C9—C8177.26 (14)C40—C41—C42—C43179.2 (4)
C7—C8—C9—N22.1 (2)C41—C42—C43—C440.1 (9)
C7—C8—C9—C10177.0 (2)C42—C43—C44—C450.8 (9)
N2—C9—C10—C1110.6 (3)C43—C44—C45—C461.9 (8)
C8—C9—C10—C11170.4 (2)C44—C45—C46—C412.0 (5)
N2—C9—C10—C34170.12 (18)C42—C41—C46—C451.1 (5)
C8—C9—C10—C348.9 (3)C40—C41—C46—C45179.7 (3)
C14—N3—C11—C10174.97 (19)C14—C15—C47—C4865.4 (3)
Zn—N3—C11—C1022.9 (3)C16—C15—C47—C48112.5 (2)
C14—N3—C11—C122.7 (2)C14—C15—C47—C52116.5 (2)
Zn—N3—C11—C12159.49 (14)C16—C15—C47—C5265.5 (2)
C9—C10—C11—N33.6 (3)C52—C47—C48—C490.1 (3)
C34—C10—C11—N3175.66 (18)C15—C47—C48—C49178.19 (19)
C9—C10—C11—C12179.1 (2)C47—C48—C49—C501.3 (3)
C34—C10—C11—C121.6 (3)C48—C49—C50—C511.4 (3)
N3—C11—C12—C132.5 (2)C48—C49—C50—O5176.48 (19)
C10—C11—C12—C13175.1 (2)C53—O5—C50—C49113.0 (2)
C11—C12—C13—C141.3 (2)C53—O5—C50—C5169.0 (3)
C11—N3—C14—C15177.00 (19)C49—C50—C51—C520.2 (3)
Zn—N3—C14—C1520.6 (3)O5—C50—C51—C52177.73 (18)
C11—N3—C14—C131.9 (2)C50—C51—C52—C471.3 (3)
Zn—N3—C14—C13160.46 (14)C48—C47—C52—C511.4 (3)
C12—C13—C14—N30.4 (2)C15—C47—C52—C51179.52 (19)
C12—C13—C14—C15178.5 (2)C50—O5—C53—O67.2 (3)
N3—C14—C15—C164.9 (3)C50—O5—C53—C54172.71 (18)
C13—C14—C15—C16176.4 (2)O6—C53—C54—C55168.5 (3)
N3—C14—C15—C47172.86 (18)O5—C53—C54—C5511.5 (3)
C13—C14—C15—C475.9 (3)O6—C53—C54—C598.6 (4)
C19—N4—C16—C15179.90 (19)O5—C53—C54—C59171.5 (2)
Zn—N4—C16—C155.9 (3)C59—C54—C55—C561.1 (4)
C19—N4—C16—C171.1 (2)C53—C54—C55—C56175.9 (3)
Zn—N4—C16—C17175.12 (14)C54—C55—C56—C570.1 (5)
C14—C15—C16—N43.2 (3)C55—C56—C57—C581.0 (6)
C47—C15—C16—N4179.04 (18)C56—C57—C58—C591.2 (6)
C14—C15—C16—C17175.7 (2)C57—C58—C59—C540.2 (5)
C47—C15—C16—C172.1 (3)C55—C54—C59—C580.9 (4)
N4—C16—C17—C181.3 (2)C53—C54—C59—C58176.2 (3)
C15—C16—C17—C18179.7 (2)C1—C20—C60—C6566.7 (3)
C16—C17—C18—C190.9 (3)C19—C20—C60—C65114.4 (2)
C16—N4—C19—C20179.2 (2)C1—C20—C60—C61113.3 (2)
Zn—N4—C19—C205.3 (3)C19—C20—C60—C6165.7 (3)
C16—N4—C19—C180.6 (2)C65—C60—C61—C621.4 (3)
Zn—N4—C19—C18174.52 (14)C20—C60—C61—C62178.7 (2)
C17—C18—C19—N40.2 (3)C60—C61—C62—C631.1 (3)
C17—C18—C19—C20180.0 (2)C61—C62—C63—C640.1 (4)
N1—C1—C20—C191.6 (3)C61—C62—C63—O7176.5 (2)
C2—C1—C20—C19177.7 (2)C66—O7—C63—C62103.0 (3)
N1—C1—C20—C60177.30 (19)C66—O7—C63—C6480.5 (3)
C2—C1—C20—C601.2 (3)C62—C63—C64—C651.0 (4)
N4—C19—C20—C13.2 (3)O7—C63—C64—C65177.4 (2)
C18—C19—C20—C1177.0 (2)C61—C60—C65—C640.5 (4)
N4—C19—C20—C60177.90 (19)C20—C60—C65—C64179.6 (2)
C18—C19—C20—C601.9 (3)C63—C64—C65—C600.7 (4)
C4—C5—C21—C2289.9 (3)C63—O7—C66—O80.5 (4)
C6—C5—C21—C2287.3 (3)C63—O7—C66—C67179.2 (2)
C4—C5—C21—C2692.9 (3)O8—C66—C67—C72178.3 (3)
C6—C5—C21—C2689.9 (3)O7—C66—C67—C722.1 (3)
C26—C21—C22—C232.5 (4)O8—C66—C67—C681.1 (4)
C5—C21—C22—C23174.7 (2)O7—C66—C67—C68178.5 (2)
C21—C22—C23—C240.7 (4)C72—C67—C68—C690.1 (4)
C22—C23—C24—C251.5 (4)C66—C67—C68—C69179.5 (2)
C22—C23—C24—O1178.2 (2)C67—C68—C69—C700.7 (4)
C27—O1—C24—C2583.3 (3)C68—C69—C70—C711.2 (4)
C27—O1—C24—C2399.8 (3)C69—C70—C71—C720.9 (4)
C23—C24—C25—C261.7 (4)C68—C67—C72—C710.4 (4)
O1—C24—C25—C26178.4 (2)C66—C67—C72—C71179.8 (2)
C22—C21—C26—C252.3 (4)C70—C71—C72—C670.1 (4)
C5—C21—C26—C25174.9 (2)C76—N5—C73—C7450.0 (3)
C24—C25—C26—C210.2 (4)Zn—N5—C73—C74175.47 (19)
C24—O1—C27—O25.3 (4)C75—N6—C74—C7364.2 (4)
C24—O1—C27—C28174.4 (2)N5—C73—C74—N657.7 (4)
O2—C27—C28—C29162.1 (3)C74—N6—C75—C7663.9 (4)
O1—C27—C28—C2918.2 (3)C73—N5—C76—C7548.7 (4)
O2—C27—C28—C3318.6 (4)Zn—N5—C76—C75174.6 (3)
O1—C27—C28—C33161.1 (2)N6—C75—C76—N556.3 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N3/C11–C14 pyrrole ring. Cg10, Cg11, Cg12, Cg15 and Cg17 are the centroids of the C21–C26, C28–C33, C34–C39, C54–59 and C67–C72 phenyl rings respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5···O4i0.80 (3)2.15 (3)2.904 (3)158 (3)
N6—H6···N1ii0.96 (2)2.57 (3)3.434 (4)151 (3)
C51—H51···O8iii0.952.473.284 (4)144
C62—H62···O6iv0.952.453.339 (4)155
C39—H39···Cg3v0.952.813.392 (2)120
C48—H48···Cg12v0.952.883.755 (3)153
C49—H49···Cg17iv0.952.903.804 (3)160
C56—H56···Cg10vi0.952.783.623 (3)147
C64—H64···Cg15iii0.952.643.566 (3)164
C69—H69···Cg11vii0.952.953.672 (3)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+2, z+1; (v) x, y+1, z+1; (vi) x, y, z1; (vii) x+1, y+2, z+2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAdler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476–476.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). Report ORNL-6895, Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497.  CSD CrossRef CAS Web of Science Google Scholar
First citationDenden, Z., Ezzayani, K., Saint-Aman, E., Loiseau, F., Najmudin, S., Bonifácio, C., Daran, J.-C. & Nasri, H. (2015). Eur. J. Inorg. Chem. 2596–2610.  Google Scholar
First citationDevillers, C. H., Dimé, A. K. D., Cattey, H. & Lucas, D. (2013). C. R. Chim. 16, 540–549.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuruta, H., Ishizuka, T. & Osuka, A. (2002). J. Am. Chem. Soc. 124, 5622–5623.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKonarev, D. V., Khasanov, S. S., Saito, G. & Lyubovskaya, R. N. (2009). Cryst. Growth Des. 9, 1170–1181.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonarev, D. V., Khasanov, S. S., Saito, G., Otsuka, A. & Lyubovskaya, R. N. (2007). Inorg. Chem. 46, 7601–7609.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLipstman, S., Muniappan, S. & Goldberg, I. (2006). Acta Cryst. E62, m2330–m2332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationNguyen, D.-T., Chew, E., Zhang, Q., Choi, A. & Bu, X. (2006). Inorg. Chem. 45, 10722–10727.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOberda, K., Deperasińska, I., Nizhnik, Y., Jerzykiewicz, L. & Szemik- Hojniak, A. (2011). Polyhedron, 2011, 30, 2391–2399.  Google Scholar
First citationOberda, K., Deperasińska, I., Nizhnik, Y. P. & Szemik-Hojniak, A. (2013). Polyhedron, 51, 61–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationScheidt, W. R. & Lee, Y. (1987). Struct. Bonding (Berlin), 64, 1–7.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShukla, A. D., Dave, P. C., Suresh, E., Das, A. & Dastidar, P. (2000). J. Chem. Soc. Dalton Trans. pp. 4459–4463.  Web of Science CSD CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuen, M.-C., Keng, T.-C. & Wang, J.-C. (2002). Polyhedron, 21, 2705–2710.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds