research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-methyl-2,6,7-trioxa-1-phosphabi­cyclo­[2.2.2]octa­ne

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Taibah University, PO Box 30002, Code 14177, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia, and bSchool of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
*Correspondence e-mail: musa_said04@yahoo.co.uk, d.l.hughes@uea.ac.uk

Edited by A. J. Lough, University of Toronto, Canada (Received 2 June 2016; accepted 20 June 2016; online 24 June 2016)

The title mol­ecule, C5H9O3P, has a bi­cyclo­[2.2.2] structure with the P atom at the prow and the bridge-head C atom, with the bonded methyl group, at the stern. The three six-membered rings in the bi­cyclo­[2.2.2] structure have essentially identical good boat conformations.

1. Chemical context

Phospho­rus-based ligands bind strongly to transition metals and these complexes offer a wide range of properties due to the high volume of accessible substituents (Downing & Smith, 2004[Downing, J. H. & Smith, M. B. (2004). In Comprehensive Coordination Chemistry II, Vol. 1, pp. 253-296. Amsterdam: Elsevier.]; Tolman, 1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]; Joslin et al., 2012[Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791-4801.]). Complexation experiments with these ligands can yield mono- or bi-nuclear complexes (van den Beuken et al., 1997[Beuken, E. K. van den, Meetsma, A., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Inorg. Chim. Acta, 264, 171-183.]). Phospho­rus-based complexes are an important class of compounds in homogeneous catalysis and coordination chemistry (Downing & Smith, 2004[Downing, J. H. & Smith, M. B. (2004). In Comprehensive Coordination Chemistry II, Vol. 1, pp. 253-296. Amsterdam: Elsevier.]; Kühl, 2005[Kühl, O. (2005). Coord. Chem. Rev. 249, 693-704.]). In particular, we have noted inter­esting studies comparing the donor ability of bicyclic phosphites and the related acyclic phosphites; the phospho­rus atom in the former shows more positive charge than in the acyclic phosphites and, hence, the donor ability of bicyclic phosphites is lower than that of the related acyclic phosphites (Vande Griend et al., 1977[Vande Griend, L. J., Verkade, J. G., Pennings, J. F. M. & Buck, H. M. (1977). J. Am. Chem. Soc. 99, 2459-2463.]; Joslin et al., 2012[Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791-4801.]). The present work is a continuation of an investigation into the synthesis and study of bi- and tri-cyclic, penta- and hexa-coordinated phospho­ranes to form anionic, neutral and zwitterionic compounds (Said et al. 1996[Said, M. A., Pülm, M., Herbst-Irmer, R. & Kumara Swamy, K. C. (1996). J. Am. Chem. Soc. 118, 9841-9849.]; Timosheva, et al. 2006[Timosheva, N. V., Chandrasekaran, A. & Holmes, R. R. (2006). Inorg. Chem. 45, 10836-10848.]; Kumara Swamy & Satish Kumar, 2006[Kumara Swamy, K. C. & Satish Kumar, N. (2006). Acc. Chem. Res. 39, 324-333.]). In this paper, we report the synthesis, clean isolation and crystal structure of 4-methyl-2,6,7-trioxa-1-phosphabi­cyclo­[2.2.2]octane (Tolman, 1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]; Joslin et al., 2012[Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791-4801.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, Fig. 1[link], shows a bi­cyclo­[2.2.2] structure with the phospho­rus atom as one bridge-head atom and C3, with the bonded methyl group, as the other. The three six-membered rings in the bi­cyclo­[2.2.2] structure have essentially identical, good boat conformations. The P—O bond lengths are very similar, lying in the range 1.613 (2)–1.616 (2) Å; the O—P—O angles at the prow have angles in the range 100.17 (9)–101.34 (10)°, whereas the C—P—C angles at the stern lie in the range 107.99 (17)–109.08 (18)°.

[Scheme 2]
[Figure 1]
Figure 1
A view of a mol­ecule of bi­cyclo-P(OCH2)3CMe, indicating the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

A comparison between acyclic and bicyclic phosphites based on the `hinge' effect has shown (Vande Griend et al., 1977[Vande Griend, L. J., Verkade, J. G., Pennings, J. F. M. & Buck, H. M. (1977). J. Am. Chem. Soc. 99, 2459-2463.]; Joslin et al., 2012[Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791-4801.]) that the O—P—O and P—O—C angles, a and b in Scheme 1[link], change upon ligation with a metal. Due to the steric profile of the bicyclic phosphite, the changes here in a, a′ and b, b′ upon metal ligation are less than in acyclic phosphites. Verkade had pointed out earlier that the p-orbital overlap between P and O in bicyclic phosphites is less than in acyclic phosphites, making P more positive and therefore reducing the basicity of P relative to that in acyclic phosphites (Vande Griend et al., 1977[Vande Griend, L. J., Verkade, J. G., Pennings, J. F. M. & Buck, H. M. (1977). J. Am. Chem. Soc. 99, 2459-2463.]); hence, the coordination ability of acyclic phosphites is higher than that of bicyclic phosphites (Verkade, 1972[Verkade, J. G. (1972). Coord. Chem. Rev. 9, 1-106.]). A variety of multi-cyclic phospho­rus compounds including their coordination to various metals has been studied. Based on the trends found in basicity, it is expected that the title compound would show a donating ability to metal centres very similar to that of the more commonly studied bicyclic phosphite P(OCH2)3CEt (Verkade, 1972[Verkade, J. G. (1972). Coord. Chem. Rev. 9, 1-106.]). The average of O—P—O bond angle (a, Scheme 1[link]) in our study is 100.7o, whereas the average O—P—O bond angle in coordinated phosphites (a′, Scheme 1[link]) is larger, e.g. in Ru{P(OCH2)3CEt}Cl2, it is 102.5o (Joslin et al., 2012[Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791-4801.]), the same as in [Rh2I2(C6H5N2O2)2(COMe)2{P(OCH2)3CMe}2] (Venter et al., 2009[Venter, J. A., Purcell, W. & Visser, H. G. (2009). Acta Cryst. E65, m1528-m1529.]); this suggests a slightly larger Tolman angle (Tolman et al., 1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]) after metal ligation. In another study, the enhanced π-accepting ability of the bicyclic phosphite ligand compared to the PPh3 and other phosphine ligands was demonstrated clearly in the shorter M—P bond distances in the bicyclic phosphite complexes (Erasmus et al., 1998[Erasmus, J. J. C., Lamprecht, G. J., Kohzuma, T. & Nakano, Y. (1998). Acta Cryst. C54, 1085-1087.]).

3. Supra­molecular features

Contacts between mol­ecules are at normal van der Waals distances, the shortest of which is H4B⋯O6′, at 2.58 Å (Table 1[link]). The nearest neighbours of the phospho­rus atom are hydrogen atoms at distances of at least 3.09 Å. A view of the packing along the b axis is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O6i 0.97 2.58 3.495 (4) 158
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the crystallographic b axis.

4. Database survey

From a selection of crystal structure results for bicyclic phosphites from the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), we note that the P—O bond distances:

1) are shortest in phospho­nium ions, as in [Ph3C{P(OCH2)3CMe}]+ (Fang et al., 2000[Fang, X., Scott, B. L., John, K. D., Kubas, G. J. & Watkin, J. G. (2000). New J. Chem. 24, 831-833.]), at ca 1.552 Å,

2) in the phosphates, as O=P(OCH2)3CR, (e.g. Nimrod et al., 1968[Nimrod, D. M., Fitzwater, D. R. & Verkade, J. G. (1968). J. Am. Chem. Soc. 90, 2780-2784.]; Santarsiero, 1992[Santarsiero, B. D. (1992). Acta Cryst. C48, 699-701.]) are ca 1.57 Å,

3) in the metal-coordinated phosphites, M–{P(OCH2)3CR} (e.g. Aroney et al., 1994[Aroney, M. J., Davies, M. S., Hambley, T. W. & Pierens, R. K. (1994). J. Chem. Soc. Dalton Trans. pp. 91-96.]; Venter et al., 2009[Venter, J. A., Purcell, W. & Visser, H. G. (2009). Acta Cryst. E65, m1528-m1529.]; Davis & Verkade, 1990[Davis, R. V. & Verkade, J. G. (1990). Inorg. Chem. 29, 4983-4990.]; Predvoditelev et al., 2009[Predvoditelev, D. A., Malenkovskaya, M. A., Strebkova, E. V., Lyssenko, K. A. & Nifant'ev, E. E. (2009). Zh. Obshch. Khim. 79, 51-58.]; Basson et al., 1992[Basson, S. S., Leipoldt, J. G., Purcell, W. & Venter, J. A. (1992). Acta Cryst. C48, 171-173.]; Erasmus et al., 1998[Erasmus, J. J. C., Lamprecht, G. J., Kohzuma, T. & Nakano, Y. (1998). Acta Cryst. C54, 1085-1087.]; Joslin et al., 2012[Joslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791-4801.]; Albright et al., 1977[Albright, J. O., Clardy, J. C. & Verkade, J. G. (1977). Inorg. Chem. 16, 1575-1580.]) are ca 1.59 Å, and

4) in our results, correlate with those of other unsubstituted phosphites, (e.g. Wojczykowski & Jutzi, 2006[Wojczykowski, K. & Jutzi, P. (2006). Synlett, pp. 39-40.]; Milbrath et al., 1976[Milbrath, D. S., Springer, J. P., Clardy, J. C. & Verkade, J. G. (1976). J. Am. Chem. Soc. 98, 5493-5496.]; Predvoditelev et al., 2009[Predvoditelev, D. A., Malenkovskaya, M. A., Strebkova, E. V., Lyssenko, K. A. & Nifant'ev, E. E. (2009). Zh. Obshch. Khim. 79, 51-58.]) with P—O bond lengths of ca 1.62 Å.

Within each group, there is very little variation in the P—O distances. The bond angles in the bicyclic structure are quite constrained, but we do note a trend, down the four groups of increasing P—O distances, of a corresponding decrease in O—P—O angles from ca 107 to 100°.

5. Synthesis and crystallization

To 4.26 g (35.46 mmol) of 2-(hy­droxy­meth­yl)-2-methyl­propane-1,3-diol in 70 mL of dry benzene at RT was added 4.26 g (106.38 mmoles in mineral oil 60%) of NaH in small portions over a period of 20 minutes. The mixture was stirred for 3h before 4.87 g (35.46 mmol) of PCl3 were added dropwise over a period of 20 mins in benzene (10 mL) using a dropping funnel. The reaction mixture was stirred overnight before NaCl was removed by filtration under nitro­gen cover. Benzene was removed completely under low pressure. 5 mL of diethyl ether was added, followed by 3 mL of n-hexane. The mixture was placed in deep freeze to afford the title compound as a white solid (yield 4.52 g, 86%; m.p. 369–373 K). The product was purified further by sublimation at 393 K/0.5 mm to yield crystals. 1H NMR (CDCl3, 400 MHz): 0.73 (s, 3H, CH3), 3.94 (s, 6H, CH2). 13C NMR (CDCl3, 400 MHz): 16.60 (s, 1C, CH3), 31.98 [d, 1C, C(CH3)3], 71.80 (s, 3C, CH2). 31P NMR (CDCl3, 400 MHz): 91.45 p.p.m. IR cm−1: 2950, 1380. Elemental analysis: calculated: C, 40.55; H, 6.13; found: C, 40.83; H, 6.19.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H9O3P
Mr 148.09
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 140
a, b, c (Å) 10.4408 (6), 6.2129 (5), 10.5052 (5)
V3) 681.45 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.65 × 0.17 × 0.07
 
Data collection
Diffractometer Oxford Diffraction Xcalibur 3/Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.684, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10309, 1561, 1405
Rint 0.043
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.11
No. of reflections 1561
No. of parameters 82
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.12
Absolute structure Flack x determined using 605 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.07 (6)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

The H atoms were included in idealized positions and treated as riding atoms: C—H = 0.93– 0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for methyl­ene H atoms.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Johnson, 1976) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012).

4-Methyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane top
Crystal data top
C5H9O3PDx = 1.443 Mg m3
Mr = 148.09Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 2685 reflections
a = 10.4408 (6) Åθ = 3.3–32.3°
b = 6.2129 (5) ŵ = 0.34 mm1
c = 10.5052 (5) ÅT = 140 K
V = 681.45 (7) Å3Prism, colourless
Z = 40.65 × 0.17 × 0.07 mm
F(000) = 312
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
1561 independent reflections
Radiation source: Enhance (Mo) X-ray Source1405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.0050 pixels mm-1θmax = 27.5°, θmin = 3.8°
Thin slice φ and ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 88
Tmin = 0.684, Tmax = 1.000l = 1313
10309 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.0252P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1561 reflectionsΔρmax = 0.24 e Å3
82 parametersΔρmin = 0.12 e Å3
1 restraintAbsolute structure: Flack x determined using 605 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.87893 (7)0.45449 (13)0.75670 (8)0.0380 (2)
O10.9057 (2)0.5737 (4)0.6228 (3)0.0470 (6)
C20.8029 (3)0.5722 (6)0.5302 (3)0.0373 (7)
H2A0.83080.49740.45410.045*
H2B0.78160.71890.50680.045*
C30.6847 (2)0.4614 (5)0.5841 (2)0.0253 (5)
C40.7208 (3)0.2300 (4)0.6164 (3)0.0349 (6)
H4A0.64730.15660.65240.042*
H4B0.74560.15490.53930.042*
O50.8263 (2)0.2254 (4)0.7070 (2)0.0399 (5)
O60.7460 (2)0.5660 (4)0.7998 (2)0.0457 (7)
C70.6445 (3)0.5749 (6)0.7058 (3)0.0371 (7)
H7A0.62420.72400.68710.045*
H7B0.56810.50700.73970.045*
C80.5752 (3)0.4642 (6)0.4878 (3)0.0370 (7)
H8A0.60170.39210.41130.055*
H8B0.50210.39190.52310.055*
H8C0.55300.61050.46830.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0322 (4)0.0504 (4)0.0314 (4)0.0023 (3)0.0076 (4)0.0037 (5)
O10.0297 (11)0.0630 (15)0.0483 (14)0.0148 (10)0.0050 (10)0.0112 (12)
C20.0313 (15)0.047 (2)0.0340 (16)0.0046 (13)0.0002 (13)0.0088 (13)
C30.0232 (12)0.0319 (13)0.0209 (13)0.0003 (11)0.0002 (10)0.0004 (11)
C40.0391 (16)0.0332 (15)0.0323 (14)0.0001 (13)0.0036 (12)0.0026 (13)
O50.0448 (12)0.0399 (12)0.0350 (11)0.0094 (10)0.0096 (9)0.0025 (9)
O60.0455 (13)0.0625 (17)0.0292 (11)0.0128 (11)0.0079 (9)0.0209 (10)
C70.0295 (16)0.0508 (18)0.0310 (14)0.0082 (13)0.0008 (12)0.0080 (13)
C80.0305 (16)0.053 (2)0.0274 (15)0.0001 (14)0.0049 (12)0.0014 (13)
Geometric parameters (Å, º) top
P1—O51.613 (2)C4—O51.456 (4)
P1—O11.614 (3)C4—H4A0.9700
P1—O61.616 (2)C4—H4B0.9700
O1—C21.449 (4)O6—C71.450 (4)
C2—C31.522 (4)C7—H7A0.9700
C2—H2A0.9700C7—H7B0.9700
C2—H2B0.9700C8—H8A0.9600
C3—C71.519 (4)C8—H8B0.9600
C3—C41.524 (4)C8—H8C0.9600
C3—C81.527 (4)
O5—P1—O1100.46 (13)C3—C4—H4A109.5
O5—P1—O6100.17 (13)O5—C4—H4B109.5
O1—P1—O6101.34 (14)C3—C4—H4B109.5
C2—O1—P1117.00 (18)H4A—C4—H4B108.1
O1—C2—C3110.7 (2)C4—O5—P1116.88 (18)
O1—C2—H2A109.5C7—O6—P1116.95 (18)
C3—C2—H2A109.5O6—C7—C3110.7 (2)
O1—C2—H2B109.5O6—C7—H7A109.5
C3—C2—H2B109.5C3—C7—H7A109.5
H2A—C2—H2B108.1O6—C7—H7B109.5
C7—C3—C2109.1 (3)C3—C7—H7B109.5
C7—C3—C4108.6 (2)H7A—C7—H7B108.1
C2—C3—C4108.0 (2)C3—C8—H8A109.5
C7—C3—C8110.2 (2)C3—C8—H8B109.5
C2—C3—C8110.8 (2)H8A—C8—H8B109.5
C4—C3—C8110.1 (2)C3—C8—H8C109.5
O5—C4—C3110.5 (2)H8A—C8—H8C109.5
O5—C4—H4A109.5H8B—C8—H8C109.5
O5—P1—O1—C250.4 (3)C3—C4—O5—P11.8 (3)
O6—P1—O1—C252.3 (3)O1—P1—O5—C452.8 (2)
P1—O1—C2—C32.4 (4)O6—P1—O5—C450.8 (2)
O1—C2—C3—C757.2 (3)O5—P1—O6—C754.0 (3)
O1—C2—C3—C460.7 (3)O1—P1—O6—C749.0 (3)
O1—C2—C3—C8178.7 (3)P1—O6—C7—C33.3 (4)
C7—C3—C4—O560.0 (3)C2—C3—C7—O660.4 (3)
C2—C3—C4—O558.2 (3)C4—C3—C7—O657.1 (3)
C8—C3—C4—O5179.2 (2)C8—C3—C7—O6177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O6i0.972.583.495 (4)158
Symmetry code: (i) x+3/2, y1/2, z1/2.
 

Acknowledgements

This work was supported financially by the Research Deanship of Taibah University. BLAlB is thankful to Dr Rawda Okasha for her support and encouragement.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAlbright, J. O., Clardy, J. C. & Verkade, J. G. (1977). Inorg. Chem. 16, 1575–1580.  CSD CrossRef CAS Google Scholar
First citationAroney, M. J., Davies, M. S., Hambley, T. W. & Pierens, R. K. (1994). J. Chem. Soc. Dalton Trans. pp. 91–96.  CSD CrossRef Google Scholar
First citationBasson, S. S., Leipoldt, J. G., Purcell, W. & Venter, J. A. (1992). Acta Cryst. C48, 171–173.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBeuken, E. K. van den, Meetsma, A., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Inorg. Chim. Acta, 264, 171–183.  Google Scholar
First citationDavis, R. V. & Verkade, J. G. (1990). Inorg. Chem. 29, 4983–4990.  CSD CrossRef CAS Google Scholar
First citationDowning, J. H. & Smith, M. B. (2004). In Comprehensive Coordination Chemistry II, Vol. 1, pp. 253–296. Amsterdam: Elsevier.  Google Scholar
First citationErasmus, J. J. C., Lamprecht, G. J., Kohzuma, T. & Nakano, Y. (1998). Acta Cryst. C54, 1085–1087.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFang, X., Scott, B. L., John, K. D., Kubas, G. J. & Watkin, J. G. (2000). New J. Chem. 24, 831–833.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJoslin, E. E., McMullin, C. L., Gunnoe, T. B., Cundari, T. R., Sabat, M. & Myers, W. H. (2012). Inorg. Chem. 51, 4791–4801.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKühl, O. (2005). Coord. Chem. Rev. 249, 693–704.  Google Scholar
First citationKumara Swamy, K. C. & Satish Kumar, N. (2006). Acc. Chem. Res. 39, 324–333.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMilbrath, D. S., Springer, J. P., Clardy, J. C. & Verkade, J. G. (1976). J. Am. Chem. Soc. 98, 5493–5496.  CSD CrossRef CAS Google Scholar
First citationNimrod, D. M., Fitzwater, D. R. & Verkade, J. G. (1968). J. Am. Chem. Soc. 90, 2780–2784.  CSD CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPredvoditelev, D. A., Malenkovskaya, M. A., Strebkova, E. V., Lyssenko, K. A. & Nifant'ev, E. E. (2009). Zh. Obshch. Khim. 79, 51–58.  Google Scholar
First citationSaid, M. A., Pülm, M., Herbst-Irmer, R. & Kumara Swamy, K. C. (1996). J. Am. Chem. Soc. 118, 9841–9849.  CSD CrossRef CAS Web of Science Google Scholar
First citationSantarsiero, B. D. (1992). Acta Cryst. C48, 699–701.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTimosheva, N. V., Chandrasekaran, A. & Holmes, R. R. (2006). Inorg. Chem. 45, 10836–10848.  CSD CrossRef PubMed CAS Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationVande Griend, L. J., Verkade, J. G., Pennings, J. F. M. & Buck, H. M. (1977). J. Am. Chem. Soc. 99, 2459–2463.  CrossRef CAS Google Scholar
First citationVenter, J. A., Purcell, W. & Visser, H. G. (2009). Acta Cryst. E65, m1528–m1529.  CSD CrossRef IUCr Journals Google Scholar
First citationVerkade, J. G. (1972). Coord. Chem. Rev. 9, 1–106.  CrossRef CAS Google Scholar
First citationWojczykowski, K. & Jutzi, P. (2006). Synlett, pp. 39–40.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds