research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­[trans-1-(di­phenyl­phosphane­thioyl-κS)-2-(di­phenyl­phosphano­yl)ethene]gold(I) di­chloro­methane hemisolvate1

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by T. J. Prior, University of Hull, England (Received 3 June 2016; accepted 16 June 2016; online 21 June 2016)

The title compound, [AuCl(C26H22OP2S)]·0.5CH2Cl2, crystallizes with a trans-O—P⋯P—S geometry of the groups either side of the C=C double bond, which prevents any intra­molecular contact between the Au and O atoms. The AuI atom exhibits a nearly linear coordination [Cl—Au—S = 177.55 (4)°]. The mol­ecules associate to form broad ribbons parallel to the c axis via two C—H⋯O, one C—H⋯Cl(Au) and one Au⋯Cl inter­action.

1. Chemical context

We are inter­ested in phosphine chalcogenide complexes of gold (Taouss & Jones, 2016[Taouss, C. & Jones, P. G. (2016). Z. Naturforsch. Teil B, 71, 249-265.], and references therein). In general, we have synthesized complexes LAuX, where L is a phosphine chalcogenide and X is chlorine or bromine, and then oxidized these first to gold(III) complexes LAuX3 and further to (LX)+(AuX4). The title compound was obtained as an unexpected trans product in minimal yield (a few small crystals) during attempts to recrystallize cis-(Ph2PC=CPPh2S)AuCl (Taouss & Jones, 2014[Taouss, C. & Jones, P. G. (2014). Z. Naturforsch. Teil B, 69, 25-48.]). The oxidation of the second P atom to P=O, presumably by atmospheric oxygen, is not unusual, but we are at a loss to explain the change of configuration at the C=C bond from cis to trans. One possibility, in view of the small amounts involved, is that the cis diphosphine as purchased contained a small amount of trans impurity.

[Scheme 1]

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1[link]. In the absence of a free phospho­rus donor atom, the gold(I) atom is, as expected, coordinated by the softer sulfur donor rather than the oxygen. Bond lengths and angles are essentially as expected (Table 1[link]). The P=S bond is somewhat lengthened compared to non-coordinating phosphine sulfides (see Section 4). The torsion angle O1—P1⋯P2—S1 is 174.72 (12)°, which is similar to the values observed for dppe-derived complexes of the type E=PPh2CH2CH2PPh2AuX (E = chalcogen and X = halogen); the dppm analogues E=PPh2CH2PPh2AuX, however, tend to display corresponding torsion angles close to zero, thus promoting short intra­molecular Au⋯E contacts (Taouss & Jones, 2014[Taouss, C. & Jones, P. G. (2014). Z. Naturforsch. Teil B, 69, 25-48.]). The Au⋯O distance in the title compound [6.127 (3) Å] is clearly far too long for any significant inter­action.

Table 1
Selected geometric parameters (Å, °)

Au1—Cl1 2.2726 (12) P2—S1 2.0135 (16)
Au1—S1 2.2846 (11) C1—C2 1.330 (6)
O1—P1 1.484 (3)    
       
Cl1—Au1—S1 177.55 (4) C2—P2—S1 112.98 (15)
O1—P1—C1 114.90 (18) P2—S1—Au1 100.06 (5)
       
P1—C1—C2—P2 176.8 (2)    
[Figure 1]
Figure 1
The mol­ecule of the title compound in the crystal. Ellipsoids correspond to 50% probability levels. The disordered solvent is not shown.

3. Supra­molecular features

The mol­ecules are connected into broad ribbons parallel to the c axis (Fig. 2[link]) by the two shortest C—H⋯O and a C—H⋯Cl(Au) inter­action (Table 2[link]), together with an Au1⋯Cl1 contact of 3.6522 (12) Å (symmetry code: −x + 1, −y + 1, −z + 1). The corresponding Au1⋯Au1 contact of 3.9827 (4) Å is probably less significant. The third C—H⋯O contact (not shown in Fig. 2[link]) links the ribbons in the a-axis direction.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.36 3.294 (5) 166
C46—H46⋯O1i 0.95 2.49 3.438 (5) 179
C26—H26⋯Cl1ii 0.95 2.75 3.583 (5) 147
C34—H34⋯O1iii 0.95 2.54 3.478 (5) 170
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+2.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed perpendicular to (100). `Weak' C—H⋯O hydrogen bonds and Au⋯Cl contacts are drawn as thick dashed lines. Solvent molecules have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (Version 5.37, 2015) revealed a mean P=S bond length of 1.954 Å for 485 examples of the non-coordinating moiety Ph2P(=S)C. This increases to 2.025 Å on coordination to an AuCl fragment (7 examples).

Perhaps surprisingly, there seem to be no structures of simple diphosphine dichalcogenides with the chalcogen atom(s) bonded to gold. One relevant publication, however, is that of the cyano-substituted derivative Ph3PAu[S=PPh2—C(CN)—PPh2=S] (Sithole et al., 2016[Sithole, S. V., Staples, R. J. & van Zyl, W. E. (2016). Inorg. Chem. Commun. 15, 216-220.]). This has a torsion angle of 70° across the atom sequence S=P⋯P=S because the formally noncoordinating S atom makes a short contact of 2.98 Å to the Au atom.

5. Synthesis and crystallization

Starting from cis-(di­phenyl­phosphan­yl)ethene, we generated the mono­sulfide and then the gold complex cis-(Ph2PC=CPPh2S)AuCl by reaction with (tetra­hydro­thio­phene)AuCl. This compound was successfully crystallized and its structure determined (Taouss & Jones, 2014[Taouss, C. & Jones, P. G. (2014). Z. Naturforsch. Teil B, 69, 25-48.]). On one occasion, however, a few small crystals were obtained that proved not to be the intended compound, but instead the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were included using a riding model starting from calculated positions, with C—H distances fixed at 0.95 Å. The di­chloro­methane mol­ecule is disordered over an inversion centre; appropriate restraints were employed to improve refinement stability, but the dimensions of disordered groups should be inter­preted with caution.

Table 3
Experimental details

Crystal data
Chemical formula [AuCl(C26H22OP2S)]·0.5CH2Cl2
Mr 719.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 103
a, b, c (Å) 8.4458 (3), 11.4318 (5), 13.8713 (6)
α, β, γ (°) 76.940 (5), 85.785 (5), 77.541 (5)
V3) 1273.49 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.21
Crystal size (mm) 0.16 × 0.16 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.644, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 45210, 5824, 4835
Rint 0.055
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 0.98
No. of reflections 5824
No. of parameters 311
No. of restraints 19
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.83, −0.86
Computer programs: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Chlorido[trans-1-(diphenylphosphanethioyl-κS)-1-(diphenylphosphanoyl)ethene]gold(I) dichloromethane hemisolvate top
Crystal data top
[AuCl(C26H22OP2S)]·0.5CH2Cl2Z = 2
Mr = 719.32F(000) = 698
Triclinic, P1Dx = 1.876 Mg m3
a = 8.4458 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4318 (5) ÅCell parameters from 18482 reflections
c = 13.8713 (6) Åθ = 2.1–30.7°
α = 76.940 (5)°µ = 6.21 mm1
β = 85.785 (5)°T = 103 K
γ = 77.541 (5)°Plate, pale yellow
V = 1273.49 (9) Å30.16 × 0.16 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5824 independent reflections
Radiation source: Enhance (Mo) X-ray Source4835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 16.1419 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω–scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1414
Tmin = 0.644, Tmax = 1.000l = 1818
45210 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.039P)2]
where P = (Fo2 + 2Fc2)/3
5824 reflections(Δ/σ)max = 0.009
311 parametersΔρmax = 1.83 e Å3
19 restraintsΔρmin = 0.86 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Non-bonded distances:

6.1266 (0.0028) Au1 - O1 3.9827 (0.0004) Au1 - Au1_$2 3.6522 (0.0012) Au1 - Cl1_$2

Operator for generating equivalent atoms:

$2 -x+1, -y+1, -z+1

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.52851 (2)0.647310 (17)0.545348 (14)0.01888 (6)
Cl10.27999 (14)0.66076 (11)0.48600 (9)0.0244 (3)
O10.4788 (3)0.3560 (2)0.9714 (2)0.0145 (6)
P10.51137 (12)0.34200 (9)0.86757 (8)0.0095 (2)
P20.72565 (12)0.66749 (9)0.73564 (8)0.0098 (2)
S10.78253 (13)0.62695 (10)0.60180 (8)0.0180 (2)
C10.6026 (5)0.4594 (3)0.7886 (3)0.0107 (8)
H10.63710.45020.72350.013*
C20.6236 (5)0.5582 (4)0.8175 (3)0.0119 (8)
H20.58500.57140.88100.014*
C110.3342 (5)0.3399 (3)0.8051 (3)0.0099 (8)
C120.2241 (5)0.2717 (4)0.8571 (3)0.0170 (9)
H120.24460.22930.92360.020*
C130.0850 (5)0.2652 (4)0.8124 (3)0.0195 (10)
H130.01100.21860.84860.023*
C140.0542 (5)0.3263 (4)0.7157 (3)0.0175 (9)
H140.04050.32130.68510.021*
C150.1620 (5)0.3954 (4)0.6629 (3)0.0168 (9)
H150.13980.43840.59670.020*
C160.3017 (5)0.4016 (4)0.7066 (3)0.0154 (9)
H160.37560.44770.66980.018*
C210.6553 (5)0.2024 (3)0.8576 (3)0.0125 (8)
C220.7163 (5)0.1221 (4)0.9446 (3)0.0194 (10)
H220.68420.14151.00720.023*
C230.8246 (6)0.0135 (4)0.9384 (4)0.0293 (12)
H230.86430.04280.99720.035*
C240.8749 (5)0.0132 (4)0.8477 (4)0.0273 (12)
H240.94980.08730.84430.033*
C250.8169 (5)0.0676 (4)0.7615 (4)0.0251 (11)
H250.85400.04980.69900.030*
C260.7039 (5)0.1753 (4)0.7661 (3)0.0162 (9)
H260.66070.22930.70710.019*
C310.9095 (5)0.6644 (3)0.7950 (3)0.0113 (8)
C321.0489 (5)0.6829 (4)0.7385 (4)0.0195 (10)
H321.04790.69540.66840.023*
C331.1888 (5)0.6829 (5)0.7846 (4)0.0253 (11)
H331.28360.69630.74610.030*
C341.1910 (5)0.6638 (4)0.8857 (4)0.0196 (10)
H341.28750.66370.91690.023*
C351.0536 (5)0.6445 (4)0.9429 (3)0.0199 (10)
H351.05650.63071.01290.024*
C360.9123 (5)0.6454 (4)0.8982 (3)0.0168 (9)
H360.81760.63320.93730.020*
C410.5995 (5)0.8183 (3)0.7263 (3)0.0110 (8)
C420.5999 (6)0.9051 (4)0.6366 (3)0.0192 (10)
H420.66390.88250.58190.023*
C430.5085 (6)1.0225 (4)0.6270 (3)0.0212 (10)
H430.51051.08080.56630.025*
C440.4150 (5)1.0543 (4)0.7054 (4)0.0197 (10)
H440.34951.13430.69840.024*
C450.4149 (6)0.9712 (4)0.7946 (4)0.0286 (12)
H450.35020.99490.84870.034*
C460.5094 (5)0.8522 (4)0.8062 (3)0.0212 (10)
H460.51120.79580.86820.025*
C990.0028 (15)0.9195 (12)0.5150 (9)0.054 (3)*0.50
H99A0.06390.87330.56490.065*0.50
H99B0.06420.86290.47450.065*0.50
Cl980.1379 (12)0.9738 (9)0.5746 (7)0.078 (3)0.50
Cl990.1245 (10)1.0425 (5)0.4385 (7)0.062 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02164 (10)0.01867 (10)0.01674 (10)0.00635 (7)0.00190 (6)0.00213 (6)
Cl10.0235 (6)0.0274 (6)0.0211 (6)0.0072 (5)0.0064 (5)0.0010 (5)
O10.0136 (15)0.0147 (15)0.0163 (17)0.0042 (12)0.0004 (13)0.0047 (13)
P10.0093 (5)0.0079 (5)0.0118 (5)0.0035 (4)0.0000 (4)0.0013 (4)
P20.0080 (5)0.0087 (5)0.0131 (5)0.0032 (4)0.0001 (4)0.0022 (4)
S10.0168 (6)0.0182 (6)0.0192 (6)0.0034 (4)0.0001 (5)0.0048 (5)
C10.0068 (19)0.0104 (19)0.014 (2)0.0013 (15)0.0019 (16)0.0005 (16)
C20.0043 (18)0.012 (2)0.019 (2)0.0013 (15)0.0009 (16)0.0016 (17)
C110.0084 (19)0.0082 (19)0.014 (2)0.0006 (15)0.0002 (16)0.0062 (16)
C120.021 (2)0.017 (2)0.014 (2)0.0090 (18)0.0002 (18)0.0010 (18)
C130.011 (2)0.024 (2)0.025 (3)0.0104 (18)0.0016 (19)0.004 (2)
C140.009 (2)0.018 (2)0.026 (3)0.0004 (17)0.0038 (18)0.0059 (19)
C150.017 (2)0.016 (2)0.016 (2)0.0004 (17)0.0038 (18)0.0002 (18)
C160.013 (2)0.015 (2)0.018 (2)0.0067 (17)0.0006 (17)0.0012 (17)
C210.0093 (19)0.0073 (19)0.021 (2)0.0034 (15)0.0005 (17)0.0024 (17)
C220.019 (2)0.018 (2)0.019 (2)0.0055 (18)0.0030 (19)0.0028 (18)
C230.019 (2)0.016 (2)0.046 (3)0.0037 (19)0.003 (2)0.007 (2)
C240.013 (2)0.012 (2)0.059 (4)0.0010 (18)0.002 (2)0.012 (2)
C250.013 (2)0.027 (3)0.042 (3)0.0050 (19)0.003 (2)0.021 (2)
C260.013 (2)0.016 (2)0.022 (2)0.0047 (17)0.0028 (18)0.0066 (18)
C310.009 (2)0.0075 (19)0.017 (2)0.0012 (15)0.0030 (16)0.0033 (16)
C320.016 (2)0.024 (2)0.021 (2)0.0077 (19)0.0019 (19)0.008 (2)
C330.010 (2)0.038 (3)0.032 (3)0.008 (2)0.005 (2)0.015 (2)
C340.009 (2)0.017 (2)0.034 (3)0.0005 (17)0.0092 (19)0.007 (2)
C350.023 (2)0.017 (2)0.019 (2)0.0057 (19)0.0070 (19)0.0001 (19)
C360.016 (2)0.016 (2)0.018 (2)0.0066 (17)0.0020 (18)0.0007 (18)
C410.011 (2)0.0050 (18)0.018 (2)0.0021 (15)0.0047 (17)0.0031 (16)
C420.025 (2)0.021 (2)0.010 (2)0.0007 (19)0.0005 (18)0.0054 (18)
C430.031 (3)0.009 (2)0.020 (2)0.0035 (19)0.012 (2)0.0016 (18)
C440.016 (2)0.010 (2)0.031 (3)0.0032 (17)0.003 (2)0.0059 (19)
C450.031 (3)0.019 (2)0.032 (3)0.002 (2)0.019 (2)0.007 (2)
C460.024 (2)0.015 (2)0.021 (2)0.0052 (19)0.008 (2)0.0031 (18)
Cl980.065 (4)0.134 (6)0.061 (3)0.061 (4)0.032 (2)0.046 (4)
Cl990.069 (4)0.0233 (17)0.082 (5)0.004 (2)0.029 (3)0.004 (2)
Geometric parameters (Å, º) top
Au1—Cl12.2726 (12)C24—H240.9500
Au1—S12.2846 (11)C25—C261.396 (6)
O1—P11.484 (3)C25—H250.9500
P1—C111.791 (4)C26—H260.9500
P1—C11.803 (4)C31—C321.394 (6)
P1—C211.811 (4)C31—C361.399 (6)
P2—C311.801 (4)C32—C331.385 (6)
P2—C411.803 (4)C32—H320.9500
P2—C21.809 (4)C33—C341.371 (7)
P2—S12.0135 (16)C33—H330.9500
C1—C21.330 (6)C34—C351.386 (6)
C1—H10.9500C34—H340.9500
C2—H20.9500C35—C361.382 (6)
C11—C121.397 (6)C35—H350.9500
C11—C161.406 (6)C36—H360.9500
C12—C131.391 (6)C41—C461.379 (6)
C12—H120.9500C41—C421.406 (6)
C13—C141.380 (6)C42—C431.379 (6)
C13—H130.9500C42—H420.9500
C14—C151.392 (6)C43—C441.367 (6)
C14—H140.9500C43—H430.9500
C15—C161.387 (6)C44—C451.379 (7)
C15—H150.9500C44—H440.9500
C16—H160.9500C45—C461.402 (6)
C21—C261.387 (6)C45—H450.9500
C21—C221.397 (6)C46—H460.9500
C22—C231.391 (6)C99—Cl981.747 (12)
C22—H220.9500C99—Cl991.760 (11)
C23—C241.376 (8)C99—H99A0.9900
C23—H230.9500C99—H99B0.9900
C24—C251.384 (7)
Cl1—Au1—S1177.55 (4)C25—C24—H24119.9
O1—P1—C11113.74 (17)C24—C25—C26120.2 (5)
O1—P1—C1114.90 (18)C24—C25—H25119.9
C11—P1—C1105.43 (19)C26—C25—H25119.9
O1—P1—C21112.88 (18)C21—C26—C25119.3 (4)
C11—P1—C21106.13 (18)C21—C26—H26120.3
C1—P1—C21102.73 (18)C25—C26—H26120.3
C31—P2—C41107.84 (18)C32—C31—C36119.7 (4)
C31—P2—C2106.69 (19)C32—C31—P2120.2 (3)
C41—P2—C2108.17 (18)C36—C31—P2120.1 (3)
C31—P2—S1109.00 (14)C33—C32—C31119.9 (4)
C41—P2—S1111.91 (15)C33—C32—H32120.1
C2—P2—S1112.98 (15)C31—C32—H32120.1
P2—S1—Au1100.06 (5)C34—C33—C32120.2 (4)
C2—C1—P1122.9 (3)C34—C33—H33119.9
C2—C1—H1118.5C32—C33—H33119.9
P1—C1—H1118.5C33—C34—C35120.5 (4)
C1—C2—P2120.0 (3)C33—C34—H34119.7
C1—C2—H2120.0C35—C34—H34119.7
P2—C2—H2120.0C36—C35—C34120.2 (4)
C12—C11—C16118.6 (4)C36—C35—H35119.9
C12—C11—P1117.9 (3)C34—C35—H35119.9
C16—C11—P1123.5 (3)C35—C36—C31119.6 (4)
C13—C12—C11120.8 (4)C35—C36—H36120.2
C13—C12—H12119.6C31—C36—H36120.2
C11—C12—H12119.6C46—C41—C42119.4 (4)
C14—C13—C12120.1 (4)C46—C41—P2121.7 (3)
C14—C13—H13119.9C42—C41—P2118.9 (3)
C12—C13—H13119.9C43—C42—C41120.9 (4)
C13—C14—C15119.9 (4)C43—C42—H42119.6
C13—C14—H14120.0C41—C42—H42119.6
C15—C14—H14120.0C44—C43—C42119.5 (4)
C16—C15—C14120.3 (4)C44—C43—H43120.3
C16—C15—H15119.9C42—C43—H43120.3
C14—C15—H15119.9C43—C44—C45120.6 (4)
C15—C16—C11120.3 (4)C43—C44—H44119.7
C15—C16—H16119.9C45—C44—H44119.7
C11—C16—H16119.9C44—C45—C46120.7 (4)
C26—C21—C22120.5 (4)C44—C45—H45119.7
C26—C21—P1121.1 (3)C46—C45—H45119.7
C22—C21—P1118.4 (3)C41—C46—C45119.0 (4)
C23—C22—C21119.1 (4)C41—C46—H46120.5
C23—C22—H22120.5C45—C46—H46120.5
C21—C22—H22120.5Cl98—C99—Cl99110.3 (9)
C24—C23—C22120.6 (5)Cl98—C99—H99A109.6
C24—C23—H23119.7Cl99—C99—H99A109.6
C22—C23—H23119.7Cl98—C99—H99B109.6
C23—C24—C25120.2 (4)Cl99—C99—H99B109.6
C23—C24—H24119.9H99A—C99—H99B108.1
C31—P2—S1—Au1177.51 (14)C22—C23—C24—C250.6 (7)
C41—P2—S1—Au158.32 (15)C23—C24—C25—C261.6 (7)
C2—P2—S1—Au164.07 (15)C22—C21—C26—C251.1 (6)
Cl1—Au1—S1—P2143.9 (10)P1—C21—C26—C25179.1 (3)
O1—P1—C1—C26.9 (4)C24—C25—C26—C212.4 (6)
C11—P1—C1—C2119.2 (4)C41—P2—C31—C3297.6 (4)
C21—P1—C1—C2129.9 (4)C2—P2—C31—C32146.4 (3)
P1—C1—C2—P2176.8 (2)S1—P2—C31—C3224.1 (4)
C31—P2—C2—C1115.7 (3)C41—P2—C31—C3681.3 (4)
C41—P2—C2—C1128.5 (3)C2—P2—C31—C3634.7 (4)
S1—P2—C2—C14.1 (4)S1—P2—C31—C36157.0 (3)
O1—P1—C11—C1242.7 (4)C36—C31—C32—C330.3 (6)
C1—P1—C11—C12169.4 (3)P2—C31—C32—C33178.6 (3)
C21—P1—C11—C1282.0 (3)C31—C32—C33—C340.6 (7)
O1—P1—C11—C16138.3 (3)C32—C33—C34—C350.2 (7)
C1—P1—C11—C1611.5 (4)C33—C34—C35—C360.5 (7)
C21—P1—C11—C1697.0 (4)C34—C35—C36—C310.7 (6)
C16—C11—C12—C130.2 (6)C32—C31—C36—C350.4 (6)
P1—C11—C12—C13179.3 (3)P2—C31—C36—C35179.3 (3)
C11—C12—C13—C140.1 (7)C31—P2—C41—C4678.6 (4)
C12—C13—C14—C150.5 (7)C2—P2—C41—C4636.4 (4)
C13—C14—C15—C161.0 (6)S1—P2—C41—C46161.5 (3)
C14—C15—C16—C111.1 (6)C31—P2—C41—C4298.0 (4)
C12—C11—C16—C150.7 (6)C2—P2—C41—C42146.9 (3)
P1—C11—C16—C15179.7 (3)S1—P2—C41—C4221.8 (4)
O1—P1—C21—C26178.3 (3)C46—C41—C42—C431.5 (7)
C11—P1—C21—C2656.5 (4)P2—C41—C42—C43178.3 (4)
C1—P1—C21—C2654.0 (4)C41—C42—C43—C440.7 (7)
O1—P1—C21—C221.9 (4)C42—C43—C44—C451.8 (7)
C11—P1—C21—C22123.4 (3)C43—C44—C45—C460.7 (8)
C1—P1—C21—C22126.2 (3)C42—C41—C46—C452.7 (7)
C26—C21—C22—C231.0 (6)P2—C41—C46—C45179.3 (4)
P1—C21—C22—C23178.9 (3)C44—C45—C46—C411.6 (8)
C21—C22—C23—C241.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.363.294 (5)166
C46—H46···O1i0.952.493.438 (5)179
C26—H26···Cl1ii0.952.753.583 (5)147
C34—H34···O1iii0.952.543.478 (5)170
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+2.
 

Footnotes

1Phosphane chalcogenides and their metal complexes, Part V. For Part IV, see Taouss & Jones (2016).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSithole, S. V., Staples, R. J. & van Zyl, W. E. (2016). Inorg. Chem. Commun. 15, 216–220.  CSD CrossRef Google Scholar
First citationTaouss, C. & Jones, P. G. (2014). Z. Naturforsch. Teil B, 69, 25–48.  CAS Google Scholar
First citationTaouss, C. & Jones, P. G. (2016). Z. Naturforsch. Teil B, 71, 249–265.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds