research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­aqua­bis­­(4-tert-butyl­benzoato-κO)bis­­(nicotinamide-κN1)cobalt(II) dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and dScientific and Technological Application and Research Center, Aksaray University, 68100, Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by S. Parkin, University of Kentucky, USA (Received 18 May 2016; accepted 30 May 2016; online 3 June 2016)

The asymmetric unit of the mononuclear cobalt complex, [Co(C11H13O2)2(C6H6N2O)2(H2O)2]·2H2O, contains one half of the complex mol­ecule, one coordinating and one non-coordinating water mol­ecule, one 4-tert-butyl­benzoate (TBB) ligand and one nicotinamide (NA) ligand; the Co atom lies on an inversion centre. All ligands coordinating to the Co atom are monodentate. The four nearest O atoms around the Co atom form a slightly distorted square-planar arrangement, with the distorted octa­hedral coordination completed by the two pyridine N atoms of the NA ligands at distances of 2.1638 (11) Å. The coordinating water mol­ecules are hydrogen bonded to the carboxyl O atoms [O ⋯ O = 2.6230 (17) Å], enclosing an S(6) hydrogen-bonding motif, while inter­molecular O—H⋯O hydrogen bonds link two of the non-coordinating water mol­ecules to the coordinating water mol­ecules and NA anions. The dihedral angle between the planar carboxyl­ate group and the adjacent benzene ring is 29.09 (10)°, while the benzene and pyridine rings are oriented at a dihedral angle of 88.53 (4)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, enclosing R22(8), R22(10) and R44(12) ring motifs, forming layers parallel to (001). The C and H atoms of the tert-butyl group of the TBB ligand are disordered over two sets of sites with an occupancy ratio of 0.631 (5):0.369 (5).

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body: a condition known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The NA ring is the reactive part of nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation-reduction reactions (You et al., 1978[You, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265-268.]). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). The structures of some complexes obtained from the reactions of transition metal(II) ions with NA as ligand, e.g. [Ni(NA)2(C7H4ClO2)2(H2O)2] [(II); Hökelek et al., 2009[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m466-m467.]], [Zn(NA)2(C7H4NO4)2]n [(III); Aşkın et al., 2015a[Aşkın, G. Ş., Necefoğlu, H., Tonbul, A. M., Dilek, N. & Hökelek, T. (2015a). Acta Cryst. E71, 479-482.]] and [Co(NA)2(C8H4NO2)2(H2O)2] [(IV); Aşkın et al., 2015b[Aşkın, G. Ş., Necefoğlu, H., Yılmaz Nayir, G., Çatak Çelik, R. & Hökelek, T. (2015b). Acta Cryst. E71, 561-563.]], have been determined previously. In all complexes, the NA and benzoate ligands coordinate the transition metal(II) ions as monodentate ligands.

Transition metal complexes with biochemical mol­ecules show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Some benzoic acid derivatives, such as 4-amino­benzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Amiraslanov et al., 1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]; Hauptmann et al., 2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]).

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in CoII complexes of benzoic acid deriv­atives may change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]). In this context, we synthesized a CoII-containing compound with 4-tert-butylbenzoate (TBB) and NA ligands, namely di­aqua­bis­(4-tert-butyl­benzoato-κO)bis­(nicotinamide-κN1)cobalt(II) dihydrate, [Co(C11H13O2)2(C6H6N2O)2

[Scheme 1]

2. Structural commentary

The asymmetric unit of the crystal structure of the mononuclear title complex contains one 4-tert-butyl­benzoate (TBB) and one nicotinamide (NA) ligand together with one coordinating and one non-coordinating water mol­ecule, all ligands coordinating in a monodentate manner (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Intra- and inter­molecular O—H⋯O hydrogen bonds are shown as dashed lines.

In the title complex, the two carboxyl­ate O atoms (O2 and O2i) of the two symmetry-related monodentate TBB anions and the two symmetry-related coordinating water O atoms (O4 and O4i) around the Co1 (site symmetry [\overline 1]) atom form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination sphere is completed by the two pyridine N atoms (N1 and N1i) of the two symmetry-related monodentate NA ligands in the axial positions [symmetry code: (i) −x, −y, −z] (Fig. 1[link]).

The near equalities of the C1—O1 [1.2526 (17) Å] and C1—O2 [1.2702 (16) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Co—O bond lengths are 2.1104 (11) Å (for water oxygens) and 2.1252 (9) Å (for benzoate oxygens) and the Co—N bond length is 2.1638 (11) Å, close to standard values. The Co1—O2—C1—C2 torsion angle [−163.00 (9)°] causes a slight downward tilt of the ligand.

The dihedral angle between the planar carboxyl­ate group (O1/O2/C1) and the adjacent benzene (C2–C7) ring is 29.09 (10)°, while the benzene and pyridine (N1/C9–C13) rings are oriented at a dihedral angle of 88.53 (4)°.

Intra­molecular O—Hw⋯Oc (w = water, c = carboxyl­ate) hydrogen bonds (Table 1[link]) link the coordinating water mol­ecules to the TBB anions, enclosing S(6) hydrogen-bonding motifs, while inter­molecular O—Hw⋯Ow and O—Hw⋯Ona (na = nicotinamide) hydrogen bonds link two of the non-coordinating water mol­ecules to the coordinating water mol­ecules and NA anions (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.82 (2) 2.15 (2) 2.935 (2) 159 (2)
N2—H22⋯O3ii 0.85 (2) 2.07 (2) 2.907 (2) 166 (2)
O4—H41⋯O1iii 0.87 (3) 1.79 (3) 2.6230 (17) 160 (3)
O4—H42⋯O5 0.84 (2) 2.01 (2) 2.852 (2) 176.4 (19)
O5—H51⋯O3 0.82 (3) 2.14 (3) 2.942 (2) 164 (3)
O5—H52⋯O2iv 0.87 (3) 2.17 (3) 3.0331 (19) 175 (3)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x, -y, -z; (iv) -x+1, -y, -z.

3. Supra­molecular features

In the crystal, O—Hw⋯Oc, N—Hna⋯Oc and N—Hna⋯Ona hydrogen bonds (Table 1[link]) link the mol­ecules, enclosing [R_{2}^{2}](8), [R_{2}^{2}](10) and [R_{4}^{4}](12) ring motifs (Fig. 2[link]), forming layers parallel to (001) (Fig. 3[link]).

[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound. Inter­molecular O—Hw⋯Ow, O—Hw⋯ONA, O—Hw⋯Oc, N—HNA⋯Oc and N—HNA⋯ONA (w = water, c = carboxyl­ate and NA = nicotinamide) hydrogen bonds, enclosing [R_{2}^{2}](8), [R_{2}^{2}](10) and [R_{4}^{4}](12) ring motifs, are shown as dashed lines (see Table 1[link]). For clarity, only the major disorder component and H atoms involved in hydrogen bonding are shown.
[Figure 3]
Figure 3
Part of the crystal structure viewed down [100]. Intra- and inter­molecular O—H⋯O and N—H⋯O hydrogen bonds are shown as dashed lines. For clarity, only the major disorder component and H atoms involved in hydrogen bonding are shown.

4. Synthesis and crystallization

The title compound was prepared by the reaction of CoSO4·7H2O (1.41 g, 5 mmol) in water (75 ml) and nicotinamide (1.22 g, 10 mmol) in water (25 ml) with sodium 4-tert-butyl­benzoate (2.00 g, 10 mmol) in water (250 ml). The mixture was filtered and set aside to crystallize at ambient temperature for five days, giving pink single crystals.

5. Refinement

Experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. Atoms H21 and H22 (for NH2), H41, H42, H51 and H52 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for aromatic H atoms. During the refinement process the disordered t-butyl group atoms were refined with major:minor occupancy ratios of 0.631 (5):0.369 (5).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C11H13O2)2(C6H6N2O)2(H2O)2]·2H2O
Mr 729.69
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.9608 (5), 10.0679 (6), 12.3007 (7)
α, β, γ (°) 72.087 (2), 74.841 (3), 78.660 (3)
V3) 898.17 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.45 × 0.34 × 0.28
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.80, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 19515, 4491, 4226
Rint 0.024
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.04
No. of reflections 4491
No. of parameters 276
No. of restraints 156
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Diaquabis(4-tert-butylbenzoato-κO)bis(nicotinamide-κN1)cobalt(II) dihydrate top
Crystal data top
[Co(C11H13O2)2(C6H6N2O)2(H2O)2]·2H2OZ = 1
Mr = 729.69F(000) = 385
Triclinic, P1Dx = 1.349 Mg m3
a = 7.9608 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0679 (6) ÅCell parameters from 9878 reflections
c = 12.3007 (7) Åθ = 2.4–28.4°
α = 72.087 (2)°µ = 0.54 mm1
β = 74.841 (3)°T = 296 K
γ = 78.660 (3)°Prism, pink
V = 898.17 (9) Å30.45 × 0.34 × 0.28 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
4226 reflections with I > 2σ(I)
φ and ω scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.4°, θmin = 1.8°
Tmin = 0.80, Tmax = 0.86h = 1010
19515 measured reflectionsk = 1313
4491 independent reflectionsl = 1616
Refinement top
Refinement on F2156 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.2513P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4491 reflectionsΔρmax = 0.57 e Å3
276 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00000.00000.00000.02676 (9)
O10.15897 (14)0.14320 (12)0.21665 (11)0.0417 (3)
O20.08538 (13)0.01768 (10)0.14429 (9)0.0325 (2)
O30.43372 (17)0.35986 (12)0.03048 (13)0.0529 (3)
O40.26754 (14)0.04949 (12)0.07344 (10)0.0366 (2)
H410.256 (4)0.078 (3)0.131 (2)0.074 (8)*
H420.350 (3)0.001 (2)0.0935 (19)0.054 (6)*
O50.54025 (18)0.12406 (16)0.13794 (15)0.0559 (3)
H510.523 (4)0.181 (3)0.100 (2)0.071 (8)*
H520.645 (4)0.079 (3)0.140 (2)0.072 (7)*
N10.01589 (15)0.22272 (12)0.07666 (10)0.0299 (2)
N20.3410 (2)0.58855 (14)0.10004 (14)0.0436 (3)
H210.269 (3)0.651 (2)0.1300 (18)0.045 (5)*
H220.419 (3)0.607 (2)0.0731 (18)0.050 (5)*
C10.00106 (18)0.09283 (13)0.21156 (12)0.0303 (3)
C20.09212 (18)0.12971 (14)0.28796 (12)0.0303 (3)
C30.0038 (2)0.16117 (19)0.39080 (14)0.0413 (3)
H30.12330.15360.41370.050*
C40.0758 (2)0.2035 (2)0.45931 (14)0.0440 (4)
H40.00900.22270.52830.053*
C50.2529 (2)0.21823 (16)0.42790 (13)0.0354 (3)
C60.3480 (2)0.18731 (19)0.32456 (14)0.0420 (3)
H60.46700.19660.30100.050*
C70.2693 (2)0.14291 (18)0.25570 (14)0.0388 (3)
H70.33620.12190.18740.047*
C80.3378 (3)0.2695 (2)0.50365 (16)0.0508 (4)
C90.14714 (17)0.27411 (13)0.06047 (12)0.0293 (3)
H90.22240.21290.01540.035*
C100.17772 (17)0.41344 (13)0.10698 (12)0.0295 (3)
C110.0657 (2)0.50459 (15)0.17403 (14)0.0401 (3)
H110.08170.59890.20660.048*
C120.0706 (2)0.45268 (17)0.19165 (16)0.0450 (4)
H120.14780.51170.23630.054*
C130.09077 (19)0.31202 (16)0.14208 (14)0.0369 (3)
H130.18240.27800.15480.044*
C140.32848 (19)0.45316 (15)0.07695 (13)0.0340 (3)
C15A0.5284 (5)0.2569 (7)0.4716 (4)0.0837 (17)0.631 (5)
H15A0.57090.29100.52290.126*0.631 (5)
H15B0.57520.16000.47850.126*0.631 (5)
H15C0.56480.31150.39240.126*0.631 (5)
C16A0.2846 (6)0.1834 (5)0.6339 (3)0.0748 (12)0.631 (5)
H16A0.15910.18990.65740.112*0.631 (5)
H16B0.33330.08670.64200.112*0.631 (5)
H16C0.32880.22080.68250.112*0.631 (5)
C17A0.2534 (7)0.4241 (4)0.5014 (5)0.0908 (16)0.631 (5)
H17A0.12790.42790.52290.136*0.631 (5)
H17B0.29350.45460.55580.136*0.631 (5)
H17C0.28690.48450.42400.136*0.631 (5)
C15B0.4753 (14)0.3681 (10)0.4200 (7)0.091 (3)0.369 (5)
H15D0.54050.32760.35780.137*0.369 (5)
H15E0.41560.45870.38770.137*0.369 (5)
H15F0.55420.37840.46320.137*0.369 (5)
C16B0.4717 (11)0.1305 (9)0.5576 (7)0.082 (2)0.369 (5)
H16D0.55150.09870.49460.122*0.369 (5)
H16E0.53680.15570.60230.122*0.369 (5)
H16F0.40440.05640.60730.122*0.369 (5)
C17B0.2288 (10)0.3074 (12)0.5999 (7)0.090 (3)0.369 (5)
H17D0.29670.33740.63990.135*0.369 (5)
H17E0.14120.38300.57470.135*0.369 (5)
H17F0.17290.22810.65180.135*0.369 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02694 (14)0.02236 (13)0.03728 (15)0.00481 (9)0.01280 (10)0.01105 (10)
O10.0366 (5)0.0437 (6)0.0567 (6)0.0021 (4)0.0211 (5)0.0259 (5)
O20.0361 (5)0.0291 (5)0.0401 (5)0.0013 (4)0.0162 (4)0.0154 (4)
O30.0533 (7)0.0294 (5)0.0910 (10)0.0043 (5)0.0420 (7)0.0158 (6)
O40.0302 (5)0.0389 (5)0.0487 (6)0.0064 (4)0.0110 (4)0.0197 (5)
O50.0414 (7)0.0568 (8)0.0854 (10)0.0030 (6)0.0214 (6)0.0372 (8)
N10.0303 (5)0.0258 (5)0.0378 (6)0.0059 (4)0.0104 (4)0.0106 (4)
N20.0476 (7)0.0267 (6)0.0647 (9)0.0104 (5)0.0248 (7)0.0099 (6)
C10.0350 (6)0.0248 (6)0.0360 (6)0.0051 (5)0.0140 (5)0.0089 (5)
C20.0351 (6)0.0260 (6)0.0353 (6)0.0028 (5)0.0144 (5)0.0111 (5)
C30.0325 (7)0.0567 (10)0.0414 (7)0.0098 (6)0.0072 (6)0.0207 (7)
C40.0404 (8)0.0611 (10)0.0385 (7)0.0075 (7)0.0064 (6)0.0260 (7)
C50.0401 (7)0.0365 (7)0.0369 (7)0.0065 (6)0.0135 (6)0.0147 (6)
C60.0333 (7)0.0573 (10)0.0456 (8)0.0113 (6)0.0085 (6)0.0248 (7)
C70.0359 (7)0.0482 (8)0.0405 (7)0.0050 (6)0.0081 (6)0.0241 (6)
C80.0584 (10)0.0606 (11)0.0498 (9)0.0158 (8)0.0206 (8)0.0256 (8)
C90.0306 (6)0.0234 (6)0.0379 (6)0.0043 (5)0.0129 (5)0.0087 (5)
C100.0327 (6)0.0237 (6)0.0358 (6)0.0055 (5)0.0092 (5)0.0109 (5)
C110.0482 (8)0.0241 (6)0.0502 (8)0.0063 (6)0.0196 (7)0.0046 (6)
C120.0478 (8)0.0339 (7)0.0568 (9)0.0013 (6)0.0302 (7)0.0036 (7)
C130.0346 (7)0.0348 (7)0.0476 (8)0.0063 (5)0.0178 (6)0.0112 (6)
C140.0348 (7)0.0276 (6)0.0445 (7)0.0075 (5)0.0111 (6)0.0126 (5)
C15A0.0529 (18)0.143 (5)0.089 (3)0.029 (2)0.0157 (17)0.069 (3)
C16A0.093 (3)0.098 (3)0.0494 (16)0.026 (2)0.0322 (17)0.0201 (17)
C17A0.129 (4)0.059 (2)0.123 (4)0.003 (2)0.069 (3)0.049 (2)
C15B0.136 (6)0.098 (5)0.075 (4)0.070 (5)0.032 (4)0.030 (3)
C16B0.084 (4)0.098 (5)0.084 (4)0.007 (3)0.053 (4)0.029 (3)
C17B0.077 (4)0.144 (8)0.087 (4)0.002 (4)0.026 (3)0.085 (6)
Geometric parameters (Å, º) top
Co1—O22.1252 (9)C8—C15B1.566 (8)
Co1—O2i2.1252 (9)C8—C16B1.658 (8)
Co1—O42.1104 (11)C8—C17B1.382 (7)
Co1—O4i2.1103 (11)C9—H90.9300
Co1—N12.1638 (11)C10—C91.3863 (18)
Co1—N1i2.1638 (11)C10—C111.384 (2)
O1—C11.2526 (17)C10—C141.4994 (18)
O2—C11.2702 (16)C14—N21.3224 (18)
O3—C141.2335 (19)C11—C121.383 (2)
O4—H410.87 (3)C11—H110.9300
O4—H420.84 (2)C12—H120.9300
O5—H510.81 (3)C13—C121.382 (2)
O5—H520.86 (3)C13—H130.9300
N1—C91.3357 (16)C15A—H15A0.9600
N1—C131.3375 (18)C15A—H15B0.9600
N2—H210.83 (2)C15A—H15C0.9600
N2—H220.85 (2)C16A—H16A0.9600
C1—C21.5028 (17)C16A—H16B0.9600
C2—C31.389 (2)C16A—H16C0.9600
C2—C71.383 (2)C17A—H17A0.9600
C3—C41.379 (2)C17A—H17B0.9600
C3—H30.9300C17A—H17C0.9600
C4—H40.9300C15B—H15D0.9600
C5—C41.386 (2)C15B—H15E0.9600
C5—C61.390 (2)C15B—H15F0.9600
C5—C81.534 (2)C16B—H16D0.9600
C6—C71.389 (2)C16B—H16E0.9600
C6—H60.9300C16B—H16F0.9600
C7—H70.9300C17B—H17D0.9600
C8—C15A1.455 (4)C17B—H17E0.9600
C8—C16A1.560 (4)C17B—H17F0.9600
C8—C17A1.564 (4)
O2i—Co1—O2180.0C17B—C8—C15B119.4 (6)
O2—Co1—N187.77 (4)C17B—C8—C16B105.4 (5)
O2i—Co1—N192.23 (4)N1—C9—C10123.81 (12)
O2—Co1—N1i92.23 (4)N1—C9—H9118.1
O2i—Co1—N1i87.77 (4)C10—C9—H9118.1
O4—Co1—O286.55 (4)C9—C10—C14116.42 (12)
O4i—Co1—O293.45 (4)C11—C10—C9118.10 (12)
O4—Co1—O2i93.45 (4)C11—C10—C14125.46 (12)
O4i—Co1—O2i86.55 (4)C10—C11—H11120.7
O4i—Co1—O4180.0C12—C11—C10118.68 (13)
O4—Co1—N191.29 (4)C12—C11—H11120.7
O4i—Co1—N188.71 (4)C11—C12—H12120.4
O4—Co1—N1i88.71 (4)C13—C12—C11119.21 (14)
O4i—Co1—N1i91.29 (4)C13—C12—H12120.4
N1i—Co1—N1180.0N1—C13—C12122.83 (13)
C1—O2—Co1123.73 (8)N1—C13—H13118.6
Co1—O4—H4199.1 (18)C12—C13—H13118.6
Co1—O4—H42129.8 (16)O3—C14—N2122.61 (14)
H42—O4—H41112 (2)O3—C14—C10119.44 (12)
H51—O5—H52111 (3)N2—C14—C10117.94 (13)
C9—N1—Co1117.05 (9)C8—C15A—H15A109.5
C9—N1—C13117.36 (12)C8—C15A—H15B109.5
C13—N1—Co1125.54 (9)C8—C15A—H15C109.5
C14—N2—H21122.6 (14)H15A—C15A—H15B109.5
C14—N2—H22115.3 (15)H15A—C15A—H15C109.5
H21—N2—H22122 (2)H15B—C15A—H15C109.5
O1—C1—O2124.68 (12)C8—C16A—H16A109.5
O1—C1—C2116.71 (12)C8—C16A—H16B109.5
O2—C1—C2118.57 (12)C8—C16A—H16C109.5
C3—C2—C1119.37 (13)H16A—C16A—H16B109.5
C7—C2—C1122.20 (13)H16A—C16A—H16C109.5
C7—C2—C3118.28 (12)H16B—C16A—H16C109.5
C2—C3—H3119.6C8—C17A—H17A109.5
C4—C3—C2120.84 (14)C8—C17A—H17B109.5
C4—C3—H3119.6C8—C17A—H17C109.5
C3—C4—C5121.64 (14)H17A—C17A—H17B109.5
C3—C4—H4119.2H17A—C17A—H17C109.5
C5—C4—H4119.2H17B—C17A—H17C109.5
C4—C5—C6117.23 (13)C8—C15B—H15D109.5
C4—C5—C8120.78 (14)C8—C15B—H15E109.5
C6—C5—C8121.97 (14)C8—C15B—H15F109.5
C5—C6—H6119.2H15D—C15B—H15E109.5
C7—C6—C5121.52 (14)H15D—C15B—H15F109.5
C7—C6—H6119.2H15E—C15B—H15F109.5
C2—C7—C6120.48 (13)C8—C16B—H16D109.5
C2—C7—H7119.8C8—C16B—H16E109.5
C6—C7—H7119.8C8—C16B—H16F109.5
C5—C8—C16A109.22 (19)H16D—C16B—H16E109.5
C5—C8—C17A107.8 (2)H16D—C16B—H16F109.5
C5—C8—C15B108.0 (3)H16E—C16B—H16F109.5
C5—C8—C16B104.1 (3)C8—C17B—H17D109.5
C15A—C8—C5114.7 (2)C8—C17B—H17E109.5
C15A—C8—C16A107.7 (3)C8—C17B—H17F109.5
C15A—C8—C17A112.0 (3)H17D—C17B—H17E109.5
C16A—C8—C17A104.9 (3)H17D—C17B—H17F109.5
C15B—C8—C16B100.0 (6)H17E—C17B—H17F109.5
C17B—C8—C5117.3 (3)
Co1—O2—C1—O114.57 (19)C4—C5—C8—C17A64.5 (3)
Co1—O2—C1—C2163.00 (9)C4—C5—C8—C15B142.0 (5)
Co1—N1—C9—C10178.01 (10)C4—C5—C8—C16B112.4 (4)
C13—N1—C9—C100.2 (2)C4—C5—C8—C17B3.5 (6)
Co1—N1—C13—C12177.98 (13)C6—C5—C8—C15A11.4 (4)
C9—N1—C13—C120.4 (2)C6—C5—C8—C16A132.3 (3)
O1—C1—C2—C327.3 (2)C6—C5—C8—C17A114.2 (3)
O1—C1—C2—C7148.24 (15)C6—C5—C8—C15B36.7 (5)
O2—C1—C2—C3154.98 (14)C6—C5—C8—C16B68.9 (4)
O2—C1—C2—C729.5 (2)C6—C5—C8—C17B175.2 (6)
C1—C2—C3—C4176.12 (15)C5—C6—C7—C20.7 (3)
C7—C2—C3—C40.4 (2)C11—C10—C9—N10.0 (2)
C1—C2—C7—C6175.20 (15)C14—C10—C9—N1178.41 (13)
C3—C2—C7—C60.4 (2)C9—C10—C11—C120.1 (2)
C2—C3—C4—C50.9 (3)C14—C10—C11—C12178.35 (15)
C6—C5—C4—C30.5 (3)C9—C10—C14—O311.8 (2)
C8—C5—C4—C3178.25 (17)C9—C10—C14—N2167.08 (14)
C4—C5—C6—C70.3 (3)C11—C10—C14—O3169.96 (16)
C8—C5—C6—C7179.05 (17)C11—C10—C14—N211.2 (2)
C4—C5—C8—C15A169.9 (3)C10—C11—C12—C130.0 (3)
C4—C5—C8—C16A49.0 (3)N1—C13—C12—C110.3 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1ii0.82 (2)2.15 (2)2.935 (2)159 (2)
N2—H22···O3iii0.85 (2)2.07 (2)2.907 (2)166 (2)
O4—H41···O1i0.87 (3)1.79 (3)2.6230 (17)160 (3)
O4—H42···O50.84 (2)2.01 (2)2.852 (2)176.4 (19)
O5—H51···O30.82 (3)2.14 (3)2.942 (2)164 (3)
O5—H52···O2iv0.87 (3)2.17 (3)3.0331 (19)175 (3)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationAşkın, G. Ş., Necefoğlu, H., Tonbul, A. M., Dilek, N. & Hökelek, T. (2015a). Acta Cryst. E71, 479–482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAşkın, G. Ş., Necefoğlu, H., Yılmaz Nayir, G., Çatak Çelik, R. & Hökelek, T. (2015b). Acta Cryst. E71, 561–563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265–268.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds