research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystallographic and spectroscopic characterization of (R)-O-acetyl­mandelic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by S. Parkin, University of Kentucky, USA (Received 25 May 2016; accepted 29 May 2016; online 10 June 2016)

The title compound [systematic name: (R)-(−)-2-acet­oxy-2-phenyl­acetic acid], C10H10O4, is a resolved chiral ester derivative of mandelic acid. The compound contains an acetate group and a carb­oxy­lic acid group, which engage in inter­molecular hydrogen bonding, forming chains extending parallel to [001] with a short donor–acceptor hydrogen-bonding distance of 2.676 (2) Å.

1. Chemical context

Chiral, resolved carb­oxy­lic acids have played an important role as chiral NMR shift reagents (Lovely & Wenzel, 2008[Lovely, A. E. & Wenzel, T. J. (2008). Chirality, 20, 370-378.]; Parker, 1991[Parker, D. (1991). Chem. Rev. 91, 1441-1457.]). The title compound, (R)-(−)-2-acet­oxy-2-phenyl­acetic acid (I)[link], commonly known as (R)-O-acetyl­mandelic acid, is a chiral, resolved derivative of mandelic acid. The compound may be synthesized by acetyl­ation of the parent α-hy­droxy acid with acetic anhydride in pyridine (Ornelas et al., 2013[Ornelas, A., Korczynska, M., Ragumani, S., Kumaran, D., Narindoshvili, T., Shoichet, B. K., Swaminathan, S. & Raushel, F. M. (2013). Biochemistry, 52, 228-238.]). When racemic, resolution of the compound with free amino acids has been demonstrated (Szeleczky et al., 2015[Szeleczky, Z., Bagi, P., Pálovics, E. & Fogassy, E. (2015). Tetrahedron Asymmetry, 26, 377-384.]). The title compound has been employed as a chiral NMR shift reagent (Parker, 1991[Parker, D. (1991). Chem. Rev. 91, 1441-1457.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (Fig. 1[link]) shows the R confguration about carbon atom C1, and that the mol­ecule does not engage in intra­molecular or pairwise hydrogen bonding. The absolute structure parameters confirm the R assignment, with Flack x = −0.01 (4) and Hooft y = −0.02 (4), calculated with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Figure 1]
Figure 1
A view of (R)-(−)-2-acet­oxy-2-phenyl­acetic acid (I)[link] with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

The mol­ecules pack together in the solid state via van der Waals forces and hydrogen bonding between the carb­oxy­lic acid OH group and the carbonyl oxygen atom of the ester on a neighboring mol­ecule, O1—H1⋯O4i [symmetry code (i) −x + [{1\over 2}], −y + 1, z − [{1\over 2}]] with a donor–acceptor distance of 2.676 (2) Å (Table 1[link]). These inter­actions create zigzag hydrogen-bonded chains that extend parallel to the c axis of the unit cell (Fig. 2[link]). Notably, there is no face-to-face or edge-to-face π-stacking.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.85 (2) 1.84 (2) 2.6761 (16) 165 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the inter­molecular hydrogen bonding in (R)-(−)-2-acet­oxy-2-phenyl­acetic acid (I)[link] that forms a one-dimensional chain. Symmetry code: (i) −x + [{1\over 2}], −y + 1, z − [{1\over 2}].

4. Database survey

The Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains several related mandelic acid ester structures. Related structures of resolved mandelic acid esters that differ by the nature of the ester group include (2S)-[(2S)-2-hy­droxy-2-phenyl­ethano­yloxy]phenyl­acetic acid (Mughal et al., 2004[Mughal, R. K., Pritchard, R. G. & Davey, R. J. (2004). Acta Cryst. E60, o232-o233.]) and (1R,2R,3S,4S)-2-[(R)-mandeloxycarbon­yl]bi­cyclo­(2.2.1)heptane-3-carb­oxy­lic acid (Ohtani et al., 1991[Ohtani, M., Matsuura, T., Watanabe, F. & Narisada, M. (1991). J. Org. Chem. 56, 4120-4123.]). The hydrogen bonding in the former differs from (I)[link], forming an inter­molecular chain with the carb­oxy­lic acid groups further cross-linked by hydrogen bonding of the alcohol moiety with the ester, whereas the latter compound exhibits pairwise dimerization of the carb­oxy­lic acid groups. A related structure with a tert-butyl ester and substituents on the phenyl ring, (S,E)-2-[2-(3-methoxy-3-oxoprop-1-en-1-yl)-4-(trifluoromethyl)phenyl]-2-(pivaloyloxy)acetic acid (Xiao et al., 2016[Xiao, K.-J., Chu, L. & Yu, J.-Q. (2016). Angew. Chem. Int. Ed. 55, 2856-2860.]), exhibits a similar one-dimensional inter­molecular carb­oxy­lic acid OH⋯ester carbonyl hydrogen-bonding motif to that found in the title compound.

5. Synthesis and crystallization

(R)-(−)-2-acet­oxy-2-phenyl­acetic acid (99%) was purchased from Aldrich Chemical Company, USA, and was used as received.

6. Analytical data

1H NMR (Bruker Avance 300 MHz, CDCl3): δ 2.19 (s, 3 H, CH3), 5.93 (s, 1H, CH), 7.36–7.42 (m, 3 H, Car­ylH), 7.45–7.51 (m, 2H, Car­ylH), 11.76 (br s, 1H, OH). 13C NMR (13C{1H}, 75.5 MHz, CDCl3): δ 20.59 (CH3), 74.02 (CH), 127.62 (Car­ylH), 128.86 (Car­ylH), 129.49 (Car­ylH), 132.98 (Car­yl), 170.38 (CO), 174.55 (CO). IR (Thermo Nicolet iS50, ATR, cm−1): 3483 (w), 3014 (v br, O—H str), 2708 (w), 2588 (w), 1752 (v s, C=O str), 1686 (v s, C=O str), 1498 (w), 1461 (w), 1412 (m), 1382 (s), 1321 (m), 1277 (s), 1259 (s), 1206 (s), 1182 (s), 1045 (s), 996 (m), 967 (m), 919 (m), 888 (m), 767 (s), 734 (s), 700 (s), 642 (m), 616 (w), 603 (w), 583 (w), 525 (s), 487 (w). GC/MS (Hewlett-Packard MS 5975/GC 7890): M-18+ = 176 (calc. exact mass 194.06 - water = 176).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model with C–H = 0.95, 0.98 and 1.00 Å and Uiso(H) = 1.2, 1.5 and 1.2 × Ueq(C) of the aryl, methyl and methine C atoms, respectively. The position of the carb­oxy­lic acid hydrogen atom was found in the difference map and the atom refined semi-freely using a distance restraint d(O—H) = 0.84 Å, and Uiso(H) = 1.2Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C10H10O4
Mr 194.18
Crystal system, space group Orthorhombic, P212121
Temperature (K) 125
a, b, c (Å) 9.1047 (10), 10.0086 (11), 10.5871 (11)
V3) 964.75 (18)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.88
Crystal size (mm) 0.26 × 0.26 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.74, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 8953, 1698, 1693
Rint 0.030
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.10
No. of reflections 1698
No. of parameters 131
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.19
Absolute structure Flack x determined using 691 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]); Hooft y calculated with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Absolute structure parameter −0.01 (4)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

(R)-(-)-2-Acetoxy-2-phenylacetic acid top
Crystal data top
C10H10O4Dx = 1.337 Mg m3
Mr = 194.18Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 8300 reflections
a = 9.1047 (10) Åθ = 4.2–66.6°
b = 10.0086 (11) ŵ = 0.88 mm1
c = 10.5871 (11) ÅT = 125 K
V = 964.75 (18) Å3Block, colourless
Z = 40.26 × 0.26 × 0.17 mm
F(000) = 408
Data collection top
Bruker APEXII CCD
diffractometer
1698 independent reflections
Radiation source: Cu IuS micro-focus source1693 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.030
φ and ω scansθmax = 66.6°, θmin = 6.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1010
Tmin = 0.74, Tmax = 0.86k = 1111
8953 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.1385P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.19 e Å3
1698 reflectionsΔρmin = 0.19 e Å3
131 parametersAbsolute structure: Flack x determined using 691 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013); Hooft y calculated with PLATON (Spek, 2009)
1 restraintAbsolute structure parameter: 0.01 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42132 (13)0.46237 (13)0.08956 (12)0.0329 (3)
H10.355 (2)0.479 (2)0.035 (2)0.039*
O20.35211 (12)0.66275 (12)0.16115 (11)0.0286 (3)
O30.50941 (12)0.63319 (11)0.37499 (9)0.0235 (3)
O40.29716 (12)0.53107 (12)0.42058 (10)0.0273 (3)
C10.53382 (16)0.53625 (15)0.27588 (13)0.0200 (3)
H1A0.51990.44380.30970.024*
C20.69072 (15)0.55447 (14)0.23211 (13)0.0184 (3)
C30.79939 (18)0.47071 (16)0.27844 (16)0.0272 (4)
H3A0.77440.39880.33290.033*
C40.94513 (18)0.49242 (17)0.2450 (2)0.0346 (4)
H4A1.01980.43580.27760.042*
C50.98206 (18)0.59621 (18)0.16417 (17)0.0326 (4)
H5A1.08180.61090.14180.039*
C60.87356 (18)0.67809 (18)0.11641 (16)0.0303 (4)
H6A0.89850.74820.05990.036*
C70.72770 (17)0.65833 (17)0.15078 (14)0.0242 (3)
H7A0.65340.71570.11870.029*
C80.42388 (15)0.56275 (15)0.16993 (14)0.0201 (3)
C90.38220 (17)0.62321 (16)0.43773 (14)0.0237 (3)
C100.3600 (2)0.7365 (2)0.52655 (17)0.0364 (4)
H10A0.45230.75550.57070.055*
H10B0.28420.71280.58830.055*
H10C0.3290.81580.47920.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0273 (6)0.0350 (6)0.0363 (6)0.0053 (5)0.0144 (5)0.0139 (5)
O20.0270 (6)0.0289 (6)0.0298 (6)0.0060 (5)0.0008 (5)0.0001 (5)
O30.0209 (5)0.0298 (6)0.0198 (5)0.0061 (4)0.0051 (4)0.0055 (4)
O40.0232 (5)0.0335 (6)0.0253 (6)0.0066 (5)0.0058 (4)0.0003 (5)
C10.0197 (7)0.0209 (7)0.0193 (7)0.0032 (6)0.0012 (6)0.0020 (6)
C20.0171 (7)0.0207 (7)0.0173 (7)0.0019 (6)0.0001 (5)0.0046 (6)
C30.0249 (8)0.0232 (8)0.0334 (8)0.0001 (7)0.0030 (7)0.0014 (7)
C40.0214 (7)0.0329 (9)0.0496 (11)0.0066 (7)0.0035 (8)0.0042 (8)
C50.0184 (7)0.0424 (9)0.0370 (9)0.0037 (7)0.0061 (7)0.0119 (8)
C60.0276 (8)0.0394 (9)0.0238 (8)0.0093 (8)0.0042 (7)0.0016 (7)
C70.0215 (7)0.0301 (8)0.0210 (7)0.0005 (6)0.0010 (6)0.0037 (6)
C80.0149 (7)0.0237 (7)0.0216 (7)0.0034 (6)0.0036 (5)0.0010 (6)
C90.0213 (7)0.0315 (8)0.0184 (7)0.0036 (7)0.0033 (6)0.0021 (6)
C100.0390 (10)0.0389 (10)0.0311 (9)0.0082 (9)0.0139 (8)0.0076 (8)
Geometric parameters (Å, º) top
O1—C81.3168 (19)C3—H3A0.95
O1—H10.852 (19)C4—C51.387 (3)
O2—C81.1989 (19)C4—H4A0.95
O3—C91.3389 (18)C5—C61.380 (3)
O3—C11.4463 (17)C5—H5A0.95
O4—C91.218 (2)C6—C71.391 (2)
C1—C21.5128 (19)C6—H6A0.95
C1—C81.527 (2)C7—H7A0.95
C1—H1A1.0C9—C101.487 (2)
C2—C31.386 (2)C10—H10A0.98
C2—C71.391 (2)C10—H10B0.98
C3—C41.391 (2)C10—H10C0.98
C8—O1—H1107.2 (15)C4—C5—H5A120.1
C9—O3—C1116.28 (11)C5—C6—C7120.22 (16)
O3—C1—C2106.65 (11)C5—C6—H6A119.9
O3—C1—C8108.41 (11)C7—C6—H6A119.9
C2—C1—C8111.91 (12)C6—C7—C2119.95 (14)
O3—C1—H1A109.9C6—C7—H7A120.0
C2—C1—H1A109.9C2—C7—H7A120.0
C8—C1—H1A109.9O2—C8—O1125.26 (14)
C3—C2—C7119.87 (14)O2—C8—C1124.01 (14)
C3—C2—C1119.51 (13)O1—C8—C1110.72 (12)
C7—C2—C1120.54 (13)O4—C9—O3122.18 (14)
C2—C3—C4119.76 (15)O4—C9—C10125.84 (14)
C2—C3—H3A120.1O3—C9—C10111.98 (13)
C4—C3—H3A120.1C9—C10—H10A109.5
C5—C4—C3120.37 (16)C9—C10—H10B109.5
C5—C4—H4A119.8H10A—C10—H10B109.5
C3—C4—H4A119.8C9—C10—H10C109.5
C6—C5—C4119.83 (15)H10A—C10—H10C109.5
C6—C5—H5A120.1H10B—C10—H10C109.5
C9—O3—C1—C2172.13 (12)C4—C5—C6—C71.1 (3)
C9—O3—C1—C867.21 (15)C5—C6—C7—C21.0 (3)
O3—C1—C2—C398.10 (15)C3—C2—C7—C60.2 (2)
C8—C1—C2—C3143.51 (14)C1—C2—C7—C6176.71 (15)
O3—C1—C2—C778.78 (16)O3—C1—C8—O213.69 (19)
C8—C1—C2—C739.62 (18)C2—C1—C8—O2103.65 (16)
C7—C2—C3—C41.1 (2)O3—C1—C8—O1167.43 (12)
C1—C2—C3—C4175.84 (16)C2—C1—C8—O175.23 (15)
C2—C3—C4—C50.9 (3)C1—O3—C9—O46.3 (2)
C3—C4—C5—C60.2 (3)C1—O3—C9—C10173.19 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.85 (2)1.84 (2)2.6761 (16)165 (2)
C10—H10B···O1ii0.982.563.312 (2)133
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y+1, z+1/2.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (Grant Nos. 0521237 and 0911324 to JMT). We acknowledge the Salmon Fund of Vassar College for funding publication expenses.

References

First citationBruker (2013). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLovely, A. E. & Wenzel, T. J. (2008). Chirality, 20, 370–378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMughal, R. K., Pritchard, R. G. & Davey, R. J. (2004). Acta Cryst. E60, o232–o233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOhtani, M., Matsuura, T., Watanabe, F. & Narisada, M. (1991). J. Org. Chem. 56, 4120–4123.  CSD CrossRef CAS Web of Science Google Scholar
First citationOrnelas, A., Korczynska, M., Ragumani, S., Kumaran, D., Narindoshvili, T., Shoichet, B. K., Swaminathan, S. & Raushel, F. M. (2013). Biochemistry, 52, 228–238.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParker, D. (1991). Chem. Rev. 91, 1441–1457.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzeleczky, Z., Bagi, P., Pálovics, E. & Fogassy, E. (2015). Tetrahedron Asymmetry, 26, 377–384.  Web of Science CrossRef CAS Google Scholar
First citationXiao, K.-J., Chu, L. & Yu, J.-Q. (2016). Angew. Chem. Int. Ed. 55, 2856–2860.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds