research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of organoplatinum complexes containing alkyl­eugenoxyacetate and p-chloro­aniline

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Hanoi National University of Education, 136 - Xuan Thuy - Cau Giay, Hanoi, Vietnam, and bKU Leuven - University of Leuven, Department of Chemistry, Celestijnenlaan 200F - bus 2404, B-3001 Heverlee, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 24 May 2016; accepted 1 June 2016; online 10 June 2016)

In the title complexes, trans-di­chlorido­(4-chloro­aniline-κN){3-meth­oxy-4-meth­oxy­carbonyl­meth­oxy-1-[(2,3-η)-prop-2-en-1-yl]benzene}­platinum(II) 0.1-hydrate, [PtCl2(C6H6ClN)(C13H16O4)]·0.1H2O, (I), and trans-di­chlorido­(4-chloro­aniline-κN){4-eth­oxy­carbonyl­meth­oxy-3-meth­oxy-1-[(2,3-η)-prop-2-en-1-yl]benzene}­platinum(II), [PtCl2(C6H6ClN)(C14H18O4)], (II), the PtII metal atom displays a slightly distorted square-planar coordination geometry defined by the aniline N atom, two chloride anions (trans-positioned) and one ethyl­enic double bond. The least-squares planes through the two aromatic ring systems make an angle of 47.3 (3)° for (I) and 38.6 (2)° for (II). Both structures show disorder for the PtCl2 fragment, in the case of (I) even further extended towards the CH2—CH=CH2 ligand. An intra­molecular C—H⋯Cl hydrogen bond occurs in (I). In the crystal packing of (I), which is dominated by N—H⋯O and C—H⋯Cl inter­actions, a partially occupied water mol­ecule is observed on a twofold rotation axis with a refined site occupancy of 0.10 (1). A C—H⋯π inter­action is also present. In (II), inversion dimers form chains along the b-axis direction by N—H⋯O hydrogen bonds.

1. Chemical context

Complexes of platinum(II) such as cisplatin, carboplatin and oxaliplatin have been known to exhibit inhibitory activities on several human cancer cells and are widely used in pharmacy (Zhang et al., 2006[Zhang, S., Lovejoy, K. S., Shima, J. E., Lagpacan, L. L., Shu, Y., Lapuk, A., Chen, Y., Komori, T., Gray, J. W., Chen, X., Lippard, S. J. & Giacomini, K. M. (2006). Cancer Res. 66, 8847-8857.]). However, many side effects and drug-resistant phenomena have been reported for the use of these complexes (Von Hoff et al., 1979[Von Hoff, D. D., Schilsky, R., Reichert, C. M., Reddick, R. L., Rozencweig, M., Young, R. C. & Muggia, F. M. (1979). Cancer Treat. Rep. 63, 1527-1531.]; Coates et al., 1983[Coates, A., Abraham, S., Kaye, S. B., Sowerbutts, T., Frewin, C., Fox, R. M. & Tattersall, M. H. (1983). Eur. J. Cancer Clin. Oncol. 19, 203-208.]; Griffin et al., 1996[Griffin, A. M., Butow, P. N., Coates, A. S., Childs, A. M., Ellis, P. M., Dunn, S. M. & Tattersall, M. H. (1996). Ann. Oncol. 7, 189-195.]). Therefore, it is necessary to design new complexes with high activities but low toxicity (Chabner & Roberts, 2005[Chabner, B. A. & Roberts, T. G. (2005). Nat. Rev. Cancer, 5, 65-72.]; Johnstone et al., 2014[Johnstone, T. C., Park, G. Y. & Lippard, S. J. (2014). Anticancer Res. 34, 471-476.]). For this purpose, we have recently synthesized several PtII complexes containing natural aryl­olefines as ligand, i.e. derivatives of eugenol (4-allyl-2-methoxylphenol) such as methyl­eugenol and alkyl­eugenoxyacetate, with high toxicity towards human cancerous cells (IC50 values < 5 µg/mL; Da et al., 2012[Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131-142.]; Da, Chi et al., 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala Kimpende, P. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]; Da, Hai et al., 2015[Da, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525-3536.]). Inter­estingly, these complexes represent special arrangements in which the PtII atoms are coordinated by aryl­olefines through the C=C bond of the allyl group. Complexes of PtII containing methyl- or ethyl­eugenoxyl­acetate and p-chloro­aniline were synthesized and their crystal and mol­ecular structures characterized and reported here.

[Scheme 1]

2. Structural commentary

The complexes crystallize in different space groups, C2/c for the methyl­eugenoxyacetate derivative (I)[link] and P[\overline{1}] for the ethyl­eugenoxyacetate derivative (II)[link]. The central PtII metal atom displays a distorted square-planar coordination with the PtII atom coordinated by two Cl atoms, the NH2-group of p-chloro­aniline and the C=C double bond of the eugenol ligand. In both complexes, the Cl atoms are trans with respect to each other (Fig. 1[link]). The eugenol ligand only inter­acts via the C=C double bond and not by a C atom of the phenyl ring. Both structures show some disorder of the PtII atom and its environment. In (I)[link] the PtCl2CH2=CH—CH2 fragment is disordered over two positions [population parameters 0.679 (8) and 0.321 (8)], while in (II)[link] only the PtCl2 fragment is disordered over two positions [population parameters 0.872 (6) and 0.128 (6)]. The angles between the best planes through the two aromatic rings are 47.3 (3) and 38.6 (2)° for (I)[link] and (II)[link], respectively. An intra­molecular C—H⋯Cl inter­action is observed for (II)[link] with a H26A⋯Cl9 distance of 2.73 Å. In (I)[link] the shortest intra­molecular H⋯Cl contact distance is 3.13 Å for H29A⋯Cl9.

[Figure 1]
Figure 1
Views of the asymmetric units in (a) (I)[link] and (b) (II)[link], showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯Cl inter­action is shown as a green dotted line.

3. Supra­molecular features

The crystal packing of (I)[link] is built up by N—H⋯O and C—H⋯Cl inter­actions (Table 1[link], Fig. 2[link]). A water mol­ecule O34 was identified at a special position [on a twofold rotation axis, occupancy factor 0.10 (1)] where it inter­acts with atoms N2, O28 and O31 linking four mol­ecules together (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2AA⋯O26i 0.91 2.45 3.027 (5) 122
N2—H2AA⋯O28i 0.91 2.35 3.212 (6) 158
N2—H2AB⋯O31ii 0.91 2.41 3.302 (3) 167
C16—H16A⋯Cl12 0.99 2.79 3.487 (10) 128
C16—H16B⋯Cl9iii 0.99 2.76 3.472 (8) 129
C21—H21⋯Cl11iv 0.95 2.82 3.726 (8) 159
C29—H29B⋯Cl12v 0.99 2.80 3.651 (7) 145
C27—H27BCg1iv 0.98 2.72 3.523 (6) 139
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+1, y, -z+{\script{3\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2].
[Figure 2]
Figure 2
Partial packing diagram of (I)[link], showing the N—H⋯O (red dotted lines) and C—H⋯Cl inter­actions (green dotted lines). [Symmetry codes: (i) x + [{1\over 2}], y − [{1\over 2}], z; (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (iii) x − [{1\over 2}], y − [{1\over 2}], z; (iv) x, −y + 1, z − [{1\over 2}].]
[Figure 3]
Figure 3
Partial packing diagram of (I)[link], showing the inter­actions of water mol­ecule O34 with N2, O28 and O31 (red dotted lines). [Symmetry codes: (i) −x + 2, y, −z + [{3\over 2}]; (ii) x + [{1\over 2}], y − [{1\over 2}], z; (iii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}].]

The crystal packing of (II)[link] is dominated by hydrogen-bonding inter­actions (Table 2[link]). Inversion dimers created by N2—H2AB⋯O28i hydrogen bonds are further linked into chains in the b-axis direction by N2—H2AA⋯(O23ii,O25ii) hydrogen bonds [Figs. 4[link] and 5[link]; symmetry codes: (i) − x + 1, −y, − z + 1; (ii) x, y + 1, z].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2AA⋯O23i 0.91 2.49 3.025 (5) 118
N2—H2AA⋯O25i 0.91 2.47 3.377 (5) 174
N2—H2AB⋯O28ii 0.91 2.22 3.085 (5) 158
C26—H26A⋯Cl9 0.99 2.73 3.581 (4) 144
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1.
[Figure 4]
Figure 4
Formation of an inversion dimer by N—H⋯O hydrogen bonds drawn as red dashed lines in packing of (II)[link]. [Symmetry code: (i) −x + 1, −y, −z + 1.]
[Figure 5]
Figure 5
Chains of mol­ecules in the b-direction in the packing of (II)[link] by N—H⋯O hydrogen bonds (red dashed lines). Other N—H⋯O and C—H⋯Cl inter­actions shown as blue and green dashed lines, respectively.

No ππ inter­actions are observed in the packing of either structure. For (I)[link] a C—H⋯π inter­action is present [C27—H27BCg1iii, H27BCg1iii = 2.72 Å; Cg1 is the centroid of the C20-C25 ring; symmetry code: (iii) −x + 1, y, −z + [{3\over 2}]].

4. Database survey

The Pt—N distances in (I)[link] and (II)[link] vary from 2.033 (6) to 2.273 (8) Å and deviate for the minor parts (Pt1B) due to the disorder from the average Pt—N distance of 2.09 (5) Å for Pt—NH2—phenyl fragments present in the Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The Pt1A—Cl distances are between 2.288 (4) and 2.305 (2) Å and agree well with the average Pt—Cl distance of 2.32 (3) Å for trans complexes present in the CSD. One Pt1B—Cl distance [2.151 (2) Å] deviates significantly from this average.

A search in the CSD for Pt complexes with Pt coordinated by Cl, NH2 and C=C shows 11 hits. As fourth ligand we notice an additional Cl atom (eight hits, five trans and three cis coordinations) or C atom (two hits) or O atom (one hit). In the complex [PtCl(methyl­eugenol)(o-toluidine)] (CSD refcode GOYJEL; Da, Chi et al., 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala Kimpende, P. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]), the central Pt atom coordinated by only one Cl atom, the NH2 group of o-toluidine, the C=C double bond of the eugenol ligand and also a C atom of the eugenol ligand. In (I)[link] and (II)[link] this last inter­action is not present and is replaced by an additional Cl atom.

5. Synthesis and crystallization

Synthesis of K[Pt(Alkeug)Cl3]:

The mononuclear complexes K[Pt(Alkeug)Cl3] (Alkeug are methyl­eugenoxyl­acetate or Meteug, and ethyl­eugenoxyl­acetate or Eteug) were synthesized following the protocol of Da and coworkers (Da et al., 2012[Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131-142.]; Da, Chi et al., 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala Kimpende, P. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]; Da, Hai et al., 2015[Da, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525-3536.]).

Synthesis of trans-[PtCl2(Alkeug)(C6H6NCl)]:

A solution of 127.0 mg (1.0 mmol) p-chloro­aniline in 10 mL acetone/ethanol (1:1 v/v) was added to a mixture of 1.0 mmol [K[Pt(Alkeug)Cl3] and 10 mL acetone/ethanol (1:1 v/v). After two h stirring, a white precipitate of KCl was separated out. The remaining solution was stirred for two h at room temperature to obtain a yellow precipitate, which was collected by filtration, washed with ethanol and diethyl ether and dried in vacuum. The obtained crystals are soluble in chloro­form and acetone, slightly soluble in ethanol and insoluble in water. The yield was 70–80%. Single crystals suitable for X-ray investigation were obtained by slow evaporation from a chloro­form/ethanol (1:2 v/v) solution at room temperature.

Data for [PtCl2(Meteug)(C6H6NCl)] (I)[link]:

IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3243, 3164 (νNH); 3060, 2958, 2836 (νCH); 1746 (νC=O); 1592, 1517 (aromatic, νC=C, νC=N); 545 (νPt-N).

1H NMR (δ p.p.m; 500 MHz, CDCl3): 3.07 (br, 1H, –CH2­a); 3.40 (dd, 2J = 15.0 Hz, 3J = 8.0 Hz, –CH2b); 5.54 (br, 1H, all­yl); 4.54 (br, 1H, cis-alkene); 4.65 (d, J = 13.0 Hz, 1H, trans-alkene); 6.85 (ov, 1H, Ar); 6.83 (ov, 1H, Ar); 6.71 (d, J = 8.0 Hz, 1H, Ar); 3.82 (ov, 3H, –OCH3); 4.69 (s, 2H, –CH2–); 7.32 (ov, 4H, Ar), 6.10 (br, NH2).

Data for [PtCl2(Eteug)(C6H6NCl)] (II)[link]:

IR (KBr, cm−1): 3239, 3160 (νNH); 3060, 2921, 2823 (νCH); 1746 (νC=O); 1595, 1516 (aromatic, νC=C, νC=N); 550 (νPt-N).

1H NMR (δ p.p.m; 500 MHz, CDCl3): 3.08 (br, 1H, –CH2­a); 3.39 (dd, 2J = 15.5 Hz, 3J = 7.5 Hz, 1H, –CH2b); 5.53 (br, 1H, all­yl); 4.63 (d, J = 9.5 Hz, 1H, cis-alkene); 4.52 (br, 1H, trans-alkene); 6.78 (ov, 1H, Ar); 6.82 (d, J = 8.0 Hz, 1H, Ar); 6.70 (d, J = 8.0 Hz, 1H, Ar); 3.82 (s, 3H, –OCH3); 4.28 (q, J = 7.0 Hz, 2H, –CH2); 1.30 (t, J = 7.0 Hz, 3H, –CH3); 4.67 (s, 2H, –CH2–); 7.30 (ov, 4H, Ar), 6.20 (br, NH2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Both structures show disorder which was modelled as good as possible, but still some larger peaks are present in the difference maps.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [PtCl2(C6H6ClN)(C13H16O4)]·0.1H2O [PtCl2(C6H6ClN)(C14H18O4)]
Mr 631.61 643.84
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 13.8322 (6), 15.0753 (4), 21.0367 (9) 9.9093 (3), 10.0102 (3), 11.1414 (4)
α, β, γ (°) 90, 106.683 (5), 90 97.302 (3), 99.706 (3), 92.572 (2)
V3) 4202.0 (3) 1078.01 (6)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.09 6.91
Crystal size (mm) 0.20 × 0.10 × 0.10 0.30 × 0.30 × 0.15
 
Data collection
Diffractometer Agilent SuperNova diffractometer (single source at offset, Eos detector) Agilent SuperNova diffractometer (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.715, 1.000 0.547, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 44052, 4295, 4033 22329, 4378, 4177
Rint 0.032 0.044
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.064, 1.22 0.026, 0.057, 1.20
No. of reflections 4295 4378
No. of parameters 315 292
No. of restraints 291 264
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.28, −0.92 0.97, −0.96
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

In (I)[link] the PtCl2CH2=CH—CH2 fragment is disordered over two positions [population parameters 0.679 (8) and 0.321 (8)] and refined with constraints for the bond lengths present in this fragment. Refinement of the population parameter of oxygen atom O34 (at special position) converged to 0.10 (1). Water H atoms were not located.

In (II)[link] only the PtCl2 fragment is disordered over two positions [population parameters 0.872 (6) and 0.128 (6)].

All H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups), with C—H distances of 0.95 (aromatic and =CH2), 0.98 (CH3), 0.99 (CH2) and 1.00 Å (CH), and N—H distances of 0.91 Å (NH2). Enhanced rigid bond restraints were used for the anisotropic temperature factors of the non-H atoms. In the final cycles of refinement, 7 and 15 outliers were omitted for (I)[link] and (II)[link], respectively.

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); olex2.solve (Bourhis et al., 2015) for (II). For both compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) trans-Dichlorido(4-chloroaniline-κN){3-methoxy-4-methoxycarbonylmethoxy-1-[(2,3-η)-prop-2-en-1-yl]benzene}platinum(II) 0.1-hydrate top
Crystal data top
[PtCl2(C6H6ClN)(C13H16O4)]·0.1H2OF(000) = 2440.0
Mr = 631.61Dx = 1.997 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.8322 (6) ÅCell parameters from 22209 reflections
b = 15.0753 (4) Åθ = 3.3–28.6°
c = 21.0367 (9) ŵ = 7.09 mm1
β = 106.683 (5)°T = 100 K
V = 4202.0 (3) Å3Block, yellow
Z = 80.2 × 0.1 × 0.1 mm
Data collection top
Agilent SuperNova
diffractometer (single source at offset, Eos detector)
4295 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4033 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1818
Tmin = 0.715, Tmax = 1.000l = 2626
44052 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + 46.5817P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
4295 reflectionsΔρmax = 1.28 e Å3
315 parametersΔρmin = 0.92 e Å3
291 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt1A0.75061 (14)0.49179 (7)0.82720 (10)0.0213 (2)0.679 (8)
Pt1B0.7676 (3)0.4904 (2)0.8417 (2)0.0349 (6)0.321 (8)
N20.8940 (3)0.5396 (3)0.8235 (2)0.0369 (10)
H2AA0.94270.49960.84320.044*0.679 (8)
H2AB0.89380.54590.78050.044*0.679 (8)
H2BC0.94650.50150.83890.044*0.321 (8)
H2BD0.88350.54690.77910.044*0.321 (8)
C30.9164 (4)0.6242 (3)0.8573 (3)0.0328 (11)
C40.9600 (5)0.6278 (4)0.9245 (3)0.0457 (14)
H40.97920.57430.94870.055*
C50.9763 (5)0.7077 (4)0.9572 (3)0.0491 (15)
H51.00470.70961.00400.059*
C60.9509 (4)0.7856 (4)0.9213 (3)0.0390 (12)
C70.9087 (4)0.7838 (4)0.8539 (3)0.0327 (11)
H70.89150.83740.82950.039*
C80.8913 (4)0.7023 (3)0.8218 (3)0.0303 (11)
H80.86210.70020.77510.036*
Cl90.97029 (14)0.88741 (11)0.96197 (8)0.0557 (4)
Cl100.8612 (7)0.4286 (5)0.9395 (3)0.0395 (16)0.321 (8)
Cl110.6918 (4)0.5297 (5)0.7175 (2)0.0425 (11)0.679 (8)
Cl120.8205 (3)0.4484 (2)0.93519 (14)0.0337 (6)0.679 (8)
Cl130.6770 (6)0.5272 (9)0.7318 (4)0.036 (2)0.321 (8)
C140.6190 (7)0.4194 (5)0.8275 (4)0.0265 (19)0.679 (8)
H14A0.62960.38180.86520.032*0.679 (8)
H14B0.62410.39620.78670.032*0.679 (8)
C150.5959 (5)0.5080 (4)0.8322 (3)0.0213 (15)0.679 (8)
H150.54890.53240.79050.026*0.679 (8)
C160.5856 (7)0.5525 (4)0.8945 (4)0.0271 (18)0.679 (8)
H16A0.64110.53390.93350.032*0.679 (8)
H16B0.52050.53630.90220.032*0.679 (8)
C170.6445 (18)0.4012 (12)0.8481 (11)0.041 (5)0.321 (8)
H17A0.59490.38890.80730.050*0.321 (8)
H17B0.69670.35960.86620.050*0.321 (8)
C180.6407 (13)0.4798 (11)0.8811 (10)0.046 (4)0.321 (8)
H180.66330.47110.93020.055*0.321 (8)
C190.5657 (13)0.5548 (7)0.8620 (10)0.042 (4)0.321 (8)
H19A0.50710.53760.87740.051*0.321 (8)
H19B0.54160.55520.81290.051*0.321 (8)
C200.5902 (4)0.6522 (4)0.8837 (3)0.0424 (13)
C210.5064 (4)0.7011 (3)0.8465 (3)0.0339 (11)
H210.44560.67120.82420.041*
C220.5118 (4)0.7926 (3)0.8422 (2)0.0282 (10)
C230.6008 (4)0.8361 (3)0.8764 (3)0.0313 (11)
C240.6828 (4)0.7872 (4)0.9122 (3)0.0395 (12)
H240.74350.81670.93520.047*
C250.6774 (4)0.6956 (4)0.9150 (3)0.0440 (13)
H250.73490.66270.93890.053*
O260.4355 (3)0.8454 (2)0.80566 (18)0.0324 (8)
C270.3460 (4)0.8027 (4)0.7673 (3)0.0343 (12)
H27A0.31170.77500.79700.051*
H27B0.36350.75710.73930.051*
H27C0.30120.84650.73930.051*
O280.5993 (3)0.9267 (2)0.86886 (19)0.0372 (9)
C290.6894 (5)0.9716 (4)0.9030 (3)0.0446 (14)
H29A0.74790.94570.89140.054*
H29B0.70140.96670.95150.054*
C300.6754 (5)1.0688 (4)0.8813 (3)0.0480 (14)
O310.6176 (4)1.0965 (3)0.8301 (3)0.0582 (12)
O320.7487 (5)1.1132 (3)0.9246 (2)0.0740 (16)
C330.7493 (9)1.2074 (5)0.9135 (5)0.102 (3)
H33A0.74281.21880.86660.154*
H33B0.81281.23270.94100.154*
H33C0.69261.23490.92530.154*
O341.00000.50000.75000.10 (2)0.10 (1)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt1A0.0216 (4)0.0167 (3)0.0252 (5)0.00062 (18)0.0064 (4)0.0012 (2)
Pt1B0.0269 (10)0.0479 (9)0.0288 (12)0.0027 (5)0.0061 (9)0.0021 (6)
N20.028 (2)0.029 (2)0.054 (3)0.0035 (17)0.0125 (19)0.0060 (19)
C30.022 (2)0.033 (2)0.043 (3)0.0006 (19)0.008 (2)0.006 (2)
C40.045 (3)0.039 (3)0.046 (3)0.014 (2)0.001 (2)0.013 (2)
C50.052 (4)0.052 (3)0.039 (3)0.020 (3)0.005 (3)0.009 (2)
C60.034 (3)0.041 (3)0.042 (3)0.018 (2)0.011 (2)0.001 (2)
C70.027 (3)0.033 (2)0.040 (3)0.003 (2)0.012 (2)0.008 (2)
C80.022 (2)0.032 (2)0.036 (3)0.0006 (19)0.008 (2)0.0055 (19)
Cl90.0722 (11)0.0515 (9)0.0477 (9)0.0338 (8)0.0242 (8)0.0125 (7)
Cl100.049 (4)0.037 (3)0.029 (2)0.003 (3)0.005 (3)0.008 (2)
Cl110.058 (3)0.0403 (18)0.0382 (14)0.0123 (18)0.0281 (13)0.0128 (11)
Cl120.0287 (15)0.0273 (13)0.0359 (12)0.0024 (10)0.0052 (11)0.0095 (9)
Cl130.015 (2)0.035 (3)0.054 (5)0.005 (2)0.004 (3)0.016 (4)
C140.025 (4)0.027 (4)0.028 (4)0.001 (3)0.008 (3)0.001 (3)
C150.015 (3)0.027 (3)0.020 (3)0.000 (2)0.002 (2)0.003 (2)
C160.036 (4)0.029 (3)0.018 (4)0.005 (3)0.011 (3)0.007 (3)
C170.032 (8)0.039 (7)0.051 (10)0.004 (5)0.010 (7)0.009 (6)
C180.042 (7)0.041 (6)0.058 (9)0.002 (5)0.019 (6)0.010 (6)
C190.042 (8)0.041 (5)0.057 (11)0.008 (4)0.033 (7)0.022 (5)
C200.041 (3)0.035 (2)0.061 (3)0.007 (2)0.030 (3)0.013 (2)
C210.030 (2)0.030 (2)0.049 (3)0.0014 (19)0.022 (2)0.001 (2)
C220.031 (2)0.028 (2)0.030 (2)0.0048 (18)0.0156 (19)0.0011 (18)
C230.034 (2)0.033 (2)0.028 (2)0.0011 (19)0.012 (2)0.0007 (19)
C240.037 (3)0.047 (3)0.034 (3)0.002 (2)0.010 (2)0.006 (2)
C250.035 (3)0.047 (3)0.052 (3)0.009 (2)0.016 (3)0.017 (2)
O260.0293 (18)0.0261 (17)0.040 (2)0.0027 (14)0.0081 (15)0.0015 (15)
C270.030 (3)0.038 (3)0.035 (3)0.002 (2)0.010 (2)0.004 (2)
O280.037 (2)0.0302 (18)0.041 (2)0.0044 (15)0.0062 (17)0.0065 (15)
C290.046 (3)0.049 (3)0.039 (3)0.015 (2)0.011 (3)0.004 (2)
C300.061 (4)0.042 (3)0.050 (3)0.017 (3)0.029 (3)0.005 (2)
O310.052 (3)0.051 (3)0.076 (3)0.001 (2)0.026 (2)0.007 (2)
O320.110 (4)0.066 (3)0.050 (3)0.052 (3)0.030 (3)0.011 (2)
C330.171 (10)0.062 (4)0.100 (7)0.063 (5)0.081 (7)0.018 (4)
O340.06 (3)0.21 (6)0.04 (2)0.0000.015 (18)0.000
Geometric parameters (Å, º) top
Pt1A—N22.132 (5)C17—H17A0.9500
Pt1A—Cl112.288 (4)C17—H17B0.9500
Pt1A—Cl122.294 (3)C17—C181.381 (12)
Pt1A—C142.124 (9)C18—H181.0000
Pt1A—C152.187 (6)C18—C191.508 (11)
Pt1B—N22.033 (6)C19—H19A0.9900
Pt1B—Cl102.291 (5)C19—H19B0.9900
Pt1B—Cl132.357 (7)C19—C201.546 (11)
Pt1B—C172.20 (2)C20—C211.407 (8)
Pt1B—C182.151 (18)C20—C251.364 (9)
N2—H2AA0.9100C21—H210.9500
N2—H2AB0.9100C21—C221.386 (7)
N2—H2BC0.9100C22—C231.398 (7)
N2—H2BD0.9100C22—O261.369 (6)
N2—C31.450 (7)C23—C241.381 (8)
C3—C41.370 (8)C23—O281.374 (6)
C3—C81.384 (7)C24—H240.9500
C4—H40.9500C24—C251.385 (8)
C4—C51.374 (9)C25—H250.9500
C5—H50.9500O26—C271.422 (6)
C5—C61.386 (8)C27—H27A0.9800
C6—C71.370 (8)C27—H27B0.9800
C6—Cl91.741 (6)C27—H27C0.9800
C7—H70.9500O28—C291.419 (7)
C7—C81.389 (7)C29—H29A0.9900
C8—H80.9500C29—H29B0.9900
C14—H14A0.9500C29—C301.530 (9)
C14—H14B0.9500C30—O311.218 (8)
C14—C151.383 (9)C30—O321.332 (8)
C15—H151.0000O32—C331.440 (9)
C15—C161.514 (8)C33—H33A0.9800
C16—H16A0.9900C33—H33B0.9800
C16—H16B0.9900C33—H33C0.9800
C16—C201.523 (8)
N2—Pt1A—Cl1186.8 (2)H16A—C16—H16B108.6
N2—Pt1A—Cl1290.03 (16)C20—C16—H16A110.4
N2—Pt1A—C15153.8 (2)C20—C16—H16B110.4
Cl11—Pt1A—Cl12175.35 (16)Pt1B—C17—H17A115.8
C14—Pt1A—N2168.7 (2)Pt1B—C17—H17B85.2
C14—Pt1A—Cl1194.3 (3)H17A—C17—H17B120.0
C14—Pt1A—Cl1288.2 (3)C18—C17—Pt1B69.4 (12)
C14—Pt1A—C1537.4 (3)C18—C17—H17A120.0
C15—Pt1A—Cl1187.2 (2)C18—C17—H17B120.0
C15—Pt1A—Cl1297.1 (2)Pt1B—C18—H18111.2
N2—Pt1B—Cl1091.2 (2)C17—C18—Pt1B73.6 (13)
N2—Pt1B—Cl1388.5 (3)C17—C18—H18111.2
N2—Pt1B—C17162.7 (5)C17—C18—C19129.1 (17)
N2—Pt1B—C18160.0 (5)C19—C18—Pt1B114.6 (12)
Cl10—Pt1B—Cl13168.6 (4)C19—C18—H18111.2
C17—Pt1B—Cl1086.8 (6)C18—C19—H19A106.4
C17—Pt1B—Cl1390.1 (6)C18—C19—H19B106.4
C18—Pt1B—Cl1086.4 (6)C18—C19—C20123.8 (13)
C18—Pt1B—Cl1397.6 (6)H19A—C19—H19B106.4
C18—Pt1B—C1736.9 (4)C20—C19—H19A106.4
Pt1A—N2—H2AA109.5C20—C19—H19B106.4
Pt1A—N2—H2AB109.5C21—C20—C16122.4 (6)
Pt1B—N2—H2BC110.2C21—C20—C19104.9 (8)
Pt1B—N2—H2BD110.2C25—C20—C16118.1 (6)
H2AA—N2—H2AB108.1C25—C20—C19133.4 (8)
H2BC—N2—H2BD108.5C25—C20—C21119.3 (5)
C3—N2—Pt1A110.5 (3)C20—C21—H21119.8
C3—N2—Pt1B107.7 (3)C22—C21—C20120.4 (5)
C3—N2—H2AA109.5C22—C21—H21119.8
C3—N2—H2AB109.5C21—C22—C23119.3 (5)
C3—N2—H2BC110.2O26—C22—C21124.6 (5)
C3—N2—H2BD110.2O26—C22—C23116.1 (4)
C4—C3—N2120.5 (5)C24—C23—C22119.7 (5)
C4—C3—C8119.5 (5)O28—C23—C22115.1 (5)
C8—C3—N2120.0 (5)O28—C23—C24125.2 (5)
C3—C4—H4119.6C23—C24—H24119.7
C3—C4—C5120.8 (6)C23—C24—C25120.6 (6)
C5—C4—H4119.6C25—C24—H24119.7
C4—C5—H5120.3C20—C25—C24120.7 (6)
C4—C5—C6119.3 (6)C20—C25—H25119.7
C6—C5—H5120.3C24—C25—H25119.7
C5—C6—Cl9119.9 (5)C22—O26—C27117.5 (4)
C7—C6—C5121.0 (6)O26—C27—H27A109.5
C7—C6—Cl9119.1 (4)O26—C27—H27B109.5
C6—C7—H7120.6O26—C27—H27C109.5
C6—C7—C8118.9 (5)H27A—C27—H27B109.5
C8—C7—H7120.6H27A—C27—H27C109.5
C3—C8—C7120.5 (5)H27B—C27—H27C109.5
C3—C8—H8119.7C23—O28—C29115.7 (4)
C7—C8—H8119.7O28—C29—H29A110.4
Pt1A—C14—H14A112.4O28—C29—H29B110.4
Pt1A—C14—H14B84.2O28—C29—C30106.8 (5)
H14A—C14—H14B120.0H29A—C29—H29B108.6
C15—C14—Pt1A73.8 (4)C30—C29—H29A110.4
C15—C14—H14A120.0C30—C29—H29B110.4
C15—C14—H14B120.0O31—C30—C29125.9 (6)
Pt1A—C15—H15113.4O31—C30—O32127.7 (6)
C14—C15—Pt1A68.9 (5)O32—C30—C29105.7 (6)
C14—C15—H15113.4C30—O32—C33115.0 (7)
C14—C15—C16124.8 (6)O32—C33—H33A109.5
C16—C15—Pt1A115.3 (5)O32—C33—H33B109.5
C16—C15—H15113.4O32—C33—H33C109.5
C15—C16—H16A110.4H33A—C33—H33B109.5
C15—C16—H16B110.4H33A—C33—H33C109.5
C15—C16—C20106.8 (5)H33B—C33—H33C109.5
Pt1A—N2—C3—C485.5 (5)C18—C19—C20—C21170.4 (16)
Pt1A—N2—C3—C892.9 (5)C18—C19—C20—C259 (3)
Pt1A—C14—C15—C16106.8 (7)C19—C20—C21—C22165.6 (9)
Pt1A—C15—C16—C2083.1 (6)C19—C20—C25—C24161.9 (12)
Pt1B—N2—C3—C476.9 (6)C20—C21—C22—C231.4 (8)
Pt1B—N2—C3—C8101.5 (5)C20—C21—C22—O26177.9 (5)
Pt1B—C17—C18—C19109 (2)C21—C20—C25—C242.1 (9)
Pt1B—C18—C19—C2065 (2)C21—C22—C23—C241.9 (7)
N2—C3—C4—C5176.4 (5)C21—C22—C23—O28179.7 (4)
N2—C3—C8—C7177.4 (5)C21—C22—O26—C272.8 (7)
C3—C4—C5—C61.9 (10)C22—C23—C24—C250.5 (8)
C4—C3—C8—C71.0 (8)C22—C23—O28—C29179.6 (5)
C4—C5—C6—C70.9 (9)C23—C22—O26—C27176.5 (4)
C4—C5—C6—Cl9179.6 (5)C23—C24—C25—C201.6 (9)
C5—C6—C7—C80.1 (8)C23—O28—C29—C30173.5 (4)
C6—C7—C8—C30.0 (8)C24—C23—O28—C292.0 (8)
C8—C3—C4—C52.0 (9)C25—C20—C21—C220.6 (8)
Cl9—C6—C7—C8178.7 (4)O26—C22—C23—C24177.4 (5)
C14—C15—C16—C20164.0 (7)O26—C22—C23—O280.3 (6)
C15—C16—C20—C2180.3 (8)O28—C23—C24—C25178.0 (5)
C15—C16—C20—C25104.0 (7)O28—C29—C30—O3123.3 (9)
C16—C20—C21—C22175.0 (5)O28—C29—C30—O32165.6 (5)
C16—C20—C25—C24173.7 (6)C29—C30—O32—C33179.7 (6)
C17—C18—C19—C20153 (2)O31—C30—O32—C339.4 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2AA···O26i0.912.453.027 (5)122
N2—H2AA···O28i0.912.353.212 (6)158
N2—H2AB···O31ii0.912.413.302 (3)167
C16—H16A···Cl120.992.793.487 (10)128
C16—H16B···Cl9iii0.992.763.472 (8)129
C21—H21···Cl11iv0.952.823.726 (8)159
C29—H29B···Cl12v0.992.803.651 (7)145
C27—H27B···Cg1iv0.982.723.523 (6)139
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y1/2, z+3/2; (iii) x1/2, y1/2, z; (iv) x+1, y, z+3/2; (v) x+3/2, y+3/2, z+2.
(II) trans-Dichlorido(4-chloroaniline-κN){4-ethoxycarbonylmethoxy-3-methoxy-1-[(2,3-η)-prop-2-en-1-yl]benzene}platinum(II) top
Crystal data top
[PtCl2(C6H6ClN)(C14H18O4)]Z = 2
Mr = 643.84F(000) = 624
Triclinic, P1Dx = 1.984 Mg m3
a = 9.9093 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0102 (3) ÅCell parameters from 10730 reflections
c = 11.1414 (4) Åθ = 3.2–29.0°
α = 97.302 (3)°µ = 6.91 mm1
β = 99.706 (3)°T = 100 K
γ = 92.572 (2)°Block, yellow
V = 1078.01 (6) Å30.3 × 0.3 × 0.15 mm
Data collection top
Agilent SuperNova
diffractometer (single source at offset, Eos detector)
4378 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4177 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1212
Tmin = 0.547, Tmax = 1.000l = 1313
22329 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0056P)2 + 3.1214P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
4378 reflectionsΔρmax = 0.97 e Å3
292 parametersΔρmin = 0.96 e Å3
264 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt1A0.69549 (11)0.29586 (10)0.25083 (7)0.01218 (14)0.872 (6)
Pt1B0.6572 (11)0.2618 (9)0.2299 (6)0.0263 (11)0.128 (6)
N20.6352 (4)0.3773 (4)0.4142 (3)0.0175 (7)
H2AA0.66870.46490.43460.021*0.872 (6)
H2AB0.54200.37540.40330.021*0.872 (6)
H2BC0.68340.45880.42580.021*0.128 (6)
H2BD0.54540.39210.41470.021*0.128 (6)
C30.6861 (4)0.3007 (4)0.5131 (4)0.0172 (9)
C40.8223 (4)0.3217 (4)0.5704 (4)0.0191 (9)
H40.88150.38540.54460.023*
C50.8722 (4)0.2504 (4)0.6650 (4)0.0194 (9)
H50.96530.26460.70490.023*
C60.7836 (4)0.1577 (4)0.7002 (4)0.0182 (9)
C70.6483 (4)0.1340 (4)0.6433 (4)0.0191 (9)
H70.58970.06920.66850.023*
C80.5994 (4)0.2062 (4)0.5490 (4)0.0199 (9)
H80.50650.19120.50880.024*
Cl90.84620 (12)0.06618 (11)0.81957 (10)0.0252 (2)
Cl100.88980 (15)0.4404 (2)0.30141 (16)0.0170 (4)0.872 (6)
Cl110.4916 (2)0.1647 (2)0.20164 (18)0.0173 (4)0.872 (6)
Cl120.8689 (13)0.377 (2)0.2675 (13)0.037 (3)0.128 (6)
Cl130.4387 (19)0.1586 (18)0.1984 (16)0.034 (3)0.128 (6)
C140.7274 (5)0.2580 (5)0.0645 (4)0.0236 (10)
H14A0.64730.22800.00570.028*
H14B0.75790.35090.07940.028*
C150.8002 (5)0.1655 (5)0.1289 (4)0.0242 (10)
H150.90210.18390.14370.029*0.872 (6)
H15A0.90000.18940.16080.029*0.128 (6)
C160.7539 (5)0.0195 (4)0.1067 (4)0.0245 (10)
H16A0.81080.02720.05170.029*
H16B0.65820.01060.06160.029*
C170.7586 (5)0.0551 (4)0.2180 (4)0.0186 (9)
C180.6816 (4)0.1797 (4)0.1979 (4)0.0187 (9)
H180.63080.21170.11840.022*
C190.6787 (4)0.2565 (4)0.2923 (4)0.0161 (8)
C200.7528 (4)0.2097 (4)0.4101 (4)0.0143 (8)
C210.8282 (4)0.0865 (4)0.4312 (4)0.0174 (9)
H210.87800.05360.51080.021*
C220.8303 (4)0.0106 (4)0.3335 (4)0.0196 (9)
H220.88270.07360.34800.023*
O230.6053 (3)0.3770 (3)0.2818 (3)0.0183 (6)
C240.5250 (5)0.4260 (4)0.1644 (4)0.0241 (10)
H24A0.58450.43410.10230.036*
H24B0.45490.36290.14300.036*
H24C0.48050.51470.16720.036*
O250.7390 (3)0.2930 (3)0.4975 (3)0.0168 (6)
C260.8067 (4)0.2464 (4)0.6172 (4)0.0183 (9)
H26A0.78420.15260.64180.022*
H26B0.90720.24730.62140.022*
C270.7604 (4)0.3380 (4)0.7025 (4)0.0157 (8)
O280.6689 (3)0.4258 (3)0.6725 (3)0.0176 (6)
O290.8362 (3)0.3074 (3)0.8142 (3)0.0180 (6)
C300.8025 (5)0.3861 (5)0.9070 (4)0.0212 (10)
H30A0.80250.48370.87760.025*
H30B0.71030.36680.92490.025*
C310.9091 (4)0.3475 (4)1.0205 (4)0.0200 (9)
H31A0.99930.37141.00280.030*
H31B0.88650.39601.08640.030*
H31C0.91120.25011.04650.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt1A0.0123 (3)0.0118 (2)0.01192 (18)0.00266 (15)0.00058 (15)0.00299 (14)
Pt1B0.030 (2)0.030 (2)0.0207 (16)0.0011 (19)0.0073 (16)0.0081 (15)
N20.0171 (17)0.0194 (18)0.0155 (19)0.0007 (14)0.0029 (14)0.0010 (14)
C30.020 (2)0.017 (2)0.015 (2)0.0008 (16)0.0050 (16)0.0017 (16)
C40.021 (2)0.020 (2)0.016 (2)0.0049 (17)0.0044 (17)0.0020 (17)
C50.018 (2)0.024 (2)0.015 (2)0.0034 (17)0.0022 (17)0.0002 (18)
C60.025 (2)0.018 (2)0.012 (2)0.0003 (16)0.0033 (17)0.0014 (17)
C70.022 (2)0.017 (2)0.019 (2)0.0041 (16)0.0076 (17)0.0024 (17)
C80.0146 (19)0.026 (2)0.019 (2)0.0033 (17)0.0030 (17)0.0048 (18)
Cl90.0379 (6)0.0240 (6)0.0123 (6)0.0029 (5)0.0008 (5)0.0041 (4)
Cl100.0148 (6)0.0174 (8)0.0176 (8)0.0065 (5)0.0010 (5)0.0032 (6)
Cl110.0124 (8)0.0174 (7)0.0201 (8)0.0054 (7)0.0009 (7)0.0005 (5)
Cl120.034 (5)0.049 (8)0.026 (6)0.013 (5)0.010 (4)0.003 (5)
Cl130.033 (7)0.036 (6)0.034 (7)0.002 (6)0.011 (6)0.002 (5)
C140.030 (2)0.025 (2)0.017 (2)0.0025 (19)0.0043 (18)0.0060 (18)
C150.028 (2)0.025 (2)0.022 (2)0.0012 (18)0.0084 (19)0.0056 (18)
C160.040 (3)0.020 (2)0.014 (2)0.0026 (19)0.008 (2)0.0022 (17)
C170.031 (2)0.0151 (19)0.012 (2)0.0047 (17)0.0083 (17)0.0035 (16)
C180.027 (2)0.018 (2)0.011 (2)0.0009 (17)0.0024 (17)0.0029 (16)
C190.018 (2)0.0155 (19)0.015 (2)0.0009 (15)0.0048 (16)0.0033 (15)
C200.0158 (19)0.0154 (19)0.013 (2)0.0009 (15)0.0025 (15)0.0052 (15)
C210.019 (2)0.019 (2)0.013 (2)0.0031 (16)0.0016 (16)0.0022 (16)
C220.024 (2)0.015 (2)0.020 (2)0.0035 (17)0.0058 (17)0.0041 (17)
O230.0226 (15)0.0182 (15)0.0127 (16)0.0043 (12)0.0018 (12)0.0046 (12)
C240.034 (3)0.020 (2)0.016 (2)0.0050 (19)0.0040 (19)0.0067 (18)
O250.0236 (15)0.0160 (14)0.0098 (15)0.0047 (12)0.0009 (12)0.0054 (12)
C260.019 (2)0.019 (2)0.015 (2)0.0050 (17)0.0003 (16)0.0048 (17)
C270.0174 (19)0.016 (2)0.014 (2)0.0026 (16)0.0029 (15)0.0020 (16)
O280.0221 (15)0.0177 (15)0.0112 (16)0.0046 (12)0.0005 (12)0.0009 (12)
O290.0186 (15)0.0225 (16)0.0123 (15)0.0057 (12)0.0003 (12)0.0063 (12)
C300.027 (2)0.024 (2)0.013 (2)0.0056 (18)0.0030 (18)0.0045 (18)
C310.025 (2)0.023 (2)0.012 (2)0.0006 (18)0.0004 (17)0.0040 (18)
Geometric parameters (Å, º) top
Pt1A—N22.089 (4)C16—H16A0.9900
Pt1A—Cl102.3011 (14)C16—H16B0.9900
Pt1A—Cl112.3050 (15)C16—C171.522 (6)
Pt1A—C142.142 (5)C17—C181.406 (6)
Pt1A—C152.184 (5)C17—C221.371 (6)
Pt1B—N22.273 (8)C18—H180.9500
Pt1B—Cl122.297 (12)C18—C191.382 (6)
Pt1B—Cl132.309 (14)C19—C201.403 (6)
Pt1B—C142.073 (6)C19—O231.362 (5)
Pt1B—C152.142 (6)C20—C211.385 (6)
N2—H2AA0.9100C20—O251.380 (5)
N2—H2AB0.9100C21—H210.9500
N2—H2BC0.9100C21—C221.406 (6)
N2—H2BD0.9100C22—H220.9500
N2—C31.455 (5)O23—C241.427 (5)
C3—C41.387 (6)C24—H24A0.9800
C3—C81.390 (6)C24—H24B0.9800
C4—H40.9500C24—H24C0.9800
C4—C51.383 (6)O25—C261.399 (5)
C5—H50.9500C26—H26A0.9900
C5—C61.387 (6)C26—H26B0.9900
C6—C71.379 (6)C26—C271.512 (5)
C6—Cl91.754 (4)C27—O281.207 (5)
C7—H70.9500C27—O291.332 (5)
C7—C81.384 (6)O29—C301.449 (5)
C8—H80.9500C30—H30A0.9900
C14—H14A0.9500C30—H30B0.9900
C14—H14B0.9500C30—C311.501 (6)
C14—C151.396 (6)C31—H31A0.9800
C15—H151.0000C31—H31B0.9800
C15—H15A1.0000C31—H31C0.9800
C15—C161.489 (6)
N2—Pt1A—Cl1088.86 (10)C14—C15—H15114.2
N2—Pt1A—Cl1188.77 (11)C14—C15—H15A117.2
N2—Pt1A—C14163.99 (15)C14—C15—C16120.7 (4)
N2—Pt1A—C15158.31 (16)C16—C15—Pt1A116.5 (3)
Cl10—Pt1A—Cl11175.82 (7)C16—C15—Pt1B105.3 (4)
C14—Pt1A—Cl1090.53 (14)C16—C15—H15114.2
C14—Pt1A—Cl1190.80 (15)C16—C15—H15A117.2
C14—Pt1A—C1537.62 (17)C15—C16—H16A107.9
C15—Pt1A—Cl1089.13 (14)C15—C16—H16B107.9
C15—Pt1A—Cl1194.33 (15)C15—C16—C17117.8 (4)
N2—Pt1B—Cl1283.8 (4)H16A—C16—H16B107.2
N2—Pt1B—Cl1393.1 (5)C17—C16—H16A107.9
Cl12—Pt1B—Cl13176.1 (6)C17—C16—H16B107.9
C14—Pt1B—N2149.1 (6)C18—C17—C16115.9 (4)
C14—Pt1B—Cl1271.8 (5)C22—C17—C16125.5 (4)
C14—Pt1B—Cl13110.3 (7)C22—C17—C18118.6 (4)
C14—Pt1B—C1538.62 (18)C17—C18—H18119.6
C15—Pt1B—N2143.8 (6)C19—C18—C17120.8 (4)
C15—Pt1B—Cl1267.1 (6)C19—C18—H18119.6
C15—Pt1B—Cl13116.7 (7)C18—C19—C20119.9 (4)
Pt1A—N2—H2AA109.6O23—C19—C18124.8 (4)
Pt1A—N2—H2AB109.6O23—C19—C20115.2 (3)
Pt1B—N2—H2BC109.6C21—C20—C19119.7 (4)
Pt1B—N2—H2BD109.6O25—C20—C19114.7 (3)
H2AA—N2—H2AB108.1O25—C20—C21125.6 (4)
H2BC—N2—H2BD108.2C20—C21—H21120.3
C3—N2—Pt1A110.4 (3)C20—C21—C22119.4 (4)
C3—N2—Pt1B110.1 (3)C22—C21—H21120.3
C3—N2—H2AA109.6C17—C22—C21121.5 (4)
C3—N2—H2AB109.6C17—C22—H22119.2
C3—N2—H2BC109.6C21—C22—H22119.2
C3—N2—H2BD109.6C19—O23—C24117.0 (3)
C4—C3—N2119.5 (4)O23—C24—H24A109.5
C4—C3—C8120.2 (4)O23—C24—H24B109.5
C8—C3—N2120.4 (4)O23—C24—H24C109.5
C3—C4—H4119.9H24A—C24—H24B109.5
C5—C4—C3120.3 (4)H24A—C24—H24C109.5
C5—C4—H4119.9H24B—C24—H24C109.5
C4—C5—H5120.7C20—O25—C26116.1 (3)
C4—C5—C6118.6 (4)O25—C26—H26A110.0
C6—C5—H5120.7O25—C26—H26B110.0
C5—C6—Cl9118.9 (3)O25—C26—C27108.3 (3)
C7—C6—C5122.1 (4)H26A—C26—H26B108.4
C7—C6—Cl9119.0 (3)C27—C26—H26A110.0
C6—C7—H7120.6C27—C26—H26B110.0
C6—C7—C8118.7 (4)O28—C27—C26124.6 (4)
C8—C7—H7120.6O28—C27—O29125.8 (4)
C3—C8—H8119.9O29—C27—C26109.7 (3)
C7—C8—C3120.1 (4)C27—O29—C30116.1 (3)
C7—C8—H8119.9O29—C30—H30A110.2
Pt1A—C14—H14A115.0O29—C30—H30B110.2
Pt1A—C14—H14B82.6O29—C30—C31107.6 (3)
H14A—C14—H14B120.0H30A—C30—H30B108.5
C15—C14—Pt1A72.9 (3)C31—C30—H30A110.2
C15—C14—Pt1B73.4 (3)C31—C30—H30B110.2
C15—C14—H14A120.0C30—C31—H31A109.5
C15—C14—H14B120.0C30—C31—H31B109.5
Pt1A—C15—H15114.2C30—C31—H31C109.5
Pt1B—C15—H15A117.2H31A—C31—H31B109.5
C14—C15—Pt1A69.5 (3)H31A—C31—H31C109.5
C14—C15—Pt1B68.0 (3)H31B—C31—H31C109.5
Pt1A—N2—C3—C478.3 (4)C16—C17—C22—C21179.8 (4)
Pt1A—N2—C3—C8101.0 (4)C17—C18—C19—C200.3 (6)
Pt1A—C14—C15—C16109.4 (4)C17—C18—C19—O23178.8 (4)
Pt1A—C15—C16—C1756.7 (5)C18—C17—C22—C210.0 (7)
Pt1B—N2—C3—C491.5 (5)C18—C19—C20—C210.2 (6)
Pt1B—N2—C3—C887.8 (5)C18—C19—C20—O25178.3 (4)
Pt1B—C14—C15—C1695.3 (6)C18—C19—O23—C240.5 (6)
Pt1B—C15—C16—C1764.4 (5)C19—C20—C21—C220.6 (6)
N2—C3—C4—C5179.7 (4)C19—C20—O25—C26177.2 (3)
N2—C3—C8—C7179.8 (4)C20—C19—O23—C24178.1 (4)
C3—C4—C5—C60.3 (7)C20—C21—C22—C170.5 (7)
C4—C3—C8—C70.9 (7)C20—O25—C26—C27170.4 (3)
C4—C5—C6—C70.6 (7)C21—C20—O25—C260.7 (6)
C4—C5—C6—Cl9179.7 (3)C22—C17—C18—C190.4 (6)
C5—C6—C7—C80.7 (7)O23—C19—C20—C21178.5 (4)
C6—C7—C8—C30.0 (7)O23—C19—C20—O250.4 (5)
C8—C3—C4—C51.0 (7)O25—C20—C21—C22178.4 (4)
Cl9—C6—C7—C8179.8 (3)O25—C26—C27—O287.9 (6)
C14—C15—C16—C17137.6 (5)O25—C26—C27—O29171.8 (3)
C15—C16—C17—C18163.5 (4)C26—C27—O29—C30179.3 (3)
C15—C16—C17—C2216.3 (7)C27—O29—C30—C31173.4 (4)
C16—C17—C18—C19179.8 (4)O28—C27—O29—C301.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2AA···O23i0.912.493.025 (5)118
N2—H2AA···O25i0.912.473.377 (5)174
N2—H2AB···O28ii0.912.223.085 (5)158
C26—H26A···Cl90.992.733.581 (4)144
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank VLIR–UOS (project ZEIN2014Z182) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChabner, B. A. & Roberts, T. G. (2005). Nat. Rev. Cancer, 5, 65–72.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoates, A., Abraham, S., Kaye, S. B., Sowerbutts, T., Frewin, C., Fox, R. M. & Tattersall, M. H. (1983). Eur. J. Cancer Clin. Oncol. 19, 203–208.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDa, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala Kimpende, P. & Dinh, N. H. (2015). Polyhedron, 85, 104–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationDa, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131–142.  Web of Science CrossRef CAS Google Scholar
First citationDa, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525–3536.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGriffin, A. M., Butow, P. N., Coates, A. S., Childs, A. M., Ellis, P. M., Dunn, S. M. & Tattersall, M. H. (1996). Ann. Oncol. 7, 189–195.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnstone, T. C., Park, G. Y. & Lippard, S. J. (2014). Anticancer Res. 34, 471–476.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVon Hoff, D. D., Schilsky, R., Reichert, C. M., Reddick, R. L., Rozencweig, M., Young, R. C. & Muggia, F. M. (1979). Cancer Treat. Rep. 63, 1527–1531.  CAS PubMed Web of Science Google Scholar
First citationZhang, S., Lovejoy, K. S., Shima, J. E., Lagpacan, L. L., Shu, Y., Lapuk, A., Chen, Y., Komori, T., Gray, J. W., Chen, X., Lippard, S. J. & Giacomini, K. M. (2006). Cancer Res. 66, 8847–8857.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds