research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (E)-N′-(2-hy­dr­oxy-5-methyl­benzyl­­idene)isonicotinohydrazide and (E)-N′-(5-fluoro-2-hy­dr­oxy­benzyl­­idene)isonicotinohydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand, and bDepartment of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand
*Correspondence e-mail: filipk@nu.ac.th

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 May 2016; accepted 15 June 2016; online 17 June 2016)

Two derivatives of the well-known iron chelator, (E)-N′-(2-hy­droxy­benzyl­idene)isonicotinohydrazide (SIH), substituted in the 5-position of the 2-hy­droxy­benzene ring by a methyl and a fluorine group viz. (E)-N′-(2-hy­droxy-5-methyl­benzyl­idene)isonicotinohydrazide, C14H13N3O2, (I), and (E)-N′-(5-fluoro-2-hy­droxy­benzyl­idene)isonicotinohydrazide, C13H10FN3O2, (II), have been prepared and characterized by single-crystal X-ray diffraction, 1H NMR and mass spectrometry. The mol­ecules of both compounds deviate slightly from planarity [r.m.s. deviations are 0.145 and 0.110 Å for (I) and (II), respectively] and adopt an E conformation with respect to the double bond of the hydrazone bridge. In each mol­ecule, there is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif. The dihedral angles between the mean planes of the isonicotinoyl ring and the cresol ring in (I) or the fluoro­phenol ring in (II) are 10.49 (6) and 9.43 (6)°, respectively. In the crystals of both compounds, zigzag chains are formed via N—H⋯N hydrogen bonds, in the [10-1] direction for (I) and [010] for (II). In (I), the chains are linked by weak C—H⋯π and ππ stacking inter­actions [centroid-to-centroid distances = 3.6783 (8) Å; inter-planar angle = 10.94 (5)°], leading to the formation of a three-dimensional supra­molecular architecture. In (II), adjacent chains are connected through C—H⋯O hydrogen bonds to form sheets parallel to (100), which enclose R44(30) ring motifs. The sheets are linked by weak C—H⋯π and ππ [centroid-to-centroid distance = 3.7147 (8) Å; inter-planar angle = 10.94 (5)°] inter­actions, forming a three-dimensional supra­molecular architecture.

1. Chemical context

Hydrazone-based chelators for metal ions have received a significant amount of attention (Bendova et al., 2010[Bendova, P., Mackova, E., Haskova, P., Vavrova, A., Jirkovsky, E., Sterba, M., Popelova, O., Kalinowski, D. S., Kovarikova, P., Vavrova, K., Richardson, D. R. & Simunek, T. (2010). Chem. Res. Toxicol. 23, 1105-1114.]; Hrušková et al., 2016[Hrušková, K., Potůčková, E., Hergeselová, T., Liptáková, L., Hašková, P., Mingas, P., Kovaříková, P., Šimůnek, T. & Vávrová, K. (2016). Eur. J. Med. Chem. 120, 97-110.]). Compounds from this class, such as salicyl aldehyde isonicotinoyl hydrazide (SIH), have been studied as potential metal chelators in biological systems (Hrušková et al., 2011[Hrušková, K., Kovaříková, P., Bendová, P., Hašková, P., Macková, E., Stariat, J., Vávrová, A., Vávrová, K. & Šimůnek, T. (2011). Chem. Res. Toxicol. 24, 290-302.]). These compounds have also been shown to be effective in protecting against metal-based oxidative stress (Jansová et al., 2014[Jansová, H., Macháček, M., Wang, Q., Hašková, P., Jirkovská, A., Potůčková, E., Kielar, F., Franz, K. J. & Šimůnek, T. (2014). Free Radical Biol. Med. 74, 210-221.]). In our research we are inter­ested in developing probes for metal ions (Carter et al., 2014[Carter, K. P., Young, A. M. & Palmer, A. E. (2014). Chem. Rev. 114, 4564-4601.]). We have therefore synthesized the title compounds, which are derivatives of the chelator SIH containing a signalling unit.

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are illustrated in Figs. 1[link] and 2[link], respectively. They consist of an isonicotinoyl moiety linked by a –C7=N3–N2– linkage to a cresol unit in (I)[link] and a fluoro­phenol ring in (II)[link]. The mol­ecules deviate slightly from planarity with the r.m.s deviations for the fitted atoms being 0.145 for (I)[link] and 0.110 Å for (II)[link]. In each mol­ecule, there is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif. Both compounds have an E conformation with respect to the double bond of the hydrazone bridge (C7=N3) with the C8—C7=N3—N2 torsion angles being −179.03 (12) and −177.61 (11)° for (I)[link] and (II)[link], respectively. The dihedral angles between the mean planes of the isonicotinoyl moiety and the cresol moiety in (I)[link], or the fluoro­phenol moiety in (II)[link] are 10.49 (6) and 9.43 (6)°, respectively. The bond lengths and angles in the title mol­ecules agree reasonably well with those found in closely related structures (Chumakov et al., 2001[Chumakov, Y. M., Antosyak, B. Y., Tsapkov, V. I. & Samus, N. M. (2001). J. Struct. Chem. 42, 335-339.]; Yang, 2006a[Yang, D.-S. (2006a). Acta Cryst. E62, o3755-o3756.],b[Yang, D.-S. (2006b). Acta Cryst. E62, o3792-o3793.]; Kargar et al., 2010[Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2982.]; Sedaghat et al., 2014[Sedaghat, T., Yousefi, M., Bruno, G., Rudbari, H. A., Motamedi, H. & Nobakht, V. (2014). Polyhedron, 79, 88-96.])

[Scheme 1]
.
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1[link]).
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 2[link]).

3. Supra­molecular features

In the crystals of both compounds, zigzag chains are formed via N—H⋯N hydrogen bonds (Tables 1[link] and 2[link]), in direction [10[\overline{1}]] for (I)[link] and [010] for (II)[link]. In (I)[link], the chains are linked by weak C—H⋯π and ππ stacking inter­actions [centroid-to-centroid distances = 3.6783 (8) Å; inter-planar angle = 10.94 (5)°], leading to the formation of a three-dimensional supra­molecular architecture (Fig. 3[link]). In (II)[link], adjacent chains are connected through C—H⋯O hydrogen bonds to form sheets parallel to (100), which enclose R44(30) ring motifs. Weak C—H⋯π and ππ [centroid-to-centroid distance = 3.7147 (8) Å, inter-planar angle = 10.94 (5)°] inter­actions link the sheets, forming a three-dimensional supra­molecular architecture (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N3 0.82 1.87 2.5857 (16) 145
N2—H2N⋯N1i 0.86 2.19 3.0232 (17) 164
C10—H10⋯Cg1ii 0.93 2.85 3.5259 (17) 130
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N3 0.82 1.92 2.6329 (15) 145
N2—H2A⋯N1i 0.86 2.19 2.8889 (15) 138
C10—H10⋯O1ii 0.93 2.51 3.2573 (18) 138
C11—H11⋯Cg1iii 0.93 2.98 3.8917 (18) 168
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Partial view along the a axis of the crystal packing of compound (I)[link], showing the hydrogen-bonded (dashed lines; see Table 1[link]) zigzag chains parallel to [10[\overline{1}]].
[Figure 4]
Figure 4
Partial view along the a axis of the crystal packing of compound (II)[link], showing the N—H⋯N and C—H⋯O hydrogen-bonded (dashed lines; see Table 2[link]) sheet propagating in the bc plane.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, last update November 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated the presence of 40 structures containing the (E)-N-(2-hy­droxy­bezylydene)isonicotinohydrazide substructure. They include the isotypic crystal structures with chloride (UCAREV, Chumakov et al., 2001[Chumakov, Y. M., Antosyak, B. Y., Tsapkov, V. I. & Samus, N. M. (2001). J. Struct. Chem. 42, 335-339.]; UCAREV01, Yang, 2006a[Yang, D.-S. (2006a). Acta Cryst. E62, o3755-o3756.]), bromide (XENDOK, Yang, 2006b[Yang, D.-S. (2006b). Acta Cryst. E62, o3792-o3793.]; XENDOK01, Sedaghat et al., 2014[Sedaghat, T., Yousefi, M., Bruno, G., Rudbari, H. A., Motamedi, H. & Nobakht, V. (2014). Polyhedron, 79, 88-96.]) and meth­oxy (VACHAK, Kargar et al., 2010[Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2982.]) groups substituted at the 5-position of the phenyl ring. In the crystals of all three compounds, the N—H⋯N hydrogen bond involving the hydrazone hydrogen and the pyridine nitro­gen atoms organize the mol­ecules into a herringbone motif, while in the crystal of the meth­oxy compound there are also weak N—H⋯O and C—H⋯O hydrogen bonds present forming R12(6) ring motifs.

5. Synthesis and crystallization

A solution of isonicotinic acid hydrazide (0.184 g, 1.34 mmol) and the appropriately substituted salicyl aldehyde (1.47 mmol) in a mixture of ethanol (3 ml) and water (1 ml) containing a catalytic amount of acetic acid was heated to reflux for 5 h. The reaction mixture was allowed to cool to room temperature, resulting in the formation of a white precipitate. The reaction mixture was filtered and the isolated solid was washed with diethyl ether and dried in vacuo. The compounds were isolated as white crystalline solids in 73% and 66% yield for the methyl (I)[link] and fluoro (II)[link] derivatives, respectively. Single crystals suitable for X-ray diffraction were grown by slow evaporation of methano­lic solutions of the title compounds.

Spectroscopic data for (I)[link]: 1H NMR (400 MHz, DMSO-d6) d 2.25 (1H, s, CH3), 6.84 (1H, d, J = 8.4, CH—Ph), 7.12 (1H, dd, J = 2.0, J = 8.4, CH—Ph), 7.40 (1H, d, J = 1.6, CH—Ph), 7.84 (2H, d, J = 6.0, CH—Py), 8.63 (1H, s, CH=N), 8.79 (2H, d, J = 6.0, CH—Py), 10.82 (1H, s, NH), 12.26 (1H, s, OH). HR–MS (ES+) C14H14N3O2 requires 256.1086 [M+H]+; found 256.1051.

Spectroscopic data for (II)[link]: 1H NMR (400 MHz, DMSO-d6) d 6.94 (1H, dd, J = 4.4, J = 8.8, CH—Ph), 7.16 (1H, td, J = 3.2, J = 8.8, CH—Ph), 7.46 (1H, dd, J = 3.2, J = 9.6, CH—Ph), 7.84 (2H, d, J = 6.0, CH—Py), 8.67 (1H, s, CH=N), 8.80 (2H, d, J = 6.0, CH—Py), 10.84 (1H, s, NH), 12.35 (1H, s, OH). HR–MS (ES+) C13H11FN3O2 requires 260.0835 [M+H]+; found 260.0831.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms bonded to C, N, and O atoms were placed at calculated positions and refined using a riding-model approximation: N—H = 0.86 Å, O—H = 0.82 Å, and C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl,O) and 1.2Ueq(N,C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C14H13N3O2 C13H10FN3O2
Mr 255.27 259.24
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 8.5318 (4), 15.9973 (8), 9.4637 (5) 8.9195 (3), 10.1128 (3), 13.6254 (4)
β (°) 102.738 (2) 103.481 (1)
V3) 1259.87 (11) 1195.16 (6)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.11
Crystal size (mm) 0.30 × 0.22 × 0.22 0.32 × 0.26 × 0.26
 
Data collection
Diffractometer Bruker D8 QUEST CMOS Bruker APEX2 D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.685, 0.746 0.685, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 26052, 2996, 2111 31833, 2848, 2128
Rint 0.045 0.039
(sin θ/λ)max−1) 0.659 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.01 0.042, 0.124, 1.03
No. of reflections 2996 2848
No. of parameters 174 174
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.22 0.26, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

(I) (E)-N'-(2-Hydroxy-5-methylbenzylidene)isonicotinohydrazide top
Crystal data top
C14H13N3O2F(000) = 536
Mr = 255.27Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.5318 (4) ÅCell parameters from 6456 reflections
b = 15.9973 (8) Åθ = 2.9–27.3°
c = 9.4637 (5) ŵ = 0.09 mm1
β = 102.738 (2)°T = 296 K
V = 1259.87 (11) Å3Block, colourless
Z = 40.30 × 0.22 × 0.22 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
2996 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus2111 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromatorRint = 0.045
Detector resolution: 10.5 pixels mm-1θmax = 27.9°, θmin = 2.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 2121
Tmin = 0.685, Tmax = 0.746l = 1212
26052 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.2954P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2996 reflectionsΔρmax = 0.20 e Å3
174 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55036 (17)0.49610 (7)0.82618 (13)0.0710 (4)
O20.21987 (15)0.36743 (7)0.62695 (11)0.0575 (3)
H2O0.27790.40850.64810.086*
N10.84669 (14)0.76238 (8)0.96854 (13)0.0422 (3)
N20.43283 (14)0.57825 (7)0.63975 (12)0.0390 (3)
H2N0.42810.62550.59570.047*
N30.33377 (14)0.51301 (7)0.58586 (13)0.0392 (3)
C10.81205 (18)0.69573 (9)1.04127 (15)0.0430 (4)
H10.85800.69231.13980.052*
C20.71232 (18)0.63196 (9)0.97872 (15)0.0418 (4)
H20.69220.58681.03400.050*
C30.64217 (16)0.63598 (8)0.83192 (15)0.0362 (3)
C40.67688 (16)0.70444 (9)0.75506 (15)0.0377 (3)
H40.63210.70960.65650.045*
C50.77918 (17)0.76509 (9)0.82720 (15)0.0406 (3)
H50.80250.81060.77410.049*
C60.53873 (18)0.56378 (9)0.76673 (16)0.0415 (3)
C70.23407 (16)0.51994 (8)0.46483 (14)0.0365 (3)
H70.22910.56910.41160.044*
C80.12838 (16)0.45084 (8)0.41038 (14)0.0336 (3)
C90.12462 (17)0.37797 (9)0.49306 (15)0.0393 (3)
C100.02068 (19)0.31395 (9)0.43625 (17)0.0463 (4)
H100.01530.26640.49140.056*
C110.07485 (18)0.31991 (10)0.29884 (17)0.0453 (4)
H110.14190.27550.26220.054*
C120.07365 (16)0.39037 (10)0.21364 (15)0.0409 (4)
C130.02749 (17)0.45510 (9)0.27258 (15)0.0378 (3)
H130.02830.50340.21820.045*
C140.1769 (2)0.39481 (12)0.06279 (18)0.0601 (5)
H14A0.19050.33970.02180.090*
H14B0.12600.42990.00390.090*
H14C0.28000.41760.06640.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0903 (10)0.0412 (7)0.0624 (8)0.0114 (6)0.0244 (7)0.0126 (6)
O20.0751 (8)0.0487 (7)0.0403 (6)0.0108 (6)0.0055 (5)0.0119 (5)
N10.0409 (7)0.0425 (7)0.0401 (7)0.0010 (5)0.0022 (5)0.0074 (5)
N20.0408 (7)0.0309 (6)0.0400 (7)0.0020 (5)0.0022 (5)0.0019 (5)
N30.0409 (7)0.0332 (6)0.0404 (7)0.0023 (5)0.0021 (5)0.0041 (5)
C10.0457 (8)0.0465 (9)0.0320 (7)0.0056 (7)0.0018 (6)0.0044 (6)
C20.0475 (8)0.0376 (8)0.0368 (8)0.0037 (6)0.0019 (6)0.0009 (6)
C30.0341 (7)0.0348 (7)0.0368 (7)0.0065 (6)0.0018 (6)0.0044 (6)
C40.0371 (8)0.0406 (8)0.0323 (7)0.0043 (6)0.0011 (6)0.0025 (6)
C50.0419 (8)0.0392 (8)0.0391 (8)0.0003 (6)0.0057 (6)0.0022 (6)
C60.0446 (8)0.0357 (8)0.0395 (8)0.0018 (6)0.0007 (6)0.0010 (6)
C70.0411 (8)0.0301 (7)0.0368 (7)0.0008 (6)0.0053 (6)0.0005 (6)
C80.0354 (7)0.0314 (7)0.0339 (7)0.0027 (6)0.0076 (5)0.0027 (5)
C90.0439 (8)0.0386 (8)0.0350 (7)0.0010 (6)0.0076 (6)0.0011 (6)
C100.0547 (9)0.0361 (8)0.0491 (9)0.0080 (7)0.0136 (7)0.0034 (6)
C110.0411 (8)0.0418 (8)0.0531 (9)0.0100 (7)0.0107 (7)0.0105 (7)
C120.0348 (7)0.0454 (8)0.0406 (8)0.0022 (6)0.0046 (6)0.0080 (6)
C130.0408 (8)0.0344 (7)0.0362 (7)0.0032 (6)0.0041 (6)0.0012 (6)
C140.0527 (10)0.0672 (11)0.0513 (10)0.0003 (9)0.0081 (8)0.0085 (8)
Geometric parameters (Å, º) top
O1—C61.2140 (17)C5—H50.9300
O2—H2O0.8200C7—H70.9300
O2—C91.3566 (17)C7—C81.4476 (19)
N1—C11.3371 (19)C8—C91.4083 (19)
N1—C51.3353 (18)C8—C131.3969 (18)
N2—H2N0.8600C9—C101.383 (2)
N2—N31.3687 (16)C10—H100.9300
N2—C61.3547 (17)C10—C111.377 (2)
N3—C71.2720 (17)C11—H110.9300
C1—H10.9300C11—C121.387 (2)
C1—C21.376 (2)C12—C131.384 (2)
C2—H20.9300C12—C141.505 (2)
C2—C31.3878 (19)C13—H130.9300
C3—C41.382 (2)C14—H14A0.9600
C3—C61.5011 (19)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C4—C51.3808 (19)
C9—O2—H2O109.5C8—C7—H7120.2
C5—N1—C1116.49 (12)C9—C8—C7121.54 (12)
N3—N2—H2N122.1C13—C8—C7120.15 (12)
C6—N2—H2N122.1C13—C8—C9118.31 (12)
C6—N2—N3115.88 (12)O2—C9—C8122.64 (13)
C7—N3—N2120.30 (12)O2—C9—C10118.14 (13)
N1—C1—H1118.1C10—C9—C8119.21 (13)
N1—C1—C2123.76 (13)C9—C10—H10119.6
C2—C1—H1118.1C11—C10—C9120.72 (14)
C1—C2—H2120.5C11—C10—H10119.6
C1—C2—C3119.05 (14)C10—C11—H11119.1
C3—C2—H2120.5C10—C11—C12121.76 (13)
C2—C3—C6117.42 (13)C12—C11—H11119.1
C4—C3—C2117.92 (13)C11—C12—C14120.79 (14)
C4—C3—C6124.62 (12)C13—C12—C11117.23 (13)
C3—C4—H4120.6C13—C12—C14121.98 (15)
C5—C4—C3118.81 (13)C8—C13—H13118.6
C5—C4—H4120.6C12—C13—C8122.74 (13)
N1—C5—C4123.95 (14)C12—C13—H13118.6
N1—C5—H5118.0C12—C14—H14A109.5
C4—C5—H5118.0C12—C14—H14B109.5
O1—C6—N2122.27 (13)C12—C14—H14C109.5
O1—C6—C3121.01 (13)H14A—C14—H14B109.5
N2—C6—C3116.73 (12)H14A—C14—H14C109.5
N3—C7—H7120.2H14B—C14—H14C109.5
N3—C7—C8119.63 (13)
O2—C9—C10—C11177.73 (14)C5—N1—C1—C20.3 (2)
N1—C1—C2—C30.2 (2)C6—N2—N3—C7177.70 (13)
N2—N3—C7—C8179.03 (12)C6—C3—C4—C5177.39 (13)
N3—N2—C6—O13.1 (2)C7—C8—C9—O20.7 (2)
N3—N2—C6—C3176.69 (12)C7—C8—C9—C10179.63 (13)
N3—C7—C8—C94.8 (2)C7—C8—C13—C12178.65 (13)
N3—C7—C8—C13174.87 (13)C8—C7—N3—N2179.03 (12)
C1—N1—C5—C40.7 (2)C8—C9—C10—C111.9 (2)
C1—C2—C3—C40.2 (2)C9—C8—C13—C121.0 (2)
C1—C2—C3—C6177.94 (13)C9—C10—C11—C121.5 (2)
C2—C3—C4—C50.1 (2)C10—C11—C12—C130.2 (2)
C2—C3—C6—O119.9 (2)C10—C11—C12—C14178.89 (15)
C2—C3—C6—N2159.99 (13)C11—C12—C13—C81.5 (2)
C3—C4—C5—N10.6 (2)C13—C8—C9—O2178.91 (14)
C4—C3—C6—O1157.69 (16)C13—C8—C9—C100.7 (2)
C4—C3—C6—N222.5 (2)C14—C12—C13—C8177.64 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2O···N30.821.872.5857 (16)145
N2—H2N···N1i0.862.193.0232 (17)164
C10—H10···Cg1ii0.932.853.5259 (17)130
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+3/2.
(II) (E)-N'-(5-Fluoro-2-hydroxybenzylidene)isonicotinohydrazide top
Crystal data top
C13H10FN3O2F(000) = 536
Mr = 259.24Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9195 (3) ÅCell parameters from 9934 reflections
b = 10.1128 (3) Åθ = 3.1–28.5°
c = 13.6254 (4) ŵ = 0.11 mm1
β = 103.481 (1)°T = 296 K
V = 1195.16 (6) Å3Block, colourless
Z = 40.32 × 0.26 × 0.26 mm
Data collection top
Bruker APEX2 D8 QUEST CMOS
diffractometer
2848 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus2128 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromatorRint = 0.039
Detector resolution: 10.5 pixels mm-1θmax = 27.9°, θmin = 3.1°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1313
Tmin = 0.685, Tmax = 0.746l = 1717
31833 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.282P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.26 e Å3
2848 reflectionsΔρmin = 0.29 e Å3
174 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.020 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.20524 (13)0.04313 (11)0.46463 (10)0.0868 (4)
O10.82356 (13)0.59703 (11)0.44402 (7)0.0572 (3)
O20.53778 (15)0.31773 (13)0.30688 (8)0.0650 (3)
H20.59590.36080.35080.097*
N11.11088 (14)0.82083 (13)0.75798 (9)0.0497 (3)
N20.75299 (13)0.47336 (11)0.56431 (8)0.0404 (3)
H2A0.76330.45820.62760.048*
N30.65442 (13)0.39828 (11)0.49277 (8)0.0410 (3)
C11.12858 (18)0.81537 (17)0.66408 (12)0.0553 (4)
H11.20310.86890.64660.066*
C21.04204 (17)0.73427 (16)0.59110 (11)0.0497 (4)
H2B1.05770.73460.52600.060*
C30.93237 (14)0.65288 (12)0.61510 (9)0.0355 (3)
C40.91374 (17)0.65656 (14)0.71277 (10)0.0429 (3)
H40.84170.60260.73270.052*
C51.00507 (19)0.74261 (15)0.78056 (10)0.0502 (4)
H50.99100.74550.84600.060*
C60.83297 (15)0.57142 (13)0.53241 (9)0.0376 (3)
C70.57486 (15)0.31041 (13)0.52504 (10)0.0413 (3)
H70.58250.30200.59400.050*
C80.47255 (15)0.22351 (13)0.45483 (10)0.0408 (3)
C90.46263 (16)0.22688 (15)0.35051 (11)0.0457 (3)
C100.37199 (18)0.13466 (17)0.28799 (13)0.0569 (4)
H100.36940.13460.21940.068*
C110.28665 (18)0.04408 (16)0.32564 (14)0.0597 (4)
H110.22600.01740.28340.072*
C120.29224 (18)0.04568 (15)0.42667 (15)0.0567 (4)
C130.38397 (17)0.13144 (15)0.49236 (12)0.0499 (4)
H130.38700.12820.56100.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0769 (7)0.0678 (7)0.1118 (9)0.0293 (6)0.0143 (7)0.0139 (6)
O10.0767 (7)0.0616 (7)0.0271 (5)0.0163 (6)0.0006 (5)0.0004 (4)
O20.0697 (8)0.0754 (8)0.0453 (6)0.0252 (6)0.0041 (5)0.0007 (6)
N10.0495 (7)0.0494 (7)0.0426 (7)0.0033 (6)0.0048 (5)0.0125 (5)
N20.0452 (6)0.0399 (6)0.0297 (5)0.0020 (5)0.0040 (4)0.0007 (4)
N30.0404 (6)0.0380 (6)0.0379 (6)0.0007 (5)0.0044 (5)0.0031 (5)
C10.0519 (9)0.0616 (10)0.0502 (9)0.0136 (8)0.0077 (7)0.0123 (7)
C20.0530 (8)0.0598 (9)0.0356 (7)0.0099 (7)0.0092 (6)0.0088 (6)
C30.0382 (7)0.0351 (6)0.0291 (6)0.0058 (5)0.0007 (5)0.0021 (5)
C40.0532 (8)0.0409 (7)0.0324 (6)0.0015 (6)0.0051 (6)0.0022 (5)
C50.0662 (9)0.0509 (8)0.0294 (6)0.0075 (8)0.0026 (6)0.0066 (6)
C60.0418 (7)0.0377 (7)0.0285 (6)0.0027 (6)0.0011 (5)0.0016 (5)
C70.0413 (7)0.0394 (7)0.0393 (7)0.0042 (6)0.0013 (6)0.0011 (6)
C80.0348 (7)0.0358 (7)0.0475 (7)0.0039 (5)0.0008 (5)0.0004 (6)
C90.0396 (7)0.0462 (8)0.0469 (8)0.0005 (6)0.0016 (6)0.0020 (6)
C100.0514 (9)0.0605 (10)0.0525 (9)0.0037 (8)0.0006 (7)0.0119 (7)
C110.0464 (8)0.0472 (9)0.0759 (12)0.0042 (7)0.0051 (8)0.0132 (8)
C120.0435 (8)0.0398 (8)0.0824 (12)0.0038 (6)0.0060 (8)0.0060 (7)
C130.0452 (8)0.0445 (8)0.0572 (9)0.0022 (6)0.0060 (7)0.0051 (7)
Geometric parameters (Å, º) top
F1—C121.3651 (19)C3—C61.5061 (17)
O1—C61.2154 (15)C4—H40.9300
O2—H20.8200C4—C51.387 (2)
O2—C91.3537 (18)C5—H50.9300
N1—C11.3263 (19)C7—H70.9300
N1—C51.322 (2)C7—C81.4537 (18)
N2—H2A0.8600C8—C91.404 (2)
N2—N31.3783 (15)C8—C131.393 (2)
N2—C61.3513 (17)C9—C101.388 (2)
N3—C71.2775 (18)C10—H100.9300
C1—H10.9300C10—C111.365 (2)
C1—C21.378 (2)C11—H110.9300
C2—H2B0.9300C11—C121.366 (2)
C2—C31.375 (2)C12—C131.372 (2)
C3—C41.3796 (18)C13—H130.9300
C9—O2—H2109.5N2—C6—C3115.07 (11)
C5—N1—C1116.85 (12)N3—C7—H7119.7
N3—N2—H2A120.8N3—C7—C8120.53 (13)
C6—N2—H2A120.8C8—C7—H7119.7
C6—N2—N3118.31 (11)C9—C8—C7122.23 (13)
C7—N3—N2116.98 (11)C13—C8—C7119.03 (13)
N1—C1—H1118.4C13—C8—C9118.72 (13)
N1—C1—C2123.25 (15)O2—C9—C8122.70 (13)
C2—C1—H1118.4O2—C9—C10117.61 (14)
C1—C2—H2B120.2C10—C9—C8119.68 (14)
C3—C2—C1119.64 (13)C9—C10—H10119.5
C3—C2—H2B120.2C11—C10—C9121.06 (15)
C2—C3—C4117.76 (12)C11—C10—H10119.5
C2—C3—C6118.48 (11)C10—C11—H11120.7
C4—C3—C6123.65 (12)C10—C11—C12118.57 (14)
C3—C4—H4120.8C12—C11—H11120.7
C3—C4—C5118.37 (14)F1—C12—C11118.92 (15)
C5—C4—H4120.8F1—C12—C13118.30 (16)
N1—C5—C4124.13 (13)C11—C12—C13122.77 (15)
N1—C5—H5117.9C8—C13—H13120.5
C4—C5—H5117.9C12—C13—C8119.09 (15)
O1—C6—N2123.74 (12)C12—C13—H13120.5
O1—C6—C3121.15 (12)
F1—C12—C13—C8179.45 (13)C4—C3—C6—N218.13 (18)
O2—C9—C10—C11176.72 (15)C5—N1—C1—C20.6 (2)
N1—C1—C2—C30.8 (3)C6—N2—N3—C7176.78 (12)
N2—N3—C7—C8177.61 (11)C6—C3—C4—C5175.40 (12)
N3—N2—C6—O10.3 (2)C7—C8—C9—O25.4 (2)
N3—N2—C6—C3177.26 (10)C7—C8—C9—C10174.98 (13)
N3—C7—C8—C93.5 (2)C7—C8—C13—C12177.30 (13)
N3—C7—C8—C13178.08 (12)C8—C7—N3—N2177.61 (11)
C1—N1—C5—C40.2 (2)C8—C9—C10—C112.9 (2)
C1—C2—C3—C40.1 (2)C9—C8—C13—C121.1 (2)
C1—C2—C3—C6176.36 (13)C9—C10—C11—C120.1 (2)
C2—C3—C4—C50.6 (2)C10—C11—C12—F1178.91 (14)
C2—C3—C6—O116.5 (2)C10—C11—C12—C132.3 (2)
C2—C3—C6—N2165.85 (12)C11—C12—C13—C81.7 (2)
C3—C4—C5—N10.8 (2)C13—C8—C9—O2176.21 (13)
C4—C3—C6—O1159.53 (14)C13—C8—C9—C103.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···N30.821.922.6329 (15)145
N2—H2A···N1i0.862.192.8889 (15)138
C10—H10···O1ii0.932.513.2573 (18)138
C11—H11···Cg1iii0.932.983.8917 (18)168
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+1/2; (iii) x1, y+1/2, z1/2.
 

Acknowledgements

This work was supported by a National Research Councils of Thailand grant provided by the Naresuan University Division of Research Administration (R2558B106). The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBendova, P., Mackova, E., Haskova, P., Vavrova, A., Jirkovsky, E., Sterba, M., Popelova, O., Kalinowski, D. S., Kovarikova, P., Vavrova, K., Richardson, D. R. & Simunek, T. (2010). Chem. Res. Toxicol. 23, 1105–1114.  CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarter, K. P., Young, A. M. & Palmer, A. E. (2014). Chem. Rev. 114, 4564–4601.  CrossRef CAS PubMed Google Scholar
First citationChumakov, Y. M., Antosyak, B. Y., Tsapkov, V. I. & Samus, N. M. (2001). J. Struct. Chem. 42, 335–339.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHrušková, K., Kovaříková, P., Bendová, P., Hašková, P., Macková, E., Stariat, J., Vávrová, A., Vávrová, K. & Šimůnek, T. (2011). Chem. Res. Toxicol. 24, 290–302.  PubMed Google Scholar
First citationHrušková, K., Potůčková, E., Hergeselová, T., Liptáková, L., Hašková, P., Mingas, P., Kovaříková, P., Šimůnek, T. & Vávrová, K. (2016). Eur. J. Med. Chem. 120, 97–110.  PubMed Google Scholar
First citationJansová, H., Macháček, M., Wang, Q., Hašková, P., Jirkovská, A., Potůčková, E., Kielar, F., Franz, K. J. & Šimůnek, T. (2014). Free Radical Biol. Med. 74, 210–221.  Google Scholar
First citationKargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSedaghat, T., Yousefi, M., Bruno, G., Rudbari, H. A., Motamedi, H. & Nobakht, V. (2014). Polyhedron, 79, 88–96.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2006a). Acta Cryst. E62, o3755–o3756.  CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2006b). Acta Cryst. E62, o3792–o3793.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds