research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-N,N′-bis­­(3,5-di-tert-butyl-2-hy­dr­oxy­phen­yl)oxamide methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: yasmi.reyes@correo.buap.mx

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 May 2016; accepted 30 May 2016; online 10 June 2016)

The here crystallized oxamide was previously characterized as an unsolvated species [Jímenez-Pérez et al. (2000[Jímenez-Pérez, V. M., Camacho-Camacho, C., Güizado-Rodríguez, M., Nöth, H. & Contreras, R. (2000). J. Organomet. Chem. 614-615, 283-293.]). J. Organomet. Chem. 614–615, 283–293], and is now reported with methanol as a solvent of crystallization, C30H44N2O4·CH3OH, in a different space group. The introduction of the solvent influences neither the mol­ecular symmetry of the oxamide, which remains centrosymmetric, nor the mol­ecular conformation. However, the unsolvated mol­ecule crystallized as an ordered system, while many parts of the solvated crystal are disordered. The hy­droxy group in the oxamide is disordered over two chemically equivalent positions, with occupancies 0.696 (4):0.304 (4); one tert-butyl group is disordered by rotation about the C—C bond, and was modelled with three sites for each methyl group, each one with occupancy 1/3. Finally, the methanol solvent, which lies on a twofold axis, is disordered by symmetry. The disorder affecting hy­droxy groups and the solvent of crystallization allows the formation of numerous supra­molecular motifs using four hydrogen bonds, with N—H and O—H groups as donors and the oxamide and methanol mol­ecule as acceptors.

1. Chemical context

1,2-Bis-(3,5-di-tert-butyl-2-hy­droxy­phen­yl)oxamide has been synthesized by two different routes, reported in the literature (Jímenez-Pérez et al., 2000[Jímenez-Pérez, V. M., Camacho-Camacho, C., Güizado-Rodríguez, M., Nöth, H. & Contreras, R. (2000). J. Organomet. Chem. 614-615, 283-293.]; Beckmann et al., 2003[Beckmann, U., Bill, E., Weyhermüller, T. & Wieghardt, K. (2003). Eur. J. Inorg. Chem. pp. 1768-1777.]). For several oxamide derivatives, NMR and crystallographic studies have shown that these compounds have the same conformation in the solid state and in solution: a planar structure stabilized by an intra­molecular three-centre hydrogen bond forming two five-membered rings (Martínez-Martínez et al., 1993[Martínez-Martínez, F. J., Ariza-Castolo, A., Tlahuext, H., Tlahuextl, M. & Contreras, R. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1481-1485.], 1998[Martínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401-406.]). Other studies of the polymerization of ethyl­ene showed that Zr complexes bearing oxamide ligands are active as catalyst (Güizado-Rodríguez et al., 2007[Güizado-Rodríguez, M., Jiménez-Pérez, V. M., Hernández-Rivera, J. E., Domínguez, J. M., Contreras, R. & Quijada, R. (2007). Polyhedron, 26, 4321-4327.]). Phenyl­oxamides have also been reported as light stabilizers for plastics (Burdet et al., 1972[Burdet, E. M., Hofer, K. M., Moesch, R. D. S. & Schilli, A. R. (1972). Ger. Offen. Patent DE2139781 (22 pp.)]).

[Scheme 1]

While attempting to coordinate 1,2-bis-(3,5-di-tert-butyl-2-hy­droxy­phen­yl)oxamide to first-row transition metals in methanol, we obtained crystals of the title solvate, for which we report here the mol­ecular and crystal structures.

2. Structural commentary

The trans-oxamide derivative lies on an inversion centre, placed at the midpoint of the central C1—C1i bond [symmetry code: (i) 1 − x, −y, 1 − z], and the methanol mol­ecule is placed close to the twofold axis of the C2/c space group, and was then refined with its occupancy constrained to 1/2 (Fig. 1[link]). The dimensions for the oxamide mol­ecule are very similar to those reported for the unsolvated crystal (Jímenez-Pérez et al., 2000[Jímenez-Pérez, V. M., Camacho-Camacho, C., Güizado-Rodríguez, M., Nöth, H. & Contreras, R. (2000). J. Organomet. Chem. 614-615, 283-293.]).

[Figure 1]
Figure 1
The structure of the title solvate, with atom labelling and displacement ellipsoids drawn at the 30% probability level. A single site for the disordered groups is shown, and non labelled atoms are generated by inversion symmetry. The inset represents the resolved disorder in the tert-butyl group C8/C9/C10/C11 (colour code: red, green and blue ellipsoids are for sites A, B and C, respectively).

The mol­ecular conformation is not planar, and can be described using the dihedral angle between the oxamide core C1/O1/N1 and the benzene ring C2–C7. In the title solvate, this angle is 32.4 (2)°, slightly smaller than the same angle observed in the unsolvated crystal, 38.4°. A comparison of conformations stabilized for this mol­ecule shows that a planar conformer is obtained only if amine and hy­droxy groups are deprotonated to form a tetra­anion, which is then able to coordinate a metal centre (e.g. Beckmann et al., 2003[Beckmann, U., Bill, E., Weyhermüller, T. & Wieghardt, K. (2003). Eur. J. Inorg. Chem. pp. 1768-1777.]). The twisted conformation for the neutral mol­ecule is probably a consequence of the formation of an intra­molecular hydrogen bond between hy­droxy and carbonyl groups (Table 1[link], entry 1). The resulting motif is an S(7) self-associating pattern having an envelope shape, in order to bring the O—H⋯O angle as close as possible to 180°. The involved OH group is disordered over two chemically equivalent positions on the benzene ring, C7 and C3. However, the most populated site, O3A, which has a site occupancy factor of 0.696 (4), is that forming this contact (Fig. 2[link]). Because of the centrosymmetric character of the mol­ecule, two occurrences of the S(7) motif are stabilizing the twisted conformation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3BA⋯O1 0.88 (2) 1.71 (2) 2.578 (2) 167 (4)
O3B—H3BB⋯O21i 0.85 (2) 2.14 (2) 2.612 (9) 114 (4)
N1—H1⋯O21ii 0.95 (2) 2.27 (2) 3.140 (6) 152 (2)
O21—H21⋯O1 0.90 (1) 2.01 (3) 2.744 (6) 138 (4)
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
S and R motifs formed via hydrogen bonding in the title solvate. Disordered sites O3A and O3B are retained, since they participate in different patterns. All hydrogen bonds listed in Table 1[link] are represented by dashed lines.

Other potential intra­molecular hydrogen bonds starting from the amine groups N1 are present in the mol­ecule, forming other S rings with lower degree. However, these contacts, N1—H1⋯O1 and N1—H1⋯O3B, are not relevant for the mol­ecular conformation, since their D—H⋯A angles are close to 100°, corresponding to a stabilization energy close to 0 kJ mol−1 (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]).

3. Supra­molecular features

The introduction of methanol changes the original P[\overline{1}] crystal symmetry (Jímenez-Pérez et al., 2000[Jímenez-Pérez, V. M., Camacho-Camacho, C., Güizado-Rodríguez, M., Nöth, H. & Contreras, R. (2000). J. Organomet. Chem. 614-615, 283-293.]) to C2/c (Table 2[link]). The methanol molecule is located in close proximity to the oxamide, and behaves both as a donor and acceptor for hydrogen bonding (Table 1[link], entries 2–4). Discrete O—H⋯O(methanol) weak bonds are formed with the disordered hy­droxy group O3B of the oxamide, as well as N—H⋯O(methanol) with the amine groups. As a result, R21(7) rings are formed (Fig. 2[link]). The last heteroatom involved in hydrogen bonding is the carbonyl O atom O1, acting as an acceptor (Table 1[link], entry 4), to form R12(7) rings.

Table 2
Experimental details

Crystal data
Chemical formula C30H44N2O4·CH4O
Mr 528.71
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 27.614 (3), 10.5561 (11), 10.6875 (9)
β (°) 91.722 (9)
V3) 3113.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.62 × 0.10 × 0.07
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.664, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16488, 3188, 2152
Rint 0.038
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.155, 1.01
No. of reflections 3188
No. of parameters 263
No. of restraints 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.15
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and CifTab (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

4. Database survey

The oxamidate derived from the title oxamide has been used extensively for coordination chemistry. It is possible to find one report in the literature for zinc clusters with 1,2-bis-(3,5-di-tert-butyl-2-hy­droxy­phen­yl)oxamidate (Rufino-Felipe et al., 2016[Rufino-Felipe, E., Caballero-Jiménez, J., Guerrero-Ramírez, L.-G., Flores-Álamo, M. & Muñoz-Hernández, M.-Á. (2016). Inorg. Chem. Commun. 63, 107-110.]). In these complexes, the crystal structures exhibit an octa­nuclear Zn8 cage and a hexa­nuclear Zn6 cage, where the nuclearity of the cages is driven by the solvent. Other compounds with Si or Ge (Jiménez-Pérez et al., 2007[Jiménez-Pérez, V. M., Camacho-Camacho, C., Ramos-Organillo, Á., Ramírez-Trejo, R., Peña-Hueso, A., Contreras, R. & Flores-Parra, A. (2007). J. Organomet. Chem. 692, 5549-5554.]) are described as bimetallic hexa­cyclic symmetric heterocycles, with hypervalent Si and Ge centres. For Sn compounds (Jímenez-Pérez et al., 2000[Jímenez-Pérez, V. M., Camacho-Camacho, C., Güizado-Rodríguez, M., Nöth, H. & Contreras, R. (2000). J. Organomet. Chem. 614-615, 283-293.]; Contreras et al., 2000[Contreras, R., Jimenez-Perez, V. M., Camacho-Camacho, C., Güizado-Rodriguez, M. & Wrackmeyer, B. (2000). J. Organomet. Chem. 604, 229-233.]), two penta- or hexa-coordinated Sn atoms are arranged in a hexa­cyclic symmetric planar array. For Fe and Ga complexes (Beckmann et al., 2003[Beckmann, U., Bill, E., Weyhermüller, T. & Wieghardt, K. (2003). Eur. J. Inorg. Chem. pp. 1768-1777.]; Bill et al., 2002[Bill, E., Beckmann, U. & Wieghardt, K. (2002). Hyperfine Interact. 144/145, 183-198.]), the metal ions Ga3+ and Fe3+ are five-coordinate, with a distorted trigonal–bipyramidal geometry in a hexa­cyclic symmetric planar array. Finally, in Ti, Zr and Hf complexes (Güizado-Rodríguez et al., 2007[Güizado-Rodríguez, M., Jiménez-Pérez, V. M., Hernández-Rivera, J. E., Domínguez, J. M., Contreras, R. & Quijada, R. (2007). Polyhedron, 26, 4321-4327.]), the metal displays a planar structure similar to that observed in Sn complexes, but no X-ray structures were determined.

On the other hand, several phenol-oxamides have shown different conformations, ranging from completely flat (Weiss et al., 2015[Weiss, R. J., Gordts, P. L. S. M., Le, D., Xu, D., Esko, J. D. & Tor, Y. (2015). Chem. Sci. 6, 5984-5993.]) to arrangements where the oxamide group presents a tilt angle, or is even almost completely perpendic­ular to the plane of the aromatic rings (Wen et al., 2006[Wen, Y.-H., Li, X.-M., Wang, L. & Zhang, S.-S. (2006). Acta Cryst. E62, o2185-o2186.]; Piotrkowska et al., 2007[Piotrkowska, B., Gdaniec, M., Milewska, M. J. & Połoński, T. (2007). CrystEngComm, 9, 868-872.]). Piotrkowska's group made a good analysis of the phenyl-oxamides and explained how the substituent groups on the aromatic rings and the presence of solvent influence the conformation of the oxamide group: hydrogen bonds and ππ stacking between aromatic rings are the main forces responsible for the assembly of mol­ecules within the crystal lattice. Thus, the steric effects of the bulky o-substituents cause twisting of the aryl ring from the oxamide plane, and inter­fere with the formation of hydrogen bonds (Piotrkowska et al., 2007[Piotrkowska, B., Gdaniec, M., Milewska, M. J. & Połoński, T. (2007). CrystEngComm, 9, 868-872.]).

5. Synthesis and crystallization

The reaction of 100 mg (0.171 mmol) of disodium bis­(4,6-di-tert-butyl-1-oxo-phen­yl)oxamido and 81 mg (0.342 mmol) of NiCl2·6H2O in methanol with a molar ratio 1:2 afforded a dark-brown solution. An amount of maleic acid (79 mg, 0.684 mmol), intended as a bridging ligand, was then added, changing the colour of the solution to light green. After a few minutes under stirring, a cottony precipitate formed. The solution was filtered and the filtrate allowed to crystallize by solvent evaporation, affording needle-shaped green crystals. The green colour is due to a thin layer of nickel chloride covering the crystals. Some of these crystals were washed with methanol, giving colourless crystals (m.p. 496-497 K), used for X-ray crystallography.

Spectroscopic data: FT–IR (KBr, cm−1): 3501, 3355, 3274 (OH, NH), 1651 (C=O). 1H NMR (500 MHz, CDCl3) δ, p.p.m.: 9.54 (s, 2H, OH), 7.57 (s, 2H, NH), 7.32 (d, 2H, J = 2.3 Hz, Ph), 7.15 (d, 2H, J = 2.3 Hz, Ph), 3.51 (s, CH3OH), 1.61 (s, CH3OH), 1.48 (s, 18H, CH3C, tBu), 1.33 (s, 18H, CH3C, tBu). 13C NMR (100 MHz, CDCl3) δ, p.p.m.: 157.28 (C=O, oxamide), 145.82 (C—O, phenol), 143.31 (C, quaternary Ph), 139.77 (C, quaternary Ph), 123.99 (C—N), 123.17 (CH, Ph), 117.71 (CH, Ph), 35.40 (CH3C, tBu), 34.41 (CH3C, tBu), 31.45 (CH3C, tBu), 30.97 (CH3OH), 29.83 (CH3C, tBu).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the asymmetric unit, one tert-butyl group is severely disordered by rotation, and each methyl group was split over three sites, labelled A, B and C, with occupancy fixed to 1/3 (Fig. 1[link], inset). ADPs for these C atoms were restrained to approximate isotropic behaviour with a standard uncertainty of 0.1 Å2, and the nine atoms were restrained to have the same displacement parameters within 0.04 Å2 deviation. Finally, C8—methyl bond lengths were restrained to be equal with a standard uncertainty 0.02 Å. The hy­droxy group in the oxamide is disordered over two chemically equivalent sites, O3A and O3B, and their occupancies converged to 0.696 (4) and 0.304 (4), respectively. Finally, the methanol mol­ecule is disordered by symmetry over a twofold axis, and its occupancy was fixed at 1/2. The geometry for this mol­ecule was restrained with bond length C21—O21 = 1.45 (1) Å. All H atoms bonded to C atoms were placed in idealized positions and refined as riding atoms, with C—H bond lengths fixed to 0.93 (aromatic) or 0.96 Å (methyl groups) and Uiso(H) = xUeq(C) with x = 1.2 (aromatic) or 1.5 (methyl groups). H atoms bonded to heteroatoms were found in difference maps and refined with restraints applied to the O—H bond lengths: 0.90 (1) Å (methanol) and 0.85 (2) Å (hy­droxy). For these H atoms Uiso(H) = xUeq(carrier atom), with x = 1.2 (NH) or x = 1.5 (OH).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CifTab (Sheldrick, 2015).

trans-N,N'-Bis(3,5-di-tert-butyl-2-hydroxyphenyl)oxamide methanol monosolvate top
Crystal data top
C30H44N2O4·CH4ODx = 1.128 Mg m3
Mr = 528.71Melting point: 496 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.614 (3) ÅCell parameters from 3123 reflections
b = 10.5561 (11) Åθ = 4.3–28.5°
c = 10.6875 (9) ŵ = 0.08 mm1
β = 91.722 (9)°T = 298 K
V = 3113.9 (5) Å3Needle, colourless
Z = 40.62 × 0.10 × 0.07 mm
F(000) = 1152
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
3188 independent reflections
Radiation source: Enhance (Mo) X-ray Source2152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.5564 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 3434
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1313
Tmin = 0.664, Tmax = 1.000l = 1313
16488 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.155H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0878P)2 + 2.0368P]
where P = (Fo2 + 2Fc2)/3
3188 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.14 e Å3
174 restraintsΔρmin = 0.15 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.47428 (5)0.15121 (14)0.49515 (12)0.0698 (4)
N10.46117 (5)0.01249 (16)0.62855 (13)0.0512 (4)
H10.4704 (7)0.099 (2)0.6394 (17)0.061*
C10.48192 (6)0.04271 (18)0.53215 (15)0.0483 (4)
C20.42414 (6)0.03520 (16)0.70695 (14)0.0431 (4)
C30.39184 (6)0.05361 (16)0.75100 (15)0.0462 (4)
H3A0.39470.13780.72680.055*0.696 (4)
O3A0.45301 (8)0.2536 (2)0.70552 (18)0.0704 (8)0.696 (4)
H3BA0.4609 (13)0.230 (4)0.630 (2)0.106*0.696 (4)
O3B0.39663 (18)0.1851 (4)0.7200 (5)0.0751 (18)0.304 (4)
H3BB0.413 (3)0.248 (6)0.693 (8)0.113*0.304 (4)
C40.35521 (6)0.01909 (16)0.83061 (14)0.0449 (4)
C50.35307 (6)0.10772 (16)0.86394 (14)0.0463 (4)
H5A0.32890.13250.91760.056*
C60.38452 (6)0.19979 (16)0.82263 (14)0.0447 (4)
C70.42103 (6)0.16127 (17)0.74191 (14)0.0463 (4)
H7A0.44300.22010.71220.056*0.304 (4)
C80.31825 (7)0.11625 (18)0.87695 (16)0.0560 (5)
C9A0.2998 (9)0.196 (2)0.7701 (16)0.112 (9)0.3333
H9AA0.27680.25620.79990.168*0.3333
H9AB0.32630.23980.73380.168*0.3333
H9AC0.28430.14260.70810.168*0.3333
C10A0.3456 (6)0.2269 (12)0.9387 (13)0.071 (5)0.3333
H10A0.32280.28800.96790.106*0.3333
H10B0.36510.19621.00820.106*0.3333
H10C0.36610.26600.87880.106*0.3333
C11A0.2718 (5)0.0582 (13)0.926 (2)0.147 (8)0.3333
H11A0.25060.12450.95240.220*0.3333
H11B0.25590.00960.86100.220*0.3333
H11C0.27960.00400.99600.220*0.3333
C9B0.2772 (7)0.113 (2)0.7849 (19)0.179 (13)0.3333
H9BA0.28260.04730.72450.268*0.3333
H9BB0.24770.09570.82740.268*0.3333
H9BC0.27460.19310.74300.268*0.3333
C10B0.3368 (7)0.1974 (19)0.9810 (14)0.124 (8)0.3333
H10D0.37020.17730.99940.185*0.3333
H10E0.33410.28490.95710.185*0.3333
H10F0.31810.18271.05400.185*0.3333
C11B0.3052 (9)0.0774 (19)1.0082 (13)0.128 (7)0.3333
H11D0.28750.00081.00490.192*0.3333
H11E0.33430.06641.05850.192*0.3333
H11F0.28560.14211.04440.192*0.3333
C9C0.2858 (7)0.170 (2)0.7759 (11)0.078 (5)0.3333
H9CA0.30510.20760.71240.117*0.3333
H9CB0.26620.10400.73950.117*0.3333
H9CC0.26530.23380.81070.117*0.3333
C10C0.3437 (7)0.2463 (12)0.8804 (18)0.157 (9)0.3333
H10G0.36750.24770.94770.235*0.3333
H10H0.35930.26040.80240.235*0.3333
H10I0.32020.31170.89310.235*0.3333
C11C0.2877 (7)0.059 (2)0.9786 (17)0.147 (11)0.3333
H11G0.30850.02971.04630.221*0.3333
H11H0.26580.12161.00890.221*0.3333
H11I0.26950.01140.94460.221*0.3333
C120.38024 (7)0.33903 (17)0.86191 (16)0.0571 (5)
C130.33690 (10)0.3607 (2)0.9473 (2)0.0868 (7)
H13A0.34150.31231.02270.130*
H13B0.30760.33420.90440.130*
H13C0.33470.44900.96770.130*
C140.42608 (10)0.3796 (2)0.9351 (2)0.0868 (7)
H14A0.43100.32531.00650.130*
H14B0.42260.46560.96270.130*
H14C0.45340.37340.88220.130*
C150.37179 (11)0.4224 (2)0.7459 (2)0.0912 (8)
H15A0.39880.41440.69190.137*
H15B0.36860.50920.77120.137*
H15C0.34270.39590.70190.137*
C210.5064 (4)0.3703 (4)0.2258 (7)0.091 (3)0.5
H21A0.51220.36830.13770.136*0.5
H21B0.53640.38440.27130.136*0.5
H21C0.48410.43760.24320.136*0.5
O210.4864 (2)0.2543 (3)0.2625 (6)0.104 (2)0.5
H210.477 (2)0.262 (4)0.342 (2)0.156*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0807 (10)0.0662 (9)0.0644 (8)0.0144 (7)0.0363 (7)0.0108 (7)
N10.0468 (8)0.0587 (10)0.0493 (8)0.0036 (7)0.0213 (6)0.0004 (7)
C10.0410 (9)0.0605 (12)0.0442 (9)0.0018 (8)0.0135 (7)0.0014 (8)
C20.0379 (8)0.0539 (11)0.0382 (8)0.0006 (7)0.0127 (7)0.0006 (7)
C30.0477 (10)0.0449 (10)0.0469 (9)0.0005 (8)0.0149 (7)0.0029 (7)
O3A0.0763 (14)0.0671 (14)0.0695 (13)0.0293 (11)0.0309 (10)0.0113 (10)
O3B0.084 (4)0.047 (3)0.097 (4)0.007 (2)0.051 (3)0.013 (2)
C40.0429 (9)0.0518 (10)0.0408 (8)0.0034 (8)0.0136 (7)0.0009 (7)
C50.0452 (9)0.0534 (11)0.0412 (8)0.0006 (8)0.0167 (7)0.0032 (7)
C60.0486 (9)0.0479 (10)0.0379 (8)0.0013 (8)0.0056 (7)0.0005 (7)
C70.0449 (9)0.0528 (11)0.0418 (9)0.0083 (8)0.0108 (7)0.0025 (7)
C80.0592 (11)0.0594 (12)0.0506 (10)0.0138 (9)0.0203 (8)0.0033 (8)
C9A0.116 (17)0.135 (15)0.087 (9)0.100 (14)0.014 (8)0.013 (9)
C10A0.074 (7)0.074 (7)0.064 (10)0.027 (5)0.000 (7)0.042 (6)
C11A0.086 (8)0.090 (7)0.27 (2)0.063 (6)0.104 (11)0.106 (10)
C9B0.113 (13)0.22 (2)0.203 (18)0.129 (15)0.082 (12)0.118 (16)
C10B0.102 (11)0.201 (17)0.068 (10)0.064 (10)0.000 (7)0.060 (10)
C11B0.162 (16)0.141 (11)0.084 (7)0.109 (10)0.058 (8)0.002 (8)
C9C0.076 (10)0.123 (12)0.035 (4)0.028 (7)0.006 (5)0.011 (5)
C10C0.198 (17)0.060 (6)0.22 (2)0.004 (8)0.148 (16)0.031 (10)
C11C0.141 (16)0.188 (16)0.120 (11)0.147 (12)0.116 (12)0.121 (12)
C120.0720 (13)0.0487 (11)0.0509 (10)0.0004 (9)0.0072 (9)0.0030 (8)
C130.1055 (19)0.0671 (15)0.0893 (16)0.0140 (13)0.0284 (14)0.0191 (12)
C140.1032 (19)0.0709 (15)0.0854 (16)0.0121 (13)0.0117 (14)0.0195 (12)
C150.138 (2)0.0588 (14)0.0761 (15)0.0071 (14)0.0024 (15)0.0096 (11)
C210.117 (6)0.079 (3)0.075 (6)0.036 (4)0.003 (5)0.007 (3)
O210.171 (7)0.0712 (19)0.072 (3)0.031 (3)0.037 (3)0.002 (2)
Geometric parameters (Å, º) top
O1—C11.228 (2)C11A—H11C0.9600
N1—C11.328 (2)C9B—H9BA0.9600
N1—C21.433 (2)C9B—H9BB0.9600
N1—H10.95 (2)C9B—H9BC0.9600
C1—C1i1.524 (3)C10B—C11B1.57 (2)
C2—C71.386 (2)C10B—H10D0.9600
C2—C31.386 (2)C10B—H10E0.9600
C3—C41.390 (2)C10B—H10F0.9600
C3—O3B1.434 (5)C11B—H11D0.9600
C3—H3A0.9300C11B—H11E0.9600
O3A—C71.379 (2)C11B—H11F0.9600
O3A—H3BA0.878 (19)C9C—H9CA0.9600
O3B—H3BB0.85 (2)C9C—H9CB0.9600
C4—C51.387 (2)C9C—H9CC0.9600
C4—C81.539 (2)C10C—H10G0.9600
C5—C61.384 (2)C10C—H10H0.9600
C5—H5A0.9300C10C—H10I0.9600
C6—C71.407 (2)C11C—H11G0.9600
C6—C121.534 (2)C11C—H11H0.9600
C7—H7A0.9300C11C—H11I0.9600
C8—C9B1.479 (12)C12—C141.529 (3)
C8—C9C1.495 (10)C12—C151.533 (3)
C8—C10B1.483 (12)C12—C131.543 (3)
C8—C9A1.495 (12)C13—H13A0.9600
C8—C11B1.515 (11)C13—H13B0.9600
C8—C11C1.522 (10)C13—H13C0.9600
C8—C10A1.530 (10)C14—H14A0.9600
C8—C11A1.530 (10)C14—H14B0.9600
C8—C10C1.542 (11)C14—H14C0.9600
C9A—H9AA0.9600C15—H15A0.9600
C9A—H9AB0.9600C15—H15B0.9600
C9A—H9AC0.9600C15—H15C0.9600
C10A—H10A0.9600C21—O211.404 (5)
C10A—H10B0.9600C21—H21A0.9600
C10A—H10C0.9600C21—H21B0.9600
C11A—H11A0.9600C21—H21C0.9600
C11A—H11B0.9600O21—H210.900 (10)
C1—N1—C2129.16 (17)H9BB—C9B—H9BC109.5
C1—N1—H1113.3 (11)C8—C10B—C11B59.4 (8)
C2—N1—H1117.2 (11)C8—C10B—H10D109.5
O1—C1—N1125.80 (16)C11B—C10B—H10D108.6
O1—C1—C1i121.01 (19)C8—C10B—H10E109.5
N1—C1—C1i113.2 (2)C11B—C10B—H10E141.8
C7—C2—C3120.83 (14)H10D—C10B—H10E109.5
C7—C2—N1123.10 (15)C8—C10B—H10F109.5
C3—C2—N1116.03 (15)C11B—C10B—H10F53.4
C2—C3—C4121.21 (15)H10D—C10B—H10F109.5
C2—C3—O3B120.8 (2)H10E—C10B—H10F109.5
C4—C3—O3B118.0 (2)C8—C11B—C10B57.4 (7)
C2—C3—H3A119.4C8—C11B—H11D109.5
C4—C3—H3A119.4C10B—C11B—H11D166.6
C7—O3A—H3BA104 (3)C8—C11B—H11E109.5
C3—O3B—H3BB152 (6)C10B—C11B—H11E75.0
C5—C4—C3116.60 (15)H11D—C11B—H11E109.5
C5—C4—C8121.79 (14)C8—C11B—H11F109.5
C3—C4—C8121.60 (15)C10B—C11B—H11F79.9
C6—C5—C4124.31 (15)H11D—C11B—H11F109.5
C6—C5—H5A117.8H11E—C11B—H11F109.5
C4—C5—H5A117.8C8—C9C—H9CA109.5
C5—C6—C7117.44 (15)C8—C9C—H9CB109.5
C5—C6—C12122.08 (15)H9CA—C9C—H9CB109.5
C7—C6—C12120.48 (15)C8—C9C—H9CC109.5
O3A—C7—C2123.86 (16)H9CA—C9C—H9CC109.5
O3A—C7—C6116.48 (17)H9CB—C9C—H9CC109.5
C2—C7—C6119.62 (15)C8—C10C—H10G109.5
C2—C7—H7A120.2C8—C10C—H10H109.5
C6—C7—H7A120.2H10G—C10C—H10H109.5
C9B—C8—C10B138.9 (10)C8—C10C—H10I109.5
C9B—C8—C11B114.2 (13)H10G—C10C—H10I109.5
C10B—C8—C11B63.1 (10)H10H—C10C—H10I109.5
C9C—C8—C11C109.5 (11)C8—C11C—H11G109.5
C9A—C8—C10A93.0 (12)C8—C11C—H11H109.5
C9B—C8—C4105.8 (7)H11G—C11C—H11H109.5
C9C—C8—C4114.2 (7)C8—C11C—H11I109.5
C10B—C8—C4114.1 (8)H11G—C11C—H11I109.5
C9A—C8—C4110.1 (8)H11H—C11C—H11I109.5
C11B—C8—C4107.2 (6)C14—C12—C15110.89 (19)
C11C—C8—C4110.6 (7)C14—C12—C6109.83 (17)
C10A—C8—C4108.9 (6)C15—C12—C6109.87 (16)
C9A—C8—C11A102.5 (12)C14—C12—C13107.51 (18)
C10A—C8—C11A124.5 (10)C15—C12—C13106.92 (19)
C4—C8—C11A114.5 (6)C6—C12—C13111.78 (16)
C9C—C8—C10C86.6 (12)C12—C13—H13A109.5
C11C—C8—C10C126.9 (11)C12—C13—H13B109.5
C4—C8—C10C107.1 (6)H13A—C13—H13B109.5
C8—C9A—H9AA109.5C12—C13—H13C109.5
C8—C9A—H9AB109.5H13A—C13—H13C109.5
H9AA—C9A—H9AB109.5H13B—C13—H13C109.5
C8—C9A—H9AC109.5C12—C14—H14A109.5
H9AA—C9A—H9AC109.5C12—C14—H14B109.5
H9AB—C9A—H9AC109.5H14A—C14—H14B109.5
C8—C10A—H10A109.5C12—C14—H14C109.5
C8—C10A—H10B109.5H14A—C14—H14C109.5
H10A—C10A—H10B109.5H14B—C14—H14C109.5
C8—C10A—H10C109.5C12—C15—H15A109.5
H10A—C10A—H10C109.5C12—C15—H15B109.5
H10B—C10A—H10C109.5H15A—C15—H15B109.5
C8—C11A—H11A109.5C12—C15—H15C109.5
C8—C11A—H11B109.5H15A—C15—H15C109.5
H11A—C11A—H11B109.5H15B—C15—H15C109.5
C8—C11A—H11C109.5O21—C21—H21A109.5
H11A—C11A—H11C109.5O21—C21—H21B109.5
H11B—C11A—H11C109.5H21A—C21—H21B109.5
C8—C9B—H9BA109.5O21—C21—H21C109.5
C8—C9B—H9BB109.5H21A—C21—H21C109.5
H9BA—C9B—H9BB109.5H21B—C21—H21C109.5
C8—C9B—H9BC109.5C21—O21—H21108.0 (19)
H9BA—C9B—H9BC109.5
C2—N1—C1—O13.7 (3)C5—C4—C8—C9C113.4 (10)
C2—N1—C1—C1i176.68 (17)C3—C4—C8—C9C65.2 (10)
C1—N1—C2—C736.0 (3)C5—C4—C8—C10B102.4 (9)
C1—N1—C2—C3146.33 (18)C3—C4—C8—C10B79.0 (9)
C7—C2—C3—C40.5 (3)C5—C4—C8—C9A132.7 (12)
N1—C2—C3—C4178.20 (15)C3—C4—C8—C9A45.9 (12)
C7—C2—C3—O3B176.8 (3)C5—C4—C8—C11B34.7 (11)
N1—C2—C3—O3B1.0 (4)C3—C4—C8—C11B146.7 (11)
C2—C3—C4—C50.5 (2)C5—C4—C8—C11C10.7 (11)
O3B—C3—C4—C5176.8 (3)C3—C4—C8—C11C170.7 (11)
C2—C3—C4—C8178.18 (16)C5—C4—C8—C10A126.6 (6)
O3B—C3—C4—C84.5 (4)C3—C4—C8—C10A54.8 (7)
C3—C4—C5—C60.4 (3)C5—C4—C8—C11A17.8 (10)
C8—C4—C5—C6178.29 (16)C3—C4—C8—C11A160.8 (10)
C4—C5—C6—C70.2 (3)C5—C4—C8—C10C152.5 (9)
C4—C5—C6—C12179.59 (16)C3—C4—C8—C10C28.9 (9)
C3—C2—C7—O3A177.44 (18)C9B—C8—C10B—C11B96.9 (19)
N1—C2—C7—O3A0.1 (3)C4—C8—C10B—C11B97.8 (8)
C3—C2—C7—C60.3 (2)C9B—C8—C11B—C10B134.3 (12)
N1—C2—C7—C6177.86 (15)C4—C8—C11B—C10B108.8 (10)
C5—C6—C7—O3A177.73 (16)C5—C6—C12—C14117.7 (2)
C12—C6—C7—O3A2.5 (2)C7—C6—C12—C1462.5 (2)
C5—C6—C7—C20.2 (2)C5—C6—C12—C15120.0 (2)
C12—C6—C7—C2179.65 (15)C7—C6—C12—C1559.8 (2)
C5—C4—C8—C9B87.6 (12)C5—C6—C12—C131.5 (2)
C3—C4—C8—C9B91.0 (12)C7—C6—C12—C13178.31 (17)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3BA···O10.88 (2)1.71 (2)2.578 (2)167 (4)
O3B—H3BB···O21ii0.85 (2)2.14 (2)2.612 (9)114 (4)
N1—H1···O21i0.95 (2)2.27 (2)3.140 (6)152 (2)
O21—H21···O10.90 (1)2.01 (3)2.744 (6)138 (4)
N1—H1···O1i0.95 (2)2.20 (2)2.685 (2)110 (1)
N1—H1···O3B0.95 (2)2.41 (2)2.749 (5)100 (1)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1/2.
 

Acknowledgements

SB acknowledges support by Instituto de Física Luis Rivera Terrazas (Puebla, Mexico). MAVC thanks CONACyT for a posdoctoral scholarship (CVU: 163212).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBeckmann, U., Bill, E., Weyhermüller, T. & Wieghardt, K. (2003). Eur. J. Inorg. Chem. pp. 1768–1777.  Web of Science CSD CrossRef Google Scholar
First citationBill, E., Beckmann, U. & Wieghardt, K. (2002). Hyperfine Interact. 144/145, 183–198.  Web of Science CrossRef CAS Google Scholar
First citationBurdet, E. M., Hofer, K. M., Moesch, R. D. S. & Schilli, A. R. (1972). Ger. Offen. Patent DE2139781 (22 pp.)  Google Scholar
First citationContreras, R., Jimenez-Perez, V. M., Camacho-Camacho, C., Güizado-Rodriguez, M. & Wrackmeyer, B. (2000). J. Organomet. Chem. 604, 229–233.  CAS Google Scholar
First citationGüizado-Rodríguez, M., Jiménez-Pérez, V. M., Hernández-Rivera, J. E., Domínguez, J. M., Contreras, R. & Quijada, R. (2007). Polyhedron, 26, 4321–4327.  Google Scholar
First citationJímenez-Pérez, V. M., Camacho-Camacho, C., Güizado-Rodríguez, M., Nöth, H. & Contreras, R. (2000). J. Organomet. Chem. 614–615, 283–293.  Google Scholar
First citationJiménez-Pérez, V. M., Camacho-Camacho, C., Ramos-Organillo, Á., Ramírez-Trejo, R., Peña-Hueso, A., Contreras, R. & Flores-Parra, A. (2007). J. Organomet. Chem. 692, 5549–5554.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartínez-Martínez, F. J., Ariza-Castolo, A., Tlahuext, H., Tlahuextl, M. & Contreras, R. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1481–1485.  Google Scholar
First citationMartínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401–406.  Google Scholar
First citationPiotrkowska, B., Gdaniec, M., Milewska, M. J. & Połoński, T. (2007). CrystEngComm, 9, 868–872.  Web of Science CSD CrossRef CAS Google Scholar
First citationRufino-Felipe, E., Caballero-Jiménez, J., Guerrero-Ramírez, L.-G., Flores-Álamo, M. & Muñoz-Hernández, M.-Á. (2016). Inorg. Chem. Commun. 63, 107–110.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeiss, R. J., Gordts, P. L. S. M., Le, D., Xu, D., Esko, J. D. & Tor, Y. (2015). Chem. Sci. 6, 5984–5993.  Web of Science CSD CrossRef CAS Google Scholar
First citationWen, Y.-H., Li, X.-M., Wang, L. & Zhang, S.-S. (2006). Acta Cryst. E62, o2185–o2186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds