research communications
trans-N,N′-bis(3,5-di-tert-butyl-2-hydroxyphenyl)oxamide methanol monosolvate
ofaCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: yasmi.reyes@correo.buap.mx
The here crystallized oxamide was previously characterized as an unsolvated species [Jímenez-Pérez et al. (2000). J. Organomet. Chem. 614–615, 283–293], and is now reported with methanol as a solvent of crystallization, C30H44N2O4·CH3OH, in a different The introduction of the solvent influences neither the molecular symmetry of the oxamide, which remains centrosymmetric, nor the molecular conformation. However, the unsolvated molecule crystallized as an ordered system, while many parts of the solvated crystal are disordered. The hydroxy group in the oxamide is disordered over two chemically equivalent positions, with occupancies 0.696 (4):0.304 (4); one tert-butyl group is disordered by rotation about the C—C bond, and was modelled with three sites for each methyl group, each one with occupancy 1/3. Finally, the methanol solvent, which lies on a twofold axis, is disordered by symmetry. The disorder affecting hydroxy groups and the solvent of crystallization allows the formation of numerous supramolecular motifs using four hydrogen bonds, with N—H and O—H groups as donors and the oxamide and methanol molecule as acceptors.
Keywords: crystal structure; oxamide; disorder; solvate; hydrogen bonding.
CCDC reference: 1482681
1. Chemical context
1,2-Bis-(3,5-di-tert-butyl-2-hydroxyphenyl)oxamide has been synthesized by two different routes, reported in the literature (Jímenez-Pérez et al., 2000; Beckmann et al., 2003). For several oxamide derivatives, NMR and crystallographic studies have shown that these compounds have the same conformation in the solid state and in solution: a planar structure stabilized by an intramolecular three-centre hydrogen bond forming two five-membered rings (Martínez-Martínez et al., 1993, 1998). Other studies of the polymerization of ethylene showed that Zr complexes bearing oxamide ligands are active as catalyst (Güizado-Rodríguez et al., 2007). Phenyloxamides have also been reported as light stabilizers for plastics (Burdet et al., 1972).
While attempting to coordinate 1,2-bis-(3,5-di-tert-butyl-2-hydroxyphenyl)oxamide to first-row transition metals in methanol, we obtained crystals of the title solvate, for which we report here the molecular and crystal structures.
2. Structural commentary
The trans-oxamide derivative lies on an inversion centre, placed at the midpoint of the central C1—C1i bond [symmetry code: (i) 1 − x, −y, 1 − z], and the methanol molecule is placed close to the twofold axis of the C2/c and was then refined with its occupancy constrained to 1/2 (Fig. 1). The dimensions for the oxamide molecule are very similar to those reported for the unsolvated crystal (Jímenez-Pérez et al., 2000).
The molecular conformation is not planar, and can be described using the dihedral angle between the oxamide core C1/O1/N1 and the benzene ring C2–C7. In the title solvate, this angle is 32.4 (2)°, slightly smaller than the same angle observed in the unsolvated crystal, 38.4°. A comparison of conformations stabilized for this molecule shows that a planar conformer is obtained only if amine and hydroxy groups are deprotonated to form a tetraanion, which is then able to coordinate a metal centre (e.g. Beckmann et al., 2003). The twisted conformation for the neutral molecule is probably a consequence of the formation of an intramolecular hydrogen bond between hydroxy and carbonyl groups (Table 1, entry 1). The resulting motif is an S(7) self-associating pattern having an envelope shape, in order to bring the O—H⋯O angle as close as possible to 180°. The involved OH group is disordered over two chemically equivalent positions on the benzene ring, C7 and C3. However, the most populated site, O3A, which has a site occupancy factor of 0.696 (4), is that forming this contact (Fig. 2). Because of the centrosymmetric character of the molecule, two occurrences of the S(7) motif are stabilizing the twisted conformation.
Other potential intramolecular hydrogen bonds starting from the amine groups N1 are present in the molecule, forming other S rings with lower degree. However, these contacts, N1—H1⋯O1 and N1—H1⋯O3B, are not relevant for the molecular conformation, since their D—H⋯A angles are close to 100°, corresponding to a stabilization energy close to 0 kJ mol−1 (Wood et al., 2009).
3. Supramolecular features
The introduction of methanol changes the original P crystal symmetry (Jímenez-Pérez et al., 2000) to C2/c (Table 2). The methanol molecule is located in close proximity to the oxamide, and behaves both as a donor and acceptor for hydrogen bonding (Table 1, entries 2–4). Discrete O—H⋯O(methanol) weak bonds are formed with the disordered hydroxy group O3B of the oxamide, as well as N—H⋯O(methanol) with the amine groups. As a result, R21(7) rings are formed (Fig. 2). The last heteroatom involved in hydrogen bonding is the carbonyl O atom O1, acting as an acceptor (Table 1, entry 4), to form R12(7) rings.
|
4. Database survey
The oxamidate derived from the title oxamide has been used extensively for coordination chemistry. It is possible to find one report in the literature for zinc clusters with 1,2-bis-(3,5-di-tert-butyl-2-hydroxyphenyl)oxamidate (Rufino-Felipe et al., 2016). In these complexes, the crystal structures exhibit an octanuclear Zn8 cage and a hexanuclear Zn6 cage, where the nuclearity of the cages is driven by the solvent. Other compounds with Si or Ge (Jiménez-Pérez et al., 2007) are described as bimetallic hexacyclic symmetric heterocycles, with hypervalent Si and Ge centres. For Sn compounds (Jímenez-Pérez et al., 2000; Contreras et al., 2000), two penta- or hexa-coordinated Sn atoms are arranged in a hexacyclic symmetric planar array. For Fe and Ga complexes (Beckmann et al., 2003; Bill et al., 2002), the metal ions Ga3+ and Fe3+ are five-coordinate, with a distorted trigonal–bipyramidal geometry in a hexacyclic symmetric planar array. Finally, in Ti, Zr and Hf complexes (Güizado-Rodríguez et al., 2007), the metal displays a planar structure similar to that observed in Sn complexes, but no X-ray structures were determined.
On the other hand, several phenol-oxamides have shown different conformations, ranging from completely flat (Weiss et al., 2015) to arrangements where the oxamide group presents a tilt angle, or is even almost completely perpendicular to the plane of the aromatic rings (Wen et al., 2006; Piotrkowska et al., 2007). Piotrkowska's group made a good analysis of the phenyl-oxamides and explained how the substituent groups on the aromatic rings and the presence of solvent influence the conformation of the oxamide group: hydrogen bonds and π–π stacking between aromatic rings are the main forces responsible for the assembly of molecules within the Thus, the steric effects of the bulky o-substituents cause twisting of the aryl ring from the oxamide plane, and interfere with the formation of hydrogen bonds (Piotrkowska et al., 2007).
5. Synthesis and crystallization
The reaction of 100 mg (0.171 mmol) of disodium bis(4,6-di-tert-butyl-1-oxo-phenyl)oxamido and 81 mg (0.342 mmol) of NiCl2·6H2O in methanol with a molar ratio 1:2 afforded a dark-brown solution. An amount of maleic acid (79 mg, 0.684 mmol), intended as a bridging ligand, was then added, changing the colour of the solution to light green. After a few minutes under stirring, a cottony precipitate formed. The solution was filtered and the filtrate allowed to crystallize by solvent evaporation, affording needle-shaped green crystals. The green colour is due to a thin layer of nickel chloride covering the crystals. Some of these crystals were washed with methanol, giving colourless crystals (m.p. 496-497 K), used for X-ray crystallography.
Spectroscopic data: FT–IR (KBr, cm−1): 3501, 3355, 3274 (OH, NH), 1651 (C=O). 1H NMR (500 MHz, CDCl3) δ, p.p.m.: 9.54 (s, 2H, OH), 7.57 (s, 2H, NH), 7.32 (d, 2H, J = 2.3 Hz, Ph), 7.15 (d, 2H, J = 2.3 Hz, Ph), 3.51 (s, CH3OH), 1.61 (s, CH3OH), 1.48 (s, 18H, CH3C, tBu), 1.33 (s, 18H, CH3C, tBu). 13C NMR (100 MHz, CDCl3) δ, p.p.m.: 157.28 (C=O, oxamide), 145.82 (C—O, phenol), 143.31 (C, quaternary Ph), 139.77 (C, quaternary Ph), 123.99 (C—N), 123.17 (CH, Ph), 117.71 (CH, Ph), 35.40 (CH3C, tBu), 34.41 (CH3C, tBu), 31.45 (CH3C, tBu), 30.97 (CH3OH), 29.83 (CH3C, tBu).
6. Refinement
Crystal data, data collection and structure . In the one tert-butyl group is severely disordered by rotation, and each methyl group was split over three sites, labelled A, B and C, with occupancy fixed to 1/3 (Fig. 1, inset). ADPs for these C atoms were restrained to approximate isotropic behaviour with a of 0.1 Å2, and the nine atoms were restrained to have the same displacement parameters within 0.04 Å2 deviation. Finally, C8—methyl bond lengths were restrained to be equal with a 0.02 Å. The hydroxy group in the oxamide is disordered over two chemically equivalent sites, O3A and O3B, and their occupancies converged to 0.696 (4) and 0.304 (4), respectively. Finally, the methanol molecule is disordered by symmetry over a twofold axis, and its occupancy was fixed at 1/2. The geometry for this molecule was restrained with bond length C21—O21 = 1.45 (1) Å. All H atoms bonded to C atoms were placed in idealized positions and refined as riding atoms, with C—H bond lengths fixed to 0.93 (aromatic) or 0.96 Å (methyl groups) and Uiso(H) = xUeq(C) with x = 1.2 (aromatic) or 1.5 (methyl groups). H atoms bonded to heteroatoms were found in difference maps and refined with restraints applied to the O—H bond lengths: 0.90 (1) Å (methanol) and 0.85 (2) Å (hydroxy). For these H atoms Uiso(H) = xUeq(carrier atom), with x = 1.2 (NH) or x = 1.5 (OH).
details are summarized in Table 2Supporting information
CCDC reference: 1482681
https://doi.org/10.1107/S205698901600880X/su5302sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901600880X/su5302Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901600880X/su5302Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CifTab (Sheldrick, 2015).C30H44N2O4·CH4O | Dx = 1.128 Mg m−3 |
Mr = 528.71 | Melting point: 496 K |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 27.614 (3) Å | Cell parameters from 3123 reflections |
b = 10.5561 (11) Å | θ = 4.3–28.5° |
c = 10.6875 (9) Å | µ = 0.08 mm−1 |
β = 91.722 (9)° | T = 298 K |
V = 3113.9 (5) Å3 | Needle, colourless |
Z = 4 | 0.62 × 0.10 × 0.07 mm |
F(000) = 1152 |
Agilent Xcalibur Atlas Gemini diffractometer | 3188 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2152 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 10.5564 pixels mm-1 | θmax = 26.4°, θmin = 2.9° |
ω scans | h = −34→34 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −13→13 |
Tmin = 0.664, Tmax = 1.000 | l = −13→13 |
16488 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: mixed |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0878P)2 + 2.0368P] where P = (Fo2 + 2Fc2)/3 |
3188 reflections | (Δ/σ)max < 0.001 |
263 parameters | Δρmax = 0.14 e Å−3 |
174 restraints | Δρmin = −0.15 e Å−3 |
0 constraints |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.47428 (5) | 0.15121 (14) | 0.49515 (12) | 0.0698 (4) | |
N1 | 0.46117 (5) | −0.01249 (16) | 0.62855 (13) | 0.0512 (4) | |
H1 | 0.4704 (7) | −0.099 (2) | 0.6394 (17) | 0.061* | |
C1 | 0.48192 (6) | 0.04271 (18) | 0.53215 (15) | 0.0483 (4) | |
C2 | 0.42414 (6) | 0.03520 (16) | 0.70695 (14) | 0.0431 (4) | |
C3 | 0.39184 (6) | −0.05361 (16) | 0.75100 (15) | 0.0462 (4) | |
H3A | 0.3947 | −0.1378 | 0.7268 | 0.055* | 0.696 (4) |
O3A | 0.45301 (8) | 0.2536 (2) | 0.70552 (18) | 0.0704 (8) | 0.696 (4) |
H3BA | 0.4609 (13) | 0.230 (4) | 0.630 (2) | 0.106* | 0.696 (4) |
O3B | 0.39663 (18) | −0.1851 (4) | 0.7200 (5) | 0.0751 (18) | 0.304 (4) |
H3BB | 0.413 (3) | −0.248 (6) | 0.693 (8) | 0.113* | 0.304 (4) |
C4 | 0.35521 (6) | −0.01909 (16) | 0.83061 (14) | 0.0449 (4) | |
C5 | 0.35307 (6) | 0.10772 (16) | 0.86394 (14) | 0.0463 (4) | |
H5A | 0.3289 | 0.1325 | 0.9176 | 0.056* | |
C6 | 0.38452 (6) | 0.19979 (16) | 0.82263 (14) | 0.0447 (4) | |
C7 | 0.42103 (6) | 0.16127 (17) | 0.74191 (14) | 0.0463 (4) | |
H7A | 0.4430 | 0.2201 | 0.7122 | 0.056* | 0.304 (4) |
C8 | 0.31825 (7) | −0.11625 (18) | 0.87695 (16) | 0.0560 (5) | |
C9A | 0.2998 (9) | −0.196 (2) | 0.7701 (16) | 0.112 (9) | 0.3333 |
H9AA | 0.2768 | −0.2562 | 0.7999 | 0.168* | 0.3333 |
H9AB | 0.3263 | −0.2398 | 0.7338 | 0.168* | 0.3333 |
H9AC | 0.2843 | −0.1426 | 0.7081 | 0.168* | 0.3333 |
C10A | 0.3456 (6) | −0.2269 (12) | 0.9387 (13) | 0.071 (5) | 0.3333 |
H10A | 0.3228 | −0.2880 | 0.9679 | 0.106* | 0.3333 |
H10B | 0.3651 | −0.1962 | 1.0082 | 0.106* | 0.3333 |
H10C | 0.3661 | −0.2660 | 0.8788 | 0.106* | 0.3333 |
C11A | 0.2718 (5) | −0.0582 (13) | 0.926 (2) | 0.147 (8) | 0.3333 |
H11A | 0.2506 | −0.1245 | 0.9524 | 0.220* | 0.3333 |
H11B | 0.2559 | −0.0096 | 0.8610 | 0.220* | 0.3333 |
H11C | 0.2796 | −0.0040 | 0.9960 | 0.220* | 0.3333 |
C9B | 0.2772 (7) | −0.113 (2) | 0.7849 (19) | 0.179 (13) | 0.3333 |
H9BA | 0.2826 | −0.0473 | 0.7245 | 0.268* | 0.3333 |
H9BB | 0.2477 | −0.0957 | 0.8274 | 0.268* | 0.3333 |
H9BC | 0.2746 | −0.1931 | 0.7430 | 0.268* | 0.3333 |
C10B | 0.3368 (7) | −0.1974 (19) | 0.9810 (14) | 0.124 (8) | 0.3333 |
H10D | 0.3702 | −0.1773 | 0.9994 | 0.185* | 0.3333 |
H10E | 0.3341 | −0.2849 | 0.9571 | 0.185* | 0.3333 |
H10F | 0.3181 | −0.1827 | 1.0540 | 0.185* | 0.3333 |
C11B | 0.3052 (9) | −0.0774 (19) | 1.0082 (13) | 0.128 (7) | 0.3333 |
H11D | 0.2875 | 0.0008 | 1.0049 | 0.192* | 0.3333 |
H11E | 0.3343 | −0.0664 | 1.0585 | 0.192* | 0.3333 |
H11F | 0.2856 | −0.1421 | 1.0444 | 0.192* | 0.3333 |
C9C | 0.2858 (7) | −0.170 (2) | 0.7759 (11) | 0.078 (5) | 0.3333 |
H9CA | 0.3051 | −0.2076 | 0.7124 | 0.117* | 0.3333 |
H9CB | 0.2662 | −0.1040 | 0.7395 | 0.117* | 0.3333 |
H9CC | 0.2653 | −0.2338 | 0.8107 | 0.117* | 0.3333 |
C10C | 0.3437 (7) | −0.2463 (12) | 0.8804 (18) | 0.157 (9) | 0.3333 |
H10G | 0.3675 | −0.2477 | 0.9477 | 0.235* | 0.3333 |
H10H | 0.3593 | −0.2604 | 0.8024 | 0.235* | 0.3333 |
H10I | 0.3202 | −0.3117 | 0.8931 | 0.235* | 0.3333 |
C11C | 0.2877 (7) | −0.059 (2) | 0.9786 (17) | 0.147 (11) | 0.3333 |
H11G | 0.3085 | −0.0297 | 1.0463 | 0.221* | 0.3333 |
H11H | 0.2658 | −0.1216 | 1.0089 | 0.221* | 0.3333 |
H11I | 0.2695 | 0.0114 | 0.9446 | 0.221* | 0.3333 |
C12 | 0.38024 (7) | 0.33903 (17) | 0.86191 (16) | 0.0571 (5) | |
C13 | 0.33690 (10) | 0.3607 (2) | 0.9473 (2) | 0.0868 (7) | |
H13A | 0.3415 | 0.3123 | 1.0227 | 0.130* | |
H13B | 0.3076 | 0.3342 | 0.9044 | 0.130* | |
H13C | 0.3347 | 0.4490 | 0.9677 | 0.130* | |
C14 | 0.42608 (10) | 0.3796 (2) | 0.9351 (2) | 0.0868 (7) | |
H14A | 0.4310 | 0.3253 | 1.0065 | 0.130* | |
H14B | 0.4226 | 0.4656 | 0.9627 | 0.130* | |
H14C | 0.4534 | 0.3734 | 0.8822 | 0.130* | |
C15 | 0.37179 (11) | 0.4224 (2) | 0.7459 (2) | 0.0912 (8) | |
H15A | 0.3988 | 0.4144 | 0.6919 | 0.137* | |
H15B | 0.3686 | 0.5092 | 0.7712 | 0.137* | |
H15C | 0.3427 | 0.3959 | 0.7019 | 0.137* | |
C21 | 0.5064 (4) | 0.3703 (4) | 0.2258 (7) | 0.091 (3) | 0.5 |
H21A | 0.5122 | 0.3683 | 0.1377 | 0.136* | 0.5 |
H21B | 0.5364 | 0.3844 | 0.2713 | 0.136* | 0.5 |
H21C | 0.4841 | 0.4376 | 0.2432 | 0.136* | 0.5 |
O21 | 0.4864 (2) | 0.2543 (3) | 0.2625 (6) | 0.104 (2) | 0.5 |
H21 | 0.477 (2) | 0.262 (4) | 0.342 (2) | 0.156* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0807 (10) | 0.0662 (9) | 0.0644 (8) | 0.0144 (7) | 0.0363 (7) | 0.0108 (7) |
N1 | 0.0468 (8) | 0.0587 (10) | 0.0493 (8) | 0.0036 (7) | 0.0213 (6) | 0.0004 (7) |
C1 | 0.0410 (9) | 0.0605 (12) | 0.0442 (9) | −0.0018 (8) | 0.0135 (7) | −0.0014 (8) |
C2 | 0.0379 (8) | 0.0539 (11) | 0.0382 (8) | 0.0006 (7) | 0.0127 (7) | −0.0006 (7) |
C3 | 0.0477 (10) | 0.0449 (10) | 0.0469 (9) | −0.0005 (8) | 0.0149 (7) | −0.0029 (7) |
O3A | 0.0763 (14) | 0.0671 (14) | 0.0695 (13) | −0.0293 (11) | 0.0309 (10) | −0.0113 (10) |
O3B | 0.084 (4) | 0.047 (3) | 0.097 (4) | −0.007 (2) | 0.051 (3) | −0.013 (2) |
C4 | 0.0429 (9) | 0.0518 (10) | 0.0408 (8) | −0.0034 (8) | 0.0136 (7) | 0.0009 (7) |
C5 | 0.0452 (9) | 0.0534 (11) | 0.0412 (8) | 0.0006 (8) | 0.0167 (7) | −0.0032 (7) |
C6 | 0.0486 (9) | 0.0479 (10) | 0.0379 (8) | 0.0013 (8) | 0.0056 (7) | −0.0005 (7) |
C7 | 0.0449 (9) | 0.0528 (11) | 0.0418 (9) | −0.0083 (8) | 0.0108 (7) | 0.0025 (7) |
C8 | 0.0592 (11) | 0.0594 (12) | 0.0506 (10) | −0.0138 (9) | 0.0203 (8) | −0.0033 (8) |
C9A | 0.116 (17) | 0.135 (15) | 0.087 (9) | −0.100 (14) | 0.014 (8) | 0.013 (9) |
C10A | 0.074 (7) | 0.074 (7) | 0.064 (10) | −0.027 (5) | 0.000 (7) | 0.042 (6) |
C11A | 0.086 (8) | 0.090 (7) | 0.27 (2) | −0.063 (6) | 0.104 (11) | −0.106 (10) |
C9B | 0.113 (13) | 0.22 (2) | 0.203 (18) | −0.129 (15) | −0.082 (12) | 0.118 (16) |
C10B | 0.102 (11) | 0.201 (17) | 0.068 (10) | −0.064 (10) | 0.000 (7) | 0.060 (10) |
C11B | 0.162 (16) | 0.141 (11) | 0.084 (7) | −0.109 (10) | 0.058 (8) | 0.002 (8) |
C9C | 0.076 (10) | 0.123 (12) | 0.035 (4) | −0.028 (7) | −0.006 (5) | 0.011 (5) |
C10C | 0.198 (17) | 0.060 (6) | 0.22 (2) | −0.004 (8) | 0.148 (16) | 0.031 (10) |
C11C | 0.141 (16) | 0.188 (16) | 0.120 (11) | −0.147 (12) | 0.116 (12) | −0.121 (12) |
C12 | 0.0720 (13) | 0.0487 (11) | 0.0509 (10) | −0.0004 (9) | 0.0072 (9) | −0.0030 (8) |
C13 | 0.1055 (19) | 0.0671 (15) | 0.0893 (16) | 0.0140 (13) | 0.0284 (14) | −0.0191 (12) |
C14 | 0.1032 (19) | 0.0709 (15) | 0.0854 (16) | −0.0121 (13) | −0.0117 (14) | −0.0195 (12) |
C15 | 0.138 (2) | 0.0588 (14) | 0.0761 (15) | 0.0071 (14) | −0.0024 (15) | 0.0096 (11) |
C21 | 0.117 (6) | 0.079 (3) | 0.075 (6) | −0.036 (4) | −0.003 (5) | −0.007 (3) |
O21 | 0.171 (7) | 0.0712 (19) | 0.072 (3) | −0.031 (3) | 0.037 (3) | −0.002 (2) |
O1—C1 | 1.228 (2) | C11A—H11C | 0.9600 |
N1—C1 | 1.328 (2) | C9B—H9BA | 0.9600 |
N1—C2 | 1.433 (2) | C9B—H9BB | 0.9600 |
N1—H1 | 0.95 (2) | C9B—H9BC | 0.9600 |
C1—C1i | 1.524 (3) | C10B—C11B | 1.57 (2) |
C2—C7 | 1.386 (2) | C10B—H10D | 0.9600 |
C2—C3 | 1.386 (2) | C10B—H10E | 0.9600 |
C3—C4 | 1.390 (2) | C10B—H10F | 0.9600 |
C3—O3B | 1.434 (5) | C11B—H11D | 0.9600 |
C3—H3A | 0.9300 | C11B—H11E | 0.9600 |
O3A—C7 | 1.379 (2) | C11B—H11F | 0.9600 |
O3A—H3BA | 0.878 (19) | C9C—H9CA | 0.9600 |
O3B—H3BB | 0.85 (2) | C9C—H9CB | 0.9600 |
C4—C5 | 1.387 (2) | C9C—H9CC | 0.9600 |
C4—C8 | 1.539 (2) | C10C—H10G | 0.9600 |
C5—C6 | 1.384 (2) | C10C—H10H | 0.9600 |
C5—H5A | 0.9300 | C10C—H10I | 0.9600 |
C6—C7 | 1.407 (2) | C11C—H11G | 0.9600 |
C6—C12 | 1.534 (2) | C11C—H11H | 0.9600 |
C7—H7A | 0.9300 | C11C—H11I | 0.9600 |
C8—C9B | 1.479 (12) | C12—C14 | 1.529 (3) |
C8—C9C | 1.495 (10) | C12—C15 | 1.533 (3) |
C8—C10B | 1.483 (12) | C12—C13 | 1.543 (3) |
C8—C9A | 1.495 (12) | C13—H13A | 0.9600 |
C8—C11B | 1.515 (11) | C13—H13B | 0.9600 |
C8—C11C | 1.522 (10) | C13—H13C | 0.9600 |
C8—C10A | 1.530 (10) | C14—H14A | 0.9600 |
C8—C11A | 1.530 (10) | C14—H14B | 0.9600 |
C8—C10C | 1.542 (11) | C14—H14C | 0.9600 |
C9A—H9AA | 0.9600 | C15—H15A | 0.9600 |
C9A—H9AB | 0.9600 | C15—H15B | 0.9600 |
C9A—H9AC | 0.9600 | C15—H15C | 0.9600 |
C10A—H10A | 0.9600 | C21—O21 | 1.404 (5) |
C10A—H10B | 0.9600 | C21—H21A | 0.9600 |
C10A—H10C | 0.9600 | C21—H21B | 0.9600 |
C11A—H11A | 0.9600 | C21—H21C | 0.9600 |
C11A—H11B | 0.9600 | O21—H21 | 0.900 (10) |
C1—N1—C2 | 129.16 (17) | H9BB—C9B—H9BC | 109.5 |
C1—N1—H1 | 113.3 (11) | C8—C10B—C11B | 59.4 (8) |
C2—N1—H1 | 117.2 (11) | C8—C10B—H10D | 109.5 |
O1—C1—N1 | 125.80 (16) | C11B—C10B—H10D | 108.6 |
O1—C1—C1i | 121.01 (19) | C8—C10B—H10E | 109.5 |
N1—C1—C1i | 113.2 (2) | C11B—C10B—H10E | 141.8 |
C7—C2—C3 | 120.83 (14) | H10D—C10B—H10E | 109.5 |
C7—C2—N1 | 123.10 (15) | C8—C10B—H10F | 109.5 |
C3—C2—N1 | 116.03 (15) | C11B—C10B—H10F | 53.4 |
C2—C3—C4 | 121.21 (15) | H10D—C10B—H10F | 109.5 |
C2—C3—O3B | 120.8 (2) | H10E—C10B—H10F | 109.5 |
C4—C3—O3B | 118.0 (2) | C8—C11B—C10B | 57.4 (7) |
C2—C3—H3A | 119.4 | C8—C11B—H11D | 109.5 |
C4—C3—H3A | 119.4 | C10B—C11B—H11D | 166.6 |
C7—O3A—H3BA | 104 (3) | C8—C11B—H11E | 109.5 |
C3—O3B—H3BB | 152 (6) | C10B—C11B—H11E | 75.0 |
C5—C4—C3 | 116.60 (15) | H11D—C11B—H11E | 109.5 |
C5—C4—C8 | 121.79 (14) | C8—C11B—H11F | 109.5 |
C3—C4—C8 | 121.60 (15) | C10B—C11B—H11F | 79.9 |
C6—C5—C4 | 124.31 (15) | H11D—C11B—H11F | 109.5 |
C6—C5—H5A | 117.8 | H11E—C11B—H11F | 109.5 |
C4—C5—H5A | 117.8 | C8—C9C—H9CA | 109.5 |
C5—C6—C7 | 117.44 (15) | C8—C9C—H9CB | 109.5 |
C5—C6—C12 | 122.08 (15) | H9CA—C9C—H9CB | 109.5 |
C7—C6—C12 | 120.48 (15) | C8—C9C—H9CC | 109.5 |
O3A—C7—C2 | 123.86 (16) | H9CA—C9C—H9CC | 109.5 |
O3A—C7—C6 | 116.48 (17) | H9CB—C9C—H9CC | 109.5 |
C2—C7—C6 | 119.62 (15) | C8—C10C—H10G | 109.5 |
C2—C7—H7A | 120.2 | C8—C10C—H10H | 109.5 |
C6—C7—H7A | 120.2 | H10G—C10C—H10H | 109.5 |
C9B—C8—C10B | 138.9 (10) | C8—C10C—H10I | 109.5 |
C9B—C8—C11B | 114.2 (13) | H10G—C10C—H10I | 109.5 |
C10B—C8—C11B | 63.1 (10) | H10H—C10C—H10I | 109.5 |
C9C—C8—C11C | 109.5 (11) | C8—C11C—H11G | 109.5 |
C9A—C8—C10A | 93.0 (12) | C8—C11C—H11H | 109.5 |
C9B—C8—C4 | 105.8 (7) | H11G—C11C—H11H | 109.5 |
C9C—C8—C4 | 114.2 (7) | C8—C11C—H11I | 109.5 |
C10B—C8—C4 | 114.1 (8) | H11G—C11C—H11I | 109.5 |
C9A—C8—C4 | 110.1 (8) | H11H—C11C—H11I | 109.5 |
C11B—C8—C4 | 107.2 (6) | C14—C12—C15 | 110.89 (19) |
C11C—C8—C4 | 110.6 (7) | C14—C12—C6 | 109.83 (17) |
C10A—C8—C4 | 108.9 (6) | C15—C12—C6 | 109.87 (16) |
C9A—C8—C11A | 102.5 (12) | C14—C12—C13 | 107.51 (18) |
C10A—C8—C11A | 124.5 (10) | C15—C12—C13 | 106.92 (19) |
C4—C8—C11A | 114.5 (6) | C6—C12—C13 | 111.78 (16) |
C9C—C8—C10C | 86.6 (12) | C12—C13—H13A | 109.5 |
C11C—C8—C10C | 126.9 (11) | C12—C13—H13B | 109.5 |
C4—C8—C10C | 107.1 (6) | H13A—C13—H13B | 109.5 |
C8—C9A—H9AA | 109.5 | C12—C13—H13C | 109.5 |
C8—C9A—H9AB | 109.5 | H13A—C13—H13C | 109.5 |
H9AA—C9A—H9AB | 109.5 | H13B—C13—H13C | 109.5 |
C8—C9A—H9AC | 109.5 | C12—C14—H14A | 109.5 |
H9AA—C9A—H9AC | 109.5 | C12—C14—H14B | 109.5 |
H9AB—C9A—H9AC | 109.5 | H14A—C14—H14B | 109.5 |
C8—C10A—H10A | 109.5 | C12—C14—H14C | 109.5 |
C8—C10A—H10B | 109.5 | H14A—C14—H14C | 109.5 |
H10A—C10A—H10B | 109.5 | H14B—C14—H14C | 109.5 |
C8—C10A—H10C | 109.5 | C12—C15—H15A | 109.5 |
H10A—C10A—H10C | 109.5 | C12—C15—H15B | 109.5 |
H10B—C10A—H10C | 109.5 | H15A—C15—H15B | 109.5 |
C8—C11A—H11A | 109.5 | C12—C15—H15C | 109.5 |
C8—C11A—H11B | 109.5 | H15A—C15—H15C | 109.5 |
H11A—C11A—H11B | 109.5 | H15B—C15—H15C | 109.5 |
C8—C11A—H11C | 109.5 | O21—C21—H21A | 109.5 |
H11A—C11A—H11C | 109.5 | O21—C21—H21B | 109.5 |
H11B—C11A—H11C | 109.5 | H21A—C21—H21B | 109.5 |
C8—C9B—H9BA | 109.5 | O21—C21—H21C | 109.5 |
C8—C9B—H9BB | 109.5 | H21A—C21—H21C | 109.5 |
H9BA—C9B—H9BB | 109.5 | H21B—C21—H21C | 109.5 |
C8—C9B—H9BC | 109.5 | C21—O21—H21 | 108.0 (19) |
H9BA—C9B—H9BC | 109.5 | ||
C2—N1—C1—O1 | 3.7 (3) | C5—C4—C8—C9C | 113.4 (10) |
C2—N1—C1—C1i | −176.68 (17) | C3—C4—C8—C9C | −65.2 (10) |
C1—N1—C2—C7 | −36.0 (3) | C5—C4—C8—C10B | −102.4 (9) |
C1—N1—C2—C3 | 146.33 (18) | C3—C4—C8—C10B | 79.0 (9) |
C7—C2—C3—C4 | 0.5 (3) | C5—C4—C8—C9A | 132.7 (12) |
N1—C2—C3—C4 | 178.20 (15) | C3—C4—C8—C9A | −45.9 (12) |
C7—C2—C3—O3B | −176.8 (3) | C5—C4—C8—C11B | −34.7 (11) |
N1—C2—C3—O3B | 1.0 (4) | C3—C4—C8—C11B | 146.7 (11) |
C2—C3—C4—C5 | −0.5 (2) | C5—C4—C8—C11C | −10.7 (11) |
O3B—C3—C4—C5 | 176.8 (3) | C3—C4—C8—C11C | 170.7 (11) |
C2—C3—C4—C8 | 178.18 (16) | C5—C4—C8—C10A | −126.6 (6) |
O3B—C3—C4—C8 | −4.5 (4) | C3—C4—C8—C10A | 54.8 (7) |
C3—C4—C5—C6 | 0.4 (3) | C5—C4—C8—C11A | 17.8 (10) |
C8—C4—C5—C6 | −178.29 (16) | C3—C4—C8—C11A | −160.8 (10) |
C4—C5—C6—C7 | −0.2 (3) | C5—C4—C8—C10C | −152.5 (9) |
C4—C5—C6—C12 | 179.59 (16) | C3—C4—C8—C10C | 28.9 (9) |
C3—C2—C7—O3A | 177.44 (18) | C9B—C8—C10B—C11B | −96.9 (19) |
N1—C2—C7—O3A | −0.1 (3) | C4—C8—C10B—C11B | 97.8 (8) |
C3—C2—C7—C6 | −0.3 (2) | C9B—C8—C11B—C10B | 134.3 (12) |
N1—C2—C7—C6 | −177.86 (15) | C4—C8—C11B—C10B | −108.8 (10) |
C5—C6—C7—O3A | −177.73 (16) | C5—C6—C12—C14 | 117.7 (2) |
C12—C6—C7—O3A | 2.5 (2) | C7—C6—C12—C14 | −62.5 (2) |
C5—C6—C7—C2 | 0.2 (2) | C5—C6—C12—C15 | −120.0 (2) |
C12—C6—C7—C2 | −179.65 (15) | C7—C6—C12—C15 | 59.8 (2) |
C5—C4—C8—C9B | 87.6 (12) | C5—C6—C12—C13 | −1.5 (2) |
C3—C4—C8—C9B | −91.0 (12) | C7—C6—C12—C13 | 178.31 (17) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3A—H3BA···O1 | 0.88 (2) | 1.71 (2) | 2.578 (2) | 167 (4) |
O3B—H3BB···O21ii | 0.85 (2) | 2.14 (2) | 2.612 (9) | 114 (4) |
N1—H1···O21i | 0.95 (2) | 2.27 (2) | 3.140 (6) | 152 (2) |
O21—H21···O1 | 0.90 (1) | 2.01 (3) | 2.744 (6) | 138 (4) |
N1—H1···O1i | 0.95 (2) | 2.20 (2) | 2.685 (2) | 110 (1) |
N1—H1···O3B | 0.95 (2) | 2.41 (2) | 2.749 (5) | 100 (1) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y, z+1/2. |
Acknowledgements
SB acknowledges support by Instituto de Física Luis Rivera Terrazas (Puebla, Mexico). MAVC thanks CONACyT for a posdoctoral scholarship (CVU: 163212).
References
Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Beckmann, U., Bill, E., Weyhermüller, T. & Wieghardt, K. (2003). Eur. J. Inorg. Chem. pp. 1768–1777. Web of Science CSD CrossRef Google Scholar
Bill, E., Beckmann, U. & Wieghardt, K. (2002). Hyperfine Interact. 144/145, 183–198. Web of Science CrossRef CAS Google Scholar
Burdet, E. M., Hofer, K. M., Moesch, R. D. S. & Schilli, A. R. (1972). Ger. Offen. Patent DE2139781 (22 pp.) Google Scholar
Contreras, R., Jimenez-Perez, V. M., Camacho-Camacho, C., Güizado-Rodriguez, M. & Wrackmeyer, B. (2000). J. Organomet. Chem. 604, 229–233. CAS Google Scholar
Güizado-Rodríguez, M., Jiménez-Pérez, V. M., Hernández-Rivera, J. E., Domínguez, J. M., Contreras, R. & Quijada, R. (2007). Polyhedron, 26, 4321–4327. Google Scholar
Jímenez-Pérez, V. M., Camacho-Camacho, C., Güizado-Rodríguez, M., Nöth, H. & Contreras, R. (2000). J. Organomet. Chem. 614–615, 283–293. Google Scholar
Jiménez-Pérez, V. M., Camacho-Camacho, C., Ramos-Organillo, Á., Ramírez-Trejo, R., Peña-Hueso, A., Contreras, R. & Flores-Parra, A. (2007). J. Organomet. Chem. 692, 5549–5554. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Martínez-Martínez, F. J., Ariza-Castolo, A., Tlahuext, H., Tlahuextl, M. & Contreras, R. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1481–1485. Google Scholar
Martínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401–406. Google Scholar
Piotrkowska, B., Gdaniec, M., Milewska, M. J. & Połoński, T. (2007). CrystEngComm, 9, 868–872. Web of Science CSD CrossRef CAS Google Scholar
Rufino-Felipe, E., Caballero-Jiménez, J., Guerrero-Ramírez, L.-G., Flores-Álamo, M. & Muñoz-Hernández, M.-Á. (2016). Inorg. Chem. Commun. 63, 107–110. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Weiss, R. J., Gordts, P. L. S. M., Le, D., Xu, D., Esko, J. D. & Tor, Y. (2015). Chem. Sci. 6, 5984–5993. Web of Science CSD CrossRef CAS Google Scholar
Wen, Y.-H., Li, X.-M., Wang, L. & Zhang, S.-S. (2006). Acta Cryst. E62, o2185–o2186. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.