research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 4-[(E)-(4-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)amino]­benzoate: a p-hy­dr­oxy Schiff base

CROSSMARK_Color_square_no_text.svg

aDepartment of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, and bDepartment of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, Florida 33620, USA
*Correspondence e-mail: chadwick@purdue.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 May 2016; accepted 3 June 2016; online 14 June 2016)

The title p-hy­droxy Schiff base, C17H17NO4, was synthesized via the condensation reaction of benzocaine with vanillin. The benzyl­idine and benzoate rings are inclined to one another by 24.58 (8)°, and the conformation about the C=N bond is E. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming zigzag chains propagating along [010]. Adjacent chains are linked by C—H⋯π and weak offset ππ inter­actions [inter­centroid distance = 3.819 (1) Å], forming sheets parallel to (10-2).

1. Chemical context

The pharmaceutical industry generally seeks to formulate crystalline forms of their active ingredient by their inherent stability (Yadav et al., 2009[Yadav, A. V., Shete, A. S., Dabke, A. P., Kulkarni, P. V. & Sakhare, S. S. (2009). Indian J. Pharm. Sci. 71, 359-370.]; Paul et al., 2005[Paul, E. L., Tung, H. H. & Midler, M. (2005). Powder Technol. 150, 133-143.]). Increasing attention is now being paid to crystal engineering for improving crystal properties (Byrn et al., 1999[Byrn, S. R., Pfeiffer, R. R. & Stowell, J. G. (1999). West Lafayette: SSCI.]). One such strategy is co-crystallization due to its potential for enhancing the physicochemical properties of an API, such as solubility, bioavailability, dissolution, and chemical and physical stability (Shan & Zaworotko, 2008[Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440-446.]; Good & Rodríguez-Hornedo, 2009[Good, D. J. & Rodríguez-Hornedo, N. (2009). Cryst. Growth Des. 9, 2252-2264.]). The term co-crystal does not have a clear and consistent definition in the literature (Desiraju, 2003[Desiraju, G. R. (2003). CrystEngComm, 5, 466-467.]; Bond, 2007[Bond, A. D. (2007). CrystEngComm, 9, 833-834.]; Shan & Zaworotko, 2008[Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440-446.]). Generally, a co-crystal is defined as a homogeneous crystalline phase consisting of two or more discrete chemical entities bound together in the crystal lattice through non-covalent, non-ionic mol­ecular inter­actions.

[Scheme 1]

Benzocaine, the ethyl ester of p-amino­benzoic acid, is a local anaesthetic which is used to subside pain perception. It relieves pain by inhibiting the voltage-dependent sodium channels on the nerve membrane, which results in stopping the propagation of the action potential. (Neumcke et al., 1981[Neumcke, B., Schwarz, W. & Stampfli, R. (1981). Pflugers Arch. 390, 230-236.]). In this study, we intended to formulate co-crystals of benzocaine and determine the impact on its physicochemical properties. Vanillin was selected as a potential co-former as it is FDA approved and has the potential to form a strong hydrogen bond between the amine and hy­droxy groups of benzocaine and vanillin, respectively. However, during crystallization a chemical reaction between the two was observed, the product of which is a novel p-hy­droxy Schiff base. Schiff bases are an important class of organic compounds with significant bio­logical and chemical importance. In general, they are synthesized by the condensation reaction of an aliphatic or aromatic amine with a carbonyl containing compound, such as an aldehyde, via nucleophilic addition. Herein, we report on the crystal structure of the title compound, a new p-hy­droxy Schiff base, synthesized from benzocaine and vanillin by slurry crystallization.

2. Structural commentary

The title Schiff base, (I)[link], is the product of the reaction of benzocaine with vanillin (Scheme[link]). In the title compound, Fig. 1[link], the conformation of the C10=N1 imine bond is E. The mol­ecule is non-planar, with a dihedral angle between the aryl rings of 24.58 (8)°. The m-meth­oxy group (O1/C13/C16) is slightly out of the plane of the benzene ring (C11–C14/C20/C21) to which it is attached by 5.37 (18)°, while the mean plane of the ethyl­acetate group (O3/O17/C1/C2/C4) is inclined to the benzene ring (C5–C8/C18/C19) to which it is attached by 10.23 (11)°. This non-linearity is consistent for Schiff bases.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming zigzag chains propagating along [010]; see Table 1[link] and Fig. 2[link]. Adjacent chains are linked by C—H⋯π inter­actions (Table 1[link], Fig. 2[link]), and weak offset π-π- inter­actions, forming sheets parallel to (10[\overline{2}]) [Cg1⋯Cg1i = 3.819 (1) Å, inter­planar distance = 3.672 (2) Å, slippage = 1.05 Å, Cg1 is the centroid of ring C5–C8/C18/C19; symmetry code: (i) −x + 2, −y + 1, −z + 1],

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C11–C14/C20/C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15⋯N1i 0.88 (2) 2.00 (2) 2.828 (2) 156 (2)
C2—H2BCg2ii 0.97 2.87 3.766 (2) 154
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of compound (I)[link], with hydrogen bonds shown as dashed lines and C—H⋯π inter­actions as blue arrows (see Table 1[link]).

The crystal structure analysis of compound (I)[link], has shown that, due to the aromatic hy­droxy group being located in the para rather than the ortho position, this Schiff base cannot form the intra­molecular C=N⋯O—H hydrogen bond responsible for keto–enol tautomerism. However, the close proximity of the C=N and O—H groups gives rise to the possibility that external stimulation of the material by heat or light may lead to the zwitterionic form. The potential for compound (I)[link] to form a zwitterionic state, coupled with the non-linear conformation of the mol­ecule in the solid state, suggest that this Schiff base may exhibit inter­esting physical properties, that we are currently in the process of evaluating.

4. Database survey

In the Cambridge Structural Database (CSD, V53.7; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are three known Schiff bases synthesized from benzocaine (CSD ref codes: VABSUO; Shakir et al., 2010[Shakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2915.], and ZOZROV and ZOZRUB; Kurogoshi & Hori, 1996[Kurogoshi, S. & Hori, K. (1996). Acta Cryst. C52, 660-663.]), and one derived from vanillin (CSD ref code: LEFVID; Fejfarová et al., 2012[Fejfarová, K., Dušek, M., Maghsodlou Rad, S. & Khalaji, A. D. (2012). Acta Cryst. E68, o2466.]). The dihedral angles between the aryl rings in VABSUO, ZOZROV, ZOZRUB and LEFVID were found to be 24.85 (9), 59.7 (2), 53.94 (9), and 37.87 (10)°, respectively. The N1=C10 and C8—N1 bond lengths of the imine group of the title compound are 1.274 (2) and 1.415 (2) Å, respectively. They are comparable to the imine bond lengths observed for VABSUO, ZOZROV, ZOZRUB and LEFVID, which vary between 1.262 (4)–1.283 (3) Å and 1.414 (7)–1.428 (3) Å, respectively.

5. Synthesis and crystallization

Compound (I)[link] was prepared by slurrying an equimolar mixture of benzocaine (1.16 g, 7 mmol) and vanillin (1.07 g, 7 mmol) in 2 ml of anhydrous ethanol (see Scheme[link]). The slurry was stirred continuously for 18 h at room temperature (296 K). The product was then filtered and air dried before being analysed by powder X-ray diffraction to determine the presence of a new crystalline phase. Single crystals were then prepared by dissolving an equimolar mixture of benzocaine (0.83 g, 5 mmol) and vanillin (0.77 g, 5 mmol) in 10 ml of ethanol. The solution was allowed to evaporate under ambient conditions and yellow block-like crystals were obtained after four days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two H atoms, H15 and H10, were located in a difference Fourier map and freely refined. The remaining H atoms were placed in geometrically calculated positions and included in the refinement process using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H17NO4
Mr 299.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.4229 (5), 9.6392 (5), 13.2384 (6)
β (°) 102.457 (3)
V3) 1547.94 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.76
Crystal size (mm) 0.26 × 0.11 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.599, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 18263, 2895, 2277
Rint 0.037
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.05
No. of reflections 2895
No. of parameters 210
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.14
Computer programs: APEX2, SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and XPREP (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013) and SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013) and XPREP (Sheldrick,2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

Ethyl 4-[(E)-(4-hydroxy-3-methoxybenzylidene)amino]benzoate top
Crystal data top
C17H17NO4F(000) = 632
Mr = 299.31Dx = 1.284 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 12.4229 (5) ÅCell parameters from 3549 reflections
b = 9.6392 (5) Åθ = 11.5–68.2°
c = 13.2384 (6) ŵ = 0.76 mm1
β = 102.457 (3)°T = 296 K
V = 1547.94 (12) Å3Block, colorless
Z = 40.26 × 0.11 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2277 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
ω scansθmax = 71.1°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1515
Tmin = 0.599, Tmax = 0.753k = 1111
18263 measured reflectionsl = 1516
2895 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.1332P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.23 e Å3
2895 reflectionsΔρmin = 0.14 e Å3
210 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0018 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40310 (9)0.79734 (13)0.24104 (8)0.0566 (3)
C11.3086 (2)0.0296 (3)0.5552 (2)0.1030 (8)
H1A1.26880.06610.49040.155*
H1B1.36270.09590.58780.155*
H1C1.34470.05510.54330.155*
C21.23138 (15)0.00168 (18)0.62283 (15)0.0675 (5)
H2A1.19630.08700.63750.081*
H2B1.27020.03840.68770.081*
O31.14975 (10)0.09453 (12)0.56841 (10)0.0647 (3)
C41.07204 (13)0.13648 (19)0.61646 (13)0.0577 (4)
C50.99507 (12)0.23783 (16)0.55419 (12)0.0512 (4)
C60.92059 (14)0.3074 (2)0.60045 (14)0.0636 (5)
H60.92170.29250.67010.076*
C70.84532 (14)0.3980 (2)0.54458 (14)0.0609 (4)
H70.79600.44380.57670.073*
C80.84222 (11)0.42174 (15)0.44046 (12)0.0461 (3)
N10.75716 (9)0.50849 (13)0.38633 (9)0.0464 (3)
C100.77038 (12)0.57994 (15)0.30896 (12)0.0472 (3)
C110.68431 (12)0.66679 (15)0.24840 (11)0.0442 (3)
C120.58421 (12)0.68797 (15)0.27877 (11)0.0449 (3)
H120.57230.64660.33890.054*
C130.50380 (11)0.76950 (14)0.22013 (11)0.0416 (3)
C140.52011 (11)0.83080 (14)0.12814 (10)0.0419 (3)
O150.44049 (9)0.90702 (12)0.06788 (8)0.0514 (3)
C160.38242 (16)0.7484 (3)0.33611 (15)0.0777 (6)
H16A0.38990.64930.33910.117*
H16B0.30890.77350.34100.117*
H16C0.43440.78930.39250.117*
O171.06660 (13)0.09730 (18)0.70144 (12)0.0924 (5)
C180.99445 (13)0.26473 (18)0.45153 (13)0.0565 (4)
H181.04550.22110.42020.068*
C190.91880 (13)0.35567 (18)0.39485 (12)0.0545 (4)
H190.91930.37260.32580.065*
C200.70063 (12)0.73037 (17)0.15876 (12)0.0504 (4)
H200.76730.71850.13870.060*
C210.61918 (12)0.81096 (16)0.09903 (11)0.0492 (4)
H210.63120.85210.03890.059*
H150.3862 (18)0.925 (2)0.0989 (16)0.077 (6)*
H100.8383 (16)0.5785 (18)0.2855 (14)0.060 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0488 (6)0.0743 (7)0.0522 (6)0.0172 (5)0.0227 (5)0.0181 (5)
C10.1014 (17)0.1064 (18)0.1052 (18)0.0560 (15)0.0308 (14)0.0244 (15)
C20.0615 (10)0.0546 (9)0.0794 (12)0.0128 (8)0.0002 (9)0.0111 (8)
O30.0589 (7)0.0652 (7)0.0676 (7)0.0188 (6)0.0084 (6)0.0122 (6)
C40.0489 (8)0.0607 (10)0.0612 (10)0.0016 (7)0.0069 (7)0.0083 (7)
C50.0413 (7)0.0544 (8)0.0556 (9)0.0004 (6)0.0057 (7)0.0063 (7)
C60.0572 (9)0.0845 (12)0.0516 (9)0.0134 (9)0.0171 (8)0.0164 (8)
C70.0524 (9)0.0764 (11)0.0585 (9)0.0149 (8)0.0217 (8)0.0141 (8)
C80.0360 (7)0.0497 (8)0.0512 (8)0.0022 (6)0.0067 (6)0.0026 (6)
N10.0388 (6)0.0501 (7)0.0490 (7)0.0018 (5)0.0061 (5)0.0021 (5)
C100.0381 (7)0.0510 (8)0.0520 (8)0.0007 (6)0.0086 (6)0.0004 (6)
C110.0416 (7)0.0456 (7)0.0451 (7)0.0002 (6)0.0085 (6)0.0000 (6)
C120.0472 (8)0.0480 (8)0.0405 (7)0.0020 (6)0.0114 (6)0.0049 (6)
C130.0409 (7)0.0450 (7)0.0405 (7)0.0005 (6)0.0125 (6)0.0003 (6)
C140.0439 (7)0.0435 (7)0.0376 (7)0.0011 (6)0.0071 (6)0.0002 (5)
O150.0483 (6)0.0630 (7)0.0439 (6)0.0092 (5)0.0122 (5)0.0125 (5)
C160.0667 (11)0.1140 (17)0.0626 (11)0.0195 (11)0.0365 (9)0.0240 (11)
O170.0848 (10)0.1206 (13)0.0759 (9)0.0343 (9)0.0268 (8)0.0444 (9)
C180.0503 (8)0.0636 (10)0.0564 (9)0.0106 (7)0.0131 (7)0.0017 (7)
C190.0544 (9)0.0625 (9)0.0462 (8)0.0100 (7)0.0102 (7)0.0034 (7)
C200.0415 (7)0.0605 (9)0.0523 (8)0.0005 (7)0.0170 (6)0.0022 (7)
C210.0487 (8)0.0596 (9)0.0420 (7)0.0011 (7)0.0152 (6)0.0068 (6)
Geometric parameters (Å, º) top
O1—C131.3650 (17)N1—C101.2739 (19)
O1—C161.418 (2)C10—C111.455 (2)
C1—C21.471 (3)C10—H100.960 (19)
C1—H1A0.9600C11—C201.389 (2)
C1—H1B0.9600C11—C121.402 (2)
C1—H1C0.9600C12—C131.372 (2)
C2—O31.446 (2)C12—H120.9300
C2—H2A0.9700C13—C141.4070 (19)
C2—H2B0.9700C14—O151.3469 (17)
O3—C41.329 (2)C14—C211.380 (2)
C4—O171.202 (2)O15—H150.88 (2)
C4—C51.486 (2)C16—H16A0.9600
C5—C181.382 (2)C16—H16B0.9600
C5—C61.388 (2)C16—H16C0.9600
C6—C71.373 (2)C18—C191.382 (2)
C6—H60.9300C18—H180.9300
C7—C81.390 (2)C19—H190.9300
C7—H70.9300C20—C211.381 (2)
C8—C191.387 (2)C20—H200.9300
C8—N11.4152 (18)C21—H210.9300
C13—O1—C16117.64 (12)C11—C10—H10115.0 (11)
C2—C1—H1A109.5C20—C11—C12118.87 (13)
C2—C1—H1B109.5C20—C11—C10119.95 (13)
H1A—C1—H1B109.5C12—C11—C10121.18 (13)
C2—C1—H1C109.5C13—C12—C11120.24 (13)
H1A—C1—H1C109.5C13—C12—H12119.9
H1B—C1—H1C109.5C11—C12—H12119.9
O3—C2—C1107.05 (16)O1—C13—C12125.80 (13)
O3—C2—H2A110.3O1—C13—C14113.73 (12)
C1—C2—H2A110.3C12—C13—C14120.46 (13)
O3—C2—H2B110.3O15—C14—C21119.69 (12)
C1—C2—H2B110.3O15—C14—C13121.15 (12)
H2A—C2—H2B108.6C21—C14—C13119.15 (13)
C4—O3—C2117.42 (14)C14—O15—H15111.7 (14)
O17—C4—O3123.07 (16)O1—C16—H16A109.5
O17—C4—C5124.49 (16)O1—C16—H16B109.5
O3—C4—C5112.43 (14)H16A—C16—H16B109.5
C18—C5—C6118.72 (15)O1—C16—H16C109.5
C18—C5—C4122.37 (15)H16A—C16—H16C109.5
C6—C5—C4118.91 (15)H16B—C16—H16C109.5
C7—C6—C5120.74 (15)C19—C18—C5120.78 (15)
C7—C6—H6119.6C19—C18—H18119.6
C5—C6—H6119.6C5—C18—H18119.6
C6—C7—C8120.60 (15)C18—C19—C8120.32 (15)
C6—C7—H7119.7C18—C19—H19119.8
C8—C7—H7119.7C8—C19—H19119.8
C19—C8—C7118.78 (14)C21—C20—C11120.90 (13)
C19—C8—N1123.94 (14)C21—C20—H20119.6
C7—C8—N1117.23 (13)C11—C20—H20119.6
C10—N1—C8120.99 (12)C14—C21—C20120.36 (13)
N1—C10—C11123.17 (13)C14—C21—H21119.8
N1—C10—H10121.8 (11)C20—C21—H21119.8
C1—C2—O3—C4178.81 (19)C16—O1—C13—C125.9 (2)
C2—O3—C4—O170.7 (3)C16—O1—C13—C14175.42 (16)
C2—O3—C4—C5178.40 (14)C11—C12—C13—O1179.61 (14)
O17—C4—C5—C18170.41 (19)C11—C12—C13—C141.1 (2)
O3—C4—C5—C1810.6 (2)O1—C13—C14—O151.10 (19)
O17—C4—C5—C69.2 (3)C12—C13—C14—O15177.62 (13)
O3—C4—C5—C6169.87 (16)O1—C13—C14—C21179.55 (13)
C18—C5—C6—C72.0 (3)C12—C13—C14—C211.7 (2)
C4—C5—C6—C7177.54 (17)C6—C5—C18—C192.1 (3)
C5—C6—C7—C80.0 (3)C4—C5—C18—C19177.46 (16)
C6—C7—C8—C192.0 (3)C5—C18—C19—C80.1 (3)
C6—C7—C8—N1175.45 (16)C7—C8—C19—C181.9 (3)
C19—C8—N1—C1031.1 (2)N1—C8—C19—C18175.34 (15)
C7—C8—N1—C10151.56 (15)C12—C11—C20—C211.3 (2)
C8—N1—C10—C11177.71 (13)C10—C11—C20—C21178.69 (14)
N1—C10—C11—C20173.29 (14)O15—C14—C21—C20178.47 (14)
N1—C10—C11—C126.7 (2)C13—C14—C21—C200.9 (2)
C20—C11—C12—C130.5 (2)C11—C20—C21—C140.6 (2)
C10—C11—C12—C13179.54 (13)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C14/C20/C21 ring.
D—H···AD—HH···AD···AD—H···A
O15—H15···N1i0.88 (2)2.00 (2)2.828 (2)156 (2)
C2—H2B···Cg2ii0.972.873.766 (2)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1, z+1.
 

References

First citationBond, A. D. (2007). CrystEngComm, 9, 833–834.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrn, S. R., Pfeiffer, R. R. & Stowell, J. G. (1999). West Lafayette: SSCI.  Google Scholar
First citationDesiraju, G. R. (2003). CrystEngComm, 5, 466–467.  Web of Science CrossRef CAS Google Scholar
First citationFejfarová, K., Dušek, M., Maghsodlou Rad, S. & Khalaji, A. D. (2012). Acta Cryst. E68, o2466.  CSD CrossRef IUCr Journals Google Scholar
First citationGood, D. J. & Rodríguez-Hornedo, N. (2009). Cryst. Growth Des. 9, 2252–2264.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKurogoshi, S. & Hori, K. (1996). Acta Cryst. C52, 660–663.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNeumcke, B., Schwarz, W. & Stampfli, R. (1981). Pflugers Arch. 390, 230–236.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPaul, E. L., Tung, H. H. & Midler, M. (2005). Powder Technol. 150, 133–143.  Web of Science CrossRef CAS Google Scholar
First citationShakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, A. V., Shete, A. S., Dabke, A. P., Kulkarni, P. V. & Sakhare, S. S. (2009). Indian J. Pharm. Sci. 71, 359–370.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds