research communications
κO)manganese(II) diiodide
of hexakis(dimethyl sulfoxide-aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at
The 2H6OS)6]I2, consists of one MnII ion, six O-bound dimethyl sulfoxide (DMSO) ligands and two I− counter-anions. The isolated complex cations have an octahedral configuration and are grouped in hexagonally arranged rows extending parallel to [100]. The two I− anions are located between the rows and are linked to the cations through two weak C—H⋯I interactions.
of the title salt, [Mn(CCCDC reference: 1483114
1. Chemical context
Tridentate pincer ligands coordinating either through two P and one N atom (PNP-type) or through two P and one C atom (PCP-type) have multifarious applications in catalysis, synthetic chemistry or molecular recognition (Szabo & Wendt, 2014). Although these ligands play an important role in coordination chemistry, studies of pincer complexes of first-row transition metals are rather scarce (Murugesan & Kirchner, 2016). During a current project to prepare the first manganese(II) PNP-type pincer complexes (Mastalir et al., 2016) according to the reaction scheme presented in Fig. 1, we obtained instead the title salt, [Mn(DMSO)6]I2 (DMSO is dimethyl sulfoxide), and report here its crystal structure.
2. Structural commentary
The Mn2+ cation is bound to the O atoms of six DMSO molecules that are arranged in an octahedral configuration around the metal cation (Fig. 2). The deviation from the ideal octahedral coordination are minute, with cis O—Mn—O angles ranging from 85.8 (2) to 93.8 (2)° and trans angles from 176.3 (2) to 178.2 (2)°. The averaged Mn—O bond length of 2.17 (2) Å is in perfect agreement with that of the related perchlorate salt [Mn(DMSO)6](ClO4)2 [2.167 (14) Å; Migdał-Mikuli et al., 2006] that also consists of isolated [Mn(DMSO)6]2+ cations and non-coordinating anions.
3. Supramolecular features
The isolated complex [Mn(DMSO)6]2+ molecules are stacked into rows extending parallel to [100] whereby the rows are arranged in a distorted hexagonal rod packing. The iodide counter-anions are located between the rows and, apart from Coulomb interactions, are linked to the complex cations through weak C—H⋯I interactions (Table 1, Fig. 3).
4. Database survey
A search in the Cambridge Structural Database (Groom et al., 2016) for structures of divalent metal compounds containing octahedrally shaped [M(DMSO]2+ cations (M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg) revealed 50 entries. From these, only four were manganese compounds. A number of iodine-containing structures are also included in this hit list, but these structures either contain polyiodide anions (I3− or I42−) or complex anions of the type [MI4]2−. Therefore, the title compound is the first compound with [M(DMSO]2+ cations and simple iodide anions.
5. Synthesis and crystallization
All manipulations were performed under an inert atmosphere of argon by using Schlenk techniques or in a MBraun inert-gas 2 was purchased from Sigma–Aldrich and was used without further purification. The synthesis of the PNP-ligand was performed according to literature procedures (Benito-Garagorri et al., 2006).
The solvents were purified according to standard procedures. Anhydrous MnIThe title manganese salt was formed in the course of the targeted synthesis of an MnII PNP-complex (Fig. 1). Anhydrous MnI2 (93 mg, 0.50 mmol) and the PNP-ligand (115 mg, 0.33 mmol) were stirred in 7 ml tetrahydrofuran for one h. 2 ml of DMSO were added and the solution filtrated over celite. The clear colourless solution was layered with 15 ml diethyl ether and was left for 7 days. Colourless crystals of the title compound were obtained as the only solid reaction product.
6. Refinement
Crystal data, data collection and structure . Close inspection of the diffraction pattern revealed by non-merohedry with one domain rotated by 180° about [100]. Intensity statistics showed 1583 reflections belonging to domain 1 only (mean I/σ = 7.5), 1583 reflections to domain 2 only (mean I/σ = 7.2) and 4780 reflections to both domains (mean I/σ = 7.5). The presence of two domains with equal scattering volume was confirmed by the (refinement as a two-component twin using an HKLF-5 file). The refined (Flack, 1983) of 0.10 (2) revealed additional The maximum remaining electron density is found 1.30 Å from atom H2C and the minimum remaining electron density 1.06 Å from atom I1.
details are summarized in Table 2Supporting information
CCDC reference: 1483114
https://doi.org/10.1107/S2056989016008896/su5305sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016008896/su5305Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT-Plus (Bruker, 2014); data reduction: SAINT-Plus (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Mn(C2H6OS)6]I2 | F(000) = 1532 |
Mr = 777.51 | Dx = 1.772 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0996 (14) Å | Cell parameters from 9642 reflections |
b = 24.511 (3) Å | θ = 2.2–31.3° |
c = 11.2999 (13) Å | µ = 3.02 mm−1 |
β = 119.577 (3)° | T = 100 K |
V = 2914.6 (6) Å3 | Fragment, colourless |
Z = 4 | 0.15 × 0.10 × 0.05 mm |
Bruker APEXII CCD diffractometer | 4279 reflections with I > 2σ(I) |
ω– and φ–scans | θmax = 31.9°, θmin = 1.7° |
Absorption correction: multi-scan (TWINABS; Bruker, 2014) | h = −17→15 |
Tmin = 0.574, Tmax = 0.746 | k = 0→35 |
4935 measured reflections | l = 0→16 |
4935 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.0202P)2 + 8.7709P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.074 | (Δ/σ)max = 0.001 |
S = 1.16 | Δρmax = 2.11 e Å−3 |
4935 reflections | Δρmin = −1.51 e Å−3 |
257 parameters | Absolute structure: No quotients, so Flack parameter determined by classical intensity fit |
2 restraints | Absolute structure parameter: 0.10 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.92250 (11) | 0.87649 (5) | 0.58801 (9) | 0.0112 (2) | |
I1 | 0.26974 (6) | 0.88077 (3) | 0.28565 (7) | 0.02714 (14) | |
I2 | 0.58683 (5) | 0.86891 (2) | 0.96305 (5) | 0.02930 (16) | |
S1 | 0.8652 (2) | 0.95666 (9) | 0.3103 (3) | 0.0250 (5) | |
S2 | 0.7237 (2) | 0.78418 (9) | 0.3582 (2) | 0.0186 (4) | |
S4 | 0.8551 (2) | 0.84771 (8) | 0.8308 (2) | 0.0180 (4) | |
S3 | 0.64117 (19) | 0.91912 (7) | 0.5116 (2) | 0.0151 (4) | |
S5 | 1.2168 (2) | 0.91633 (8) | 0.7738 (2) | 0.0159 (4) | |
S6 | 1.12193 (18) | 0.83029 (8) | 0.5061 (2) | 0.0155 (4) | |
O1 | 0.8988 (6) | 0.9059 (2) | 0.3974 (6) | 0.0223 (13) | |
O2 | 0.7667 (6) | 0.8219 (2) | 0.4797 (6) | 0.0229 (13) | |
O3 | 0.7823 (6) | 0.9325 (2) | 0.5874 (7) | 0.0199 (12) | |
O4 | 0.9477 (5) | 0.8411 (2) | 0.7784 (6) | 0.0188 (11) | |
O5 | 1.0771 (6) | 0.9339 (2) | 0.6990 (6) | 0.0181 (12) | |
O6 | 1.0538 (6) | 0.8170 (2) | 0.5873 (6) | 0.0165 (11) | |
C1 | 0.9114 (10) | 0.9439 (4) | 0.1885 (9) | 0.025 (2) | |
H1A | 0.9949 | 0.9261 | 0.2322 | 0.037* | |
H1B | 0.9163 | 0.9784 | 0.1476 | 0.037* | |
H1C | 0.8489 | 0.9199 | 0.1176 | 0.037* | |
C2 | 0.9819 (13) | 1.0048 (4) | 0.4068 (10) | 0.045 (3) | |
H2A | 0.9720 | 1.0163 | 0.4842 | 0.067* | |
H2B | 0.9729 | 1.0366 | 0.3500 | 0.067* | |
H2C | 1.0662 | 0.9886 | 0.4404 | 0.067* | |
C3 | 0.5563 (9) | 0.7902 (4) | 0.2691 (10) | 0.025 (2) | |
H3A | 0.5253 | 0.7927 | 0.3343 | 0.037* | |
H3B | 0.5190 | 0.7581 | 0.2111 | 0.037* | |
H3C | 0.5317 | 0.8231 | 0.2126 | 0.037* | |
C4 | 0.7368 (10) | 0.7169 (3) | 0.4265 (11) | 0.029 (2) | |
H4A | 0.8266 | 0.7063 | 0.4775 | 0.043* | |
H4B | 0.6904 | 0.6910 | 0.3519 | 0.043* | |
H4C | 0.7008 | 0.7166 | 0.4874 | 0.043* | |
C5 | 0.5721 (9) | 0.9626 (4) | 0.5828 (11) | 0.030 (2) | |
H5A | 0.5888 | 0.9480 | 0.6708 | 0.045* | |
H5B | 0.4801 | 0.9647 | 0.5212 | 0.045* | |
H5C | 0.6091 | 0.9992 | 0.5956 | 0.045* | |
C6 | 0.5831 (11) | 0.9507 (4) | 0.3532 (11) | 0.030 (2) | |
H6A | 0.6037 | 0.9896 | 0.3663 | 0.045* | |
H6B | 0.4907 | 0.9460 | 0.3004 | 0.045* | |
H6C | 0.6224 | 0.9340 | 0.3041 | 0.045* | |
C7 | 0.7344 (8) | 0.7981 (4) | 0.7471 (9) | 0.027 (2) | |
H7A | 0.6856 | 0.8066 | 0.6498 | 0.041* | |
H7B | 0.6776 | 0.7983 | 0.7859 | 0.041* | |
H7C | 0.7732 | 0.7619 | 0.7594 | 0.041* | |
C8 | 0.9331 (10) | 0.8176 (4) | 0.9972 (10) | 0.032 (2) | |
H8A | 0.9538 | 0.7794 | 0.9905 | 0.049* | |
H8B | 0.8767 | 0.8191 | 1.0363 | 0.049* | |
H8C | 1.0115 | 0.8377 | 1.0558 | 0.049* | |
C9 | 1.0351 (9) | 0.7942 (3) | 0.3481 (8) | 0.0189 (15) | |
H9A | 1.0336 | 0.7552 | 0.3664 | 0.028* | |
H9B | 1.0763 | 0.7996 | 0.2930 | 0.028* | |
H9C | 0.9478 | 0.8081 | 0.2986 | 0.028* | |
C10 | 1.2612 (10) | 0.7887 (4) | 0.5827 (10) | 0.027 (2) | |
H10A | 1.3156 | 0.7999 | 0.6775 | 0.040* | |
H10B | 1.3077 | 0.7929 | 0.5327 | 0.040* | |
H10C | 1.2367 | 0.7504 | 0.5798 | 0.040* | |
C11 | 1.2929 (9) | 0.9566 (4) | 0.7044 (10) | 0.024 (2) | |
H11A | 1.2599 | 0.9468 | 0.6087 | 0.036* | |
H11B | 1.3847 | 0.9500 | 0.7553 | 0.036* | |
H11C | 1.2761 | 0.9953 | 0.7109 | 0.036* | |
C12 | 1.2843 (9) | 0.9470 (4) | 0.9385 (9) | 0.0231 (19) | |
H12A | 1.2857 | 0.9868 | 0.9295 | 0.035* | |
H12B | 1.3713 | 0.9336 | 0.9954 | 0.035* | |
H12C | 1.2330 | 0.9375 | 0.9807 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0126 (5) | 0.0097 (5) | 0.0119 (5) | −0.0014 (5) | 0.0064 (5) | 0.0008 (5) |
I1 | 0.0220 (3) | 0.0280 (3) | 0.0317 (3) | −0.0063 (3) | 0.0135 (3) | 0.0007 (3) |
I2 | 0.0279 (3) | 0.0216 (3) | 0.0371 (4) | 0.0059 (3) | 0.0150 (3) | 0.0006 (3) |
S1 | 0.0234 (11) | 0.0249 (11) | 0.0318 (13) | 0.0063 (9) | 0.0176 (10) | 0.0097 (9) |
S2 | 0.0166 (9) | 0.0199 (9) | 0.0201 (10) | −0.0018 (8) | 0.0096 (8) | −0.0062 (8) |
S4 | 0.0225 (10) | 0.0153 (8) | 0.0214 (10) | −0.0009 (7) | 0.0148 (8) | 0.0014 (7) |
S3 | 0.0109 (9) | 0.0130 (8) | 0.0188 (9) | 0.0001 (7) | 0.0053 (8) | −0.0004 (7) |
S5 | 0.0146 (10) | 0.0118 (8) | 0.0188 (9) | −0.0012 (7) | 0.0064 (8) | 0.0000 (8) |
S6 | 0.0169 (10) | 0.0144 (8) | 0.0154 (9) | 0.0007 (7) | 0.0082 (7) | −0.0008 (7) |
O1 | 0.031 (3) | 0.021 (3) | 0.019 (3) | 0.001 (3) | 0.015 (3) | 0.010 (2) |
O2 | 0.024 (3) | 0.021 (3) | 0.028 (3) | −0.010 (2) | 0.016 (3) | −0.011 (2) |
O3 | 0.010 (3) | 0.016 (3) | 0.028 (3) | 0.004 (2) | 0.006 (3) | −0.002 (2) |
O4 | 0.016 (3) | 0.026 (3) | 0.019 (3) | 0.004 (2) | 0.011 (2) | 0.006 (2) |
O5 | 0.012 (3) | 0.013 (3) | 0.028 (3) | −0.001 (2) | 0.009 (3) | −0.001 (2) |
O6 | 0.022 (3) | 0.015 (3) | 0.018 (3) | 0.000 (2) | 0.015 (2) | 0.000 (2) |
C1 | 0.033 (5) | 0.023 (4) | 0.024 (5) | −0.004 (4) | 0.019 (4) | 0.003 (4) |
C2 | 0.075 (9) | 0.037 (5) | 0.015 (5) | −0.021 (6) | 0.016 (5) | −0.002 (4) |
C3 | 0.024 (5) | 0.017 (4) | 0.023 (4) | 0.002 (4) | 0.004 (4) | −0.003 (3) |
C4 | 0.022 (5) | 0.016 (4) | 0.031 (6) | 0.005 (4) | 0.000 (4) | 0.004 (4) |
C5 | 0.016 (4) | 0.039 (5) | 0.036 (6) | −0.003 (4) | 0.012 (4) | −0.008 (5) |
C6 | 0.027 (5) | 0.029 (5) | 0.028 (5) | −0.005 (4) | 0.009 (5) | 0.011 (4) |
C7 | 0.024 (5) | 0.040 (5) | 0.024 (5) | −0.004 (4) | 0.016 (4) | −0.003 (3) |
C8 | 0.040 (6) | 0.038 (5) | 0.021 (5) | −0.004 (4) | 0.017 (4) | −0.004 (4) |
C9 | 0.025 (4) | 0.022 (4) | 0.013 (4) | −0.002 (4) | 0.012 (4) | −0.008 (3) |
C10 | 0.029 (5) | 0.030 (5) | 0.026 (5) | 0.010 (4) | 0.016 (4) | 0.009 (4) |
C11 | 0.020 (5) | 0.022 (4) | 0.024 (5) | 0.004 (4) | 0.007 (4) | 0.008 (4) |
C12 | 0.017 (4) | 0.033 (5) | 0.020 (4) | −0.006 (4) | 0.010 (4) | −0.008 (4) |
Mn1—O2 | 2.137 (6) | C3—H3A | 0.9800 |
Mn1—O1 | 2.152 (6) | C3—H3B | 0.9800 |
Mn1—O6 | 2.159 (6) | C3—H3C | 0.9800 |
Mn1—O5 | 2.176 (6) | C4—H4A | 0.9800 |
Mn1—O3 | 2.180 (6) | C4—H4B | 0.9800 |
Mn1—O4 | 2.197 (6) | C4—H4C | 0.9800 |
S1—O1 | 1.512 (6) | C5—H5A | 0.9800 |
S1—C2 | 1.749 (11) | C5—H5B | 0.9800 |
S1—C1 | 1.751 (10) | C5—H5C | 0.9800 |
S2—O2 | 1.518 (6) | C6—H6A | 0.9800 |
S2—C3 | 1.768 (10) | C6—H6B | 0.9800 |
S2—C4 | 1.795 (9) | C6—H6C | 0.9800 |
S4—O4 | 1.512 (6) | C7—H7A | 0.9800 |
S4—C7 | 1.773 (9) | C7—H7B | 0.9800 |
S4—C8 | 1.795 (10) | C7—H7C | 0.9800 |
S3—O3 | 1.521 (6) | C8—H8A | 0.9800 |
S3—C6 | 1.747 (10) | C8—H8B | 0.9800 |
S3—C5 | 1.774 (10) | C8—H8C | 0.9800 |
S5—O5 | 1.532 (6) | C9—H9A | 0.9800 |
S5—C11 | 1.775 (10) | C9—H9B | 0.9800 |
S5—C12 | 1.787 (9) | C9—H9C | 0.9800 |
S6—O6 | 1.541 (6) | C10—H10A | 0.9800 |
S6—C10 | 1.786 (9) | C10—H10B | 0.9800 |
S6—C9 | 1.795 (8) | C10—H10C | 0.9800 |
C1—H1A | 0.9800 | C11—H11A | 0.9800 |
C1—H1B | 0.9800 | C11—H11B | 0.9800 |
C1—H1C | 0.9800 | C11—H11C | 0.9800 |
C2—H2A | 0.9800 | C12—H12A | 0.9800 |
C2—H2B | 0.9800 | C12—H12B | 0.9800 |
C2—H2C | 0.9800 | C12—H12C | 0.9800 |
O2—Mn1—O1 | 89.6 (2) | H3B—C3—H3C | 109.5 |
O2—Mn1—O6 | 91.0 (2) | S2—C4—H4A | 109.5 |
O1—Mn1—O6 | 87.6 (2) | S2—C4—H4B | 109.5 |
O2—Mn1—O5 | 178.2 (2) | H4A—C4—H4B | 109.5 |
O1—Mn1—O5 | 90.7 (2) | S2—C4—H4C | 109.5 |
O6—Mn1—O5 | 90.8 (2) | H4A—C4—H4C | 109.5 |
O2—Mn1—O3 | 85.8 (2) | H4B—C4—H4C | 109.5 |
O1—Mn1—O3 | 93.8 (2) | S3—C5—H5A | 109.5 |
O6—Mn1—O3 | 176.5 (2) | S3—C5—H5B | 109.5 |
O5—Mn1—O3 | 92.3 (2) | H5A—C5—H5B | 109.5 |
O2—Mn1—O4 | 88.3 (2) | S3—C5—H5C | 109.5 |
O1—Mn1—O4 | 176.3 (2) | H5A—C5—H5C | 109.5 |
O6—Mn1—O4 | 89.4 (2) | H5B—C5—H5C | 109.5 |
O5—Mn1—O4 | 91.5 (2) | S3—C6—H6A | 109.5 |
O3—Mn1—O4 | 89.1 (2) | S3—C6—H6B | 109.5 |
O1—S1—C2 | 106.0 (4) | H6A—C6—H6B | 109.5 |
O1—S1—C1 | 106.0 (4) | S3—C6—H6C | 109.5 |
C2—S1—C1 | 97.9 (6) | H6A—C6—H6C | 109.5 |
O2—S2—C3 | 104.4 (4) | H6B—C6—H6C | 109.5 |
O2—S2—C4 | 104.7 (4) | S4—C7—H7A | 109.5 |
C3—S2—C4 | 98.9 (5) | S4—C7—H7B | 109.5 |
O4—S4—C7 | 107.0 (4) | H7A—C7—H7B | 109.5 |
O4—S4—C8 | 105.0 (4) | S4—C7—H7C | 109.5 |
C7—S4—C8 | 98.3 (5) | H7A—C7—H7C | 109.5 |
O3—S3—C6 | 104.7 (5) | H7B—C7—H7C | 109.5 |
O3—S3—C5 | 105.3 (4) | S4—C8—H8A | 109.5 |
C6—S3—C5 | 99.0 (5) | S4—C8—H8B | 109.5 |
O5—S5—C11 | 105.8 (4) | H8A—C8—H8B | 109.5 |
O5—S5—C12 | 105.6 (4) | S4—C8—H8C | 109.5 |
C11—S5—C12 | 98.9 (5) | H8A—C8—H8C | 109.5 |
O6—S6—C10 | 104.2 (4) | H8B—C8—H8C | 109.5 |
O6—S6—C9 | 105.4 (4) | S6—C9—H9A | 109.5 |
C10—S6—C9 | 98.6 (5) | S6—C9—H9B | 109.5 |
S1—O1—Mn1 | 141.9 (4) | H9A—C9—H9B | 109.5 |
S2—O2—Mn1 | 135.3 (4) | S6—C9—H9C | 109.5 |
S3—O3—Mn1 | 121.5 (3) | H9A—C9—H9C | 109.5 |
S4—O4—Mn1 | 124.7 (3) | H9B—C9—H9C | 109.5 |
S5—O5—Mn1 | 122.4 (3) | S6—C10—H10A | 109.5 |
S6—O6—Mn1 | 118.1 (3) | S6—C10—H10B | 109.5 |
S1—C1—H1A | 109.5 | H10A—C10—H10B | 109.5 |
S1—C1—H1B | 109.5 | S6—C10—H10C | 109.5 |
H1A—C1—H1B | 109.5 | H10A—C10—H10C | 109.5 |
S1—C1—H1C | 109.5 | H10B—C10—H10C | 109.5 |
H1A—C1—H1C | 109.5 | S5—C11—H11A | 109.5 |
H1B—C1—H1C | 109.5 | S5—C11—H11B | 109.5 |
S1—C2—H2A | 109.5 | H11A—C11—H11B | 109.5 |
S1—C2—H2B | 109.5 | S5—C11—H11C | 109.5 |
H2A—C2—H2B | 109.5 | H11A—C11—H11C | 109.5 |
S1—C2—H2C | 109.5 | H11B—C11—H11C | 109.5 |
H2A—C2—H2C | 109.5 | S5—C12—H12A | 109.5 |
H2B—C2—H2C | 109.5 | S5—C12—H12B | 109.5 |
S2—C3—H3A | 109.5 | H12A—C12—H12B | 109.5 |
S2—C3—H3B | 109.5 | S5—C12—H12C | 109.5 |
H3A—C3—H3B | 109.5 | H12A—C12—H12C | 109.5 |
S2—C3—H3C | 109.5 | H12B—C12—H12C | 109.5 |
H3A—C3—H3C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1C···I2i | 0.98 | 3.03 | 3.926 (10) | 152 |
C6—H6B···I1 | 0.98 | 3.05 | 3.878 (12) | 143 |
Symmetry code: (i) x, y, z−1. |
Acknowledgements
The X-Ray Centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer. This project was supported by Austrian Science Fund (FWF): P28866-N34.
References
Benito-Garagorri, D., Becker, E., Wiedermann, J., Lackner, W., Pollak, M., Mereiter, K., Kisala, J. & Kirchner, K. (2006). Organometallics, 25, 1900–1913. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2014). APEX2, SAINT-Plus and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mastalir, M., Glatz, M., Stöger, B., Weil, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2016). Inorg. Chim. Acta, doi: 10.1016/j. ica. 2016.02.064. Google Scholar
Migdał-Mikuli, A., Szostak, E. & Nitek, W. (2006). Acta Cryst. E62, m2581–m2582. Web of Science CSD CrossRef IUCr Journals Google Scholar
Murugesan, S. & Kirchner, K. (2016). Dalton Trans. 45, 416–439. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Szabo, K. J. & Wendt, O. F. (2014). Editors. Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis. London: Wiley. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.