research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­kis­(di­methyl sulfoxide-κO)manganese(II) diiodide

CROSSMARK_Color_square_no_text.svg

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 31 May 2016; accepted 2 June 2016; online 10 June 2016)

The asymmetric unit of the title salt, [Mn(C2H6OS)6]I2, consists of one MnII ion, six O-bound dimethyl sulfoxide (DMSO) ligands and two I counter-anions. The isolated complex cations have an octa­hedral configuration and are grouped in hexa­gonally arranged rows extending parallel to [100]. The two I anions are located between the rows and are linked to the cations through two weak C—H⋯I inter­actions.

1. Chemical context

Tridentate pincer ligands coordinating either through two P and one N atom (PNP-type) or through two P and one C atom (PCP-type) have multifarious applications in catalysis, synthetic chemistry or mol­ecular recognition (Szabo & Wendt, 2014[Szabo, K. J. & Wendt, O. F. (2014). Editors. Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis. London: Wiley.]). Although these ligands play an important role in coordination chemistry, studies of pincer complexes of first-row transition metals are rather scarce (Murugesan & Kirchner, 2016[Murugesan, S. & Kirchner, K. (2016). Dalton Trans. 45, 416-439.]). During a current project to prepare the first manganese(II) PNP-type pincer complexes (Mastalir et al., 2016[Mastalir, M., Glatz, M., Stöger, B., Weil, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2016). Inorg. Chim. Acta, doi: 10.1016/j. ica. 2016.02.064.]) according to the reaction scheme presented in Fig. 1[link], we obtained instead the title salt, [Mn(DMSO)6]I2 (DMSO is dimethyl sulfoxide), and report here its crystal structure.

[Scheme 1]
[Figure 1]
Figure 1
Schematic representation of the attempted formation of a manganese(II) complex with the PNP ligand.

2. Structural commentary

The Mn2+ cation is bound to the O atoms of six DMSO mol­ecules that are arranged in an octa­hedral configuration around the metal cation (Fig. 2[link]). The deviation from the ideal octa­hedral coordination are minute, with cis O—Mn—O angles ranging from 85.8 (2) to 93.8 (2)° and trans angles from 176.3 (2) to 178.2 (2)°. The averaged Mn—O bond length of 2.17 (2) Å is in perfect agreement with that of the related perchlorate salt [Mn(DMSO)6](ClO4)2 [2.167 (14) Å; Migdał-Mikuli et al., 2006[Migdał-Mikuli, A., Szostak, E. & Nitek, W. (2006). Acta Cryst. E62, m2581-m2582.]] that also consists of isolated [Mn(DMSO)6]2+ cations and non-coordinating anions.

[Figure 2]
Figure 2
The structures of the mol­ecular and ionic entities in the title salt, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level and, for clarity, the H atoms have been omitted.

3. Supra­molecular features

The isolated complex [Mn(DMSO)6]2+ mol­ecules are stacked into rows extending parallel to [100] whereby the rows are arranged in a distorted hexa­gonal rod packing. The iodide counter-anions are located between the rows and, apart from Coulomb inter­actions, are linked to the complex cations through weak C—H⋯I inter­actions (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯I2i 0.98 3.03 3.926 (10) 152
C6—H6B⋯I1 0.98 3.05 3.878 (12) 143
Symmetry code: (i) x, y, z-1.
[Figure 3]
Figure 3
A projection of the crystal structure along [100], showing the stacking of the complex cations of the title salt in this direction. C—H⋯I interactions are shown as green dashed lines.

4. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures of divalent metal compounds containing octa­hedrally shaped [M(DMSO]2+ cations (M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg) revealed 50 entries. From these, only four were manganese compounds. A number of iodine-containing structures are also included in this hit list, but these structures either contain polyiodide anions (I3 or I42−) or complex anions of the type [MI4]2−. Therefore, the title compound is the first compound with [M(DMSO]2+ cations and simple iodide anions.

5. Synthesis and crystallization

All manipulations were performed under an inert atmosphere of argon by using Schlenk techniques or in a MBraun inert-gas glove box. The solvents were purified according to standard procedures. Anhydrous MnI2 was purchased from Sigma–Aldrich and was used without further purification. The synthesis of the PNP-ligand was performed according to literature procedures (Benito-Garagorri et al., 2006[Benito-Garagorri, D., Becker, E., Wiedermann, J., Lackner, W., Pollak, M., Mereiter, K., Kisala, J. & Kirchner, K. (2006). Organometallics, 25, 1900-1913.]).

The title manganese salt was formed in the course of the targeted synthesis of an MnII PNP-complex (Fig. 1[link]). Anhydrous MnI2 (93 mg, 0.50 mmol) and the PNP-ligand (115 mg, 0.33 mmol) were stirred in 7 ml tetra­hydro­furan for one h. 2 ml of DMSO were added and the solution filtrated over celite. The clear colourless solution was layered with 15 ml diethyl ether and was left for 7 days. Colourless crystals of the title compound were obtained as the only solid reaction product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Close inspection of the diffraction pattern revealed twinning by non-merohedry with one domain rotated by 180° about [100]. Intensity statistics showed 1583 reflections belonging to domain 1 only (mean I/σ = 7.5), 1583 reflections to domain 2 only (mean I/σ = 7.2) and 4780 reflections to both domains (mean I/σ = 7.5). The presence of two domains with equal scattering volume was confirmed by the refinement (refinement as a two-component twin using an HKLF-5 file). The refined Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) of 0.10 (2) revealed additional twinning by inversion. The maximum remaining electron density is found 1.30 Å from atom H2C and the minimum remaining electron density 1.06 Å from atom I1.

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C2H6OS)6]I2
Mr 777.51
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 12.0996 (14), 24.511 (3), 11.2999 (13)
β (°) 119.577 (3)
V3) 2914.6 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.02
Crystal size (mm) 0.15 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (TWINABS; Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.574, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4935, 4935, 4279
(sin θ/λ)max−1) 0.743
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.074, 1.16
No. of reflections 4935
No. of parameters 257
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.11, −1.51
Absolute structure No quotients, so Flack parameter determined by classical intensity fit
Absolute structure parameter 0.10 (2)
Computer programs: APEX2 and SAINT-Plus (Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT-Plus (Bruker, 2014); data reduction: SAINT-Plus (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Hexakis(dimethyl sulfoxide-κO)manganese(II) diiodide top
Crystal data top
[Mn(C2H6OS)6]I2F(000) = 1532
Mr = 777.51Dx = 1.772 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 12.0996 (14) ÅCell parameters from 9642 reflections
b = 24.511 (3) Åθ = 2.2–31.3°
c = 11.2999 (13) ŵ = 3.02 mm1
β = 119.577 (3)°T = 100 K
V = 2914.6 (6) Å3Fragment, colourless
Z = 40.15 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
4279 reflections with I > 2σ(I)
ω– and φ–scansθmax = 31.9°, θmin = 1.7°
Absorption correction: multi-scan
(TWINABS; Bruker, 2014)
h = 1715
Tmin = 0.574, Tmax = 0.746k = 035
4935 measured reflectionsl = 016
4935 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0202P)2 + 8.7709P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 1.16Δρmax = 2.11 e Å3
4935 reflectionsΔρmin = 1.51 e Å3
257 parametersAbsolute structure: No quotients, so Flack parameter determined by classical intensity fit
2 restraintsAbsolute structure parameter: 0.10 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.92250 (11)0.87649 (5)0.58801 (9)0.0112 (2)
I10.26974 (6)0.88077 (3)0.28565 (7)0.02714 (14)
I20.58683 (5)0.86891 (2)0.96305 (5)0.02930 (16)
S10.8652 (2)0.95666 (9)0.3103 (3)0.0250 (5)
S20.7237 (2)0.78418 (9)0.3582 (2)0.0186 (4)
S40.8551 (2)0.84771 (8)0.8308 (2)0.0180 (4)
S30.64117 (19)0.91912 (7)0.5116 (2)0.0151 (4)
S51.2168 (2)0.91633 (8)0.7738 (2)0.0159 (4)
S61.12193 (18)0.83029 (8)0.5061 (2)0.0155 (4)
O10.8988 (6)0.9059 (2)0.3974 (6)0.0223 (13)
O20.7667 (6)0.8219 (2)0.4797 (6)0.0229 (13)
O30.7823 (6)0.9325 (2)0.5874 (7)0.0199 (12)
O40.9477 (5)0.8411 (2)0.7784 (6)0.0188 (11)
O51.0771 (6)0.9339 (2)0.6990 (6)0.0181 (12)
O61.0538 (6)0.8170 (2)0.5873 (6)0.0165 (11)
C10.9114 (10)0.9439 (4)0.1885 (9)0.025 (2)
H1A0.99490.92610.23220.037*
H1B0.91630.97840.14760.037*
H1C0.84890.91990.11760.037*
C20.9819 (13)1.0048 (4)0.4068 (10)0.045 (3)
H2A0.97201.01630.48420.067*
H2B0.97291.03660.35000.067*
H2C1.06620.98860.44040.067*
C30.5563 (9)0.7902 (4)0.2691 (10)0.025 (2)
H3A0.52530.79270.33430.037*
H3B0.51900.75810.21110.037*
H3C0.53170.82310.21260.037*
C40.7368 (10)0.7169 (3)0.4265 (11)0.029 (2)
H4A0.82660.70630.47750.043*
H4B0.69040.69100.35190.043*
H4C0.70080.71660.48740.043*
C50.5721 (9)0.9626 (4)0.5828 (11)0.030 (2)
H5A0.58880.94800.67080.045*
H5B0.48010.96470.52120.045*
H5C0.60910.99920.59560.045*
C60.5831 (11)0.9507 (4)0.3532 (11)0.030 (2)
H6A0.60370.98960.36630.045*
H6B0.49070.94600.30040.045*
H6C0.62240.93400.30410.045*
C70.7344 (8)0.7981 (4)0.7471 (9)0.027 (2)
H7A0.68560.80660.64980.041*
H7B0.67760.79830.78590.041*
H7C0.77320.76190.75940.041*
C80.9331 (10)0.8176 (4)0.9972 (10)0.032 (2)
H8A0.95380.77940.99050.049*
H8B0.87670.81911.03630.049*
H8C1.01150.83771.05580.049*
C91.0351 (9)0.7942 (3)0.3481 (8)0.0189 (15)
H9A1.03360.75520.36640.028*
H9B1.07630.79960.29300.028*
H9C0.94780.80810.29860.028*
C101.2612 (10)0.7887 (4)0.5827 (10)0.027 (2)
H10A1.31560.79990.67750.040*
H10B1.30770.79290.53270.040*
H10C1.23670.75040.57980.040*
C111.2929 (9)0.9566 (4)0.7044 (10)0.024 (2)
H11A1.25990.94680.60870.036*
H11B1.38470.95000.75530.036*
H11C1.27610.99530.71090.036*
C121.2843 (9)0.9470 (4)0.9385 (9)0.0231 (19)
H12A1.28570.98680.92950.035*
H12B1.37130.93360.99540.035*
H12C1.23300.93750.98070.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0126 (5)0.0097 (5)0.0119 (5)0.0014 (5)0.0064 (5)0.0008 (5)
I10.0220 (3)0.0280 (3)0.0317 (3)0.0063 (3)0.0135 (3)0.0007 (3)
I20.0279 (3)0.0216 (3)0.0371 (4)0.0059 (3)0.0150 (3)0.0006 (3)
S10.0234 (11)0.0249 (11)0.0318 (13)0.0063 (9)0.0176 (10)0.0097 (9)
S20.0166 (9)0.0199 (9)0.0201 (10)0.0018 (8)0.0096 (8)0.0062 (8)
S40.0225 (10)0.0153 (8)0.0214 (10)0.0009 (7)0.0148 (8)0.0014 (7)
S30.0109 (9)0.0130 (8)0.0188 (9)0.0001 (7)0.0053 (8)0.0004 (7)
S50.0146 (10)0.0118 (8)0.0188 (9)0.0012 (7)0.0064 (8)0.0000 (8)
S60.0169 (10)0.0144 (8)0.0154 (9)0.0007 (7)0.0082 (7)0.0008 (7)
O10.031 (3)0.021 (3)0.019 (3)0.001 (3)0.015 (3)0.010 (2)
O20.024 (3)0.021 (3)0.028 (3)0.010 (2)0.016 (3)0.011 (2)
O30.010 (3)0.016 (3)0.028 (3)0.004 (2)0.006 (3)0.002 (2)
O40.016 (3)0.026 (3)0.019 (3)0.004 (2)0.011 (2)0.006 (2)
O50.012 (3)0.013 (3)0.028 (3)0.001 (2)0.009 (3)0.001 (2)
O60.022 (3)0.015 (3)0.018 (3)0.000 (2)0.015 (2)0.000 (2)
C10.033 (5)0.023 (4)0.024 (5)0.004 (4)0.019 (4)0.003 (4)
C20.075 (9)0.037 (5)0.015 (5)0.021 (6)0.016 (5)0.002 (4)
C30.024 (5)0.017 (4)0.023 (4)0.002 (4)0.004 (4)0.003 (3)
C40.022 (5)0.016 (4)0.031 (6)0.005 (4)0.000 (4)0.004 (4)
C50.016 (4)0.039 (5)0.036 (6)0.003 (4)0.012 (4)0.008 (5)
C60.027 (5)0.029 (5)0.028 (5)0.005 (4)0.009 (5)0.011 (4)
C70.024 (5)0.040 (5)0.024 (5)0.004 (4)0.016 (4)0.003 (3)
C80.040 (6)0.038 (5)0.021 (5)0.004 (4)0.017 (4)0.004 (4)
C90.025 (4)0.022 (4)0.013 (4)0.002 (4)0.012 (4)0.008 (3)
C100.029 (5)0.030 (5)0.026 (5)0.010 (4)0.016 (4)0.009 (4)
C110.020 (5)0.022 (4)0.024 (5)0.004 (4)0.007 (4)0.008 (4)
C120.017 (4)0.033 (5)0.020 (4)0.006 (4)0.010 (4)0.008 (4)
Geometric parameters (Å, º) top
Mn1—O22.137 (6)C3—H3A0.9800
Mn1—O12.152 (6)C3—H3B0.9800
Mn1—O62.159 (6)C3—H3C0.9800
Mn1—O52.176 (6)C4—H4A0.9800
Mn1—O32.180 (6)C4—H4B0.9800
Mn1—O42.197 (6)C4—H4C0.9800
S1—O11.512 (6)C5—H5A0.9800
S1—C21.749 (11)C5—H5B0.9800
S1—C11.751 (10)C5—H5C0.9800
S2—O21.518 (6)C6—H6A0.9800
S2—C31.768 (10)C6—H6B0.9800
S2—C41.795 (9)C6—H6C0.9800
S4—O41.512 (6)C7—H7A0.9800
S4—C71.773 (9)C7—H7B0.9800
S4—C81.795 (10)C7—H7C0.9800
S3—O31.521 (6)C8—H8A0.9800
S3—C61.747 (10)C8—H8B0.9800
S3—C51.774 (10)C8—H8C0.9800
S5—O51.532 (6)C9—H9A0.9800
S5—C111.775 (10)C9—H9B0.9800
S5—C121.787 (9)C9—H9C0.9800
S6—O61.541 (6)C10—H10A0.9800
S6—C101.786 (9)C10—H10B0.9800
S6—C91.795 (8)C10—H10C0.9800
C1—H1A0.9800C11—H11A0.9800
C1—H1B0.9800C11—H11B0.9800
C1—H1C0.9800C11—H11C0.9800
C2—H2A0.9800C12—H12A0.9800
C2—H2B0.9800C12—H12B0.9800
C2—H2C0.9800C12—H12C0.9800
O2—Mn1—O189.6 (2)H3B—C3—H3C109.5
O2—Mn1—O691.0 (2)S2—C4—H4A109.5
O1—Mn1—O687.6 (2)S2—C4—H4B109.5
O2—Mn1—O5178.2 (2)H4A—C4—H4B109.5
O1—Mn1—O590.7 (2)S2—C4—H4C109.5
O6—Mn1—O590.8 (2)H4A—C4—H4C109.5
O2—Mn1—O385.8 (2)H4B—C4—H4C109.5
O1—Mn1—O393.8 (2)S3—C5—H5A109.5
O6—Mn1—O3176.5 (2)S3—C5—H5B109.5
O5—Mn1—O392.3 (2)H5A—C5—H5B109.5
O2—Mn1—O488.3 (2)S3—C5—H5C109.5
O1—Mn1—O4176.3 (2)H5A—C5—H5C109.5
O6—Mn1—O489.4 (2)H5B—C5—H5C109.5
O5—Mn1—O491.5 (2)S3—C6—H6A109.5
O3—Mn1—O489.1 (2)S3—C6—H6B109.5
O1—S1—C2106.0 (4)H6A—C6—H6B109.5
O1—S1—C1106.0 (4)S3—C6—H6C109.5
C2—S1—C197.9 (6)H6A—C6—H6C109.5
O2—S2—C3104.4 (4)H6B—C6—H6C109.5
O2—S2—C4104.7 (4)S4—C7—H7A109.5
C3—S2—C498.9 (5)S4—C7—H7B109.5
O4—S4—C7107.0 (4)H7A—C7—H7B109.5
O4—S4—C8105.0 (4)S4—C7—H7C109.5
C7—S4—C898.3 (5)H7A—C7—H7C109.5
O3—S3—C6104.7 (5)H7B—C7—H7C109.5
O3—S3—C5105.3 (4)S4—C8—H8A109.5
C6—S3—C599.0 (5)S4—C8—H8B109.5
O5—S5—C11105.8 (4)H8A—C8—H8B109.5
O5—S5—C12105.6 (4)S4—C8—H8C109.5
C11—S5—C1298.9 (5)H8A—C8—H8C109.5
O6—S6—C10104.2 (4)H8B—C8—H8C109.5
O6—S6—C9105.4 (4)S6—C9—H9A109.5
C10—S6—C998.6 (5)S6—C9—H9B109.5
S1—O1—Mn1141.9 (4)H9A—C9—H9B109.5
S2—O2—Mn1135.3 (4)S6—C9—H9C109.5
S3—O3—Mn1121.5 (3)H9A—C9—H9C109.5
S4—O4—Mn1124.7 (3)H9B—C9—H9C109.5
S5—O5—Mn1122.4 (3)S6—C10—H10A109.5
S6—O6—Mn1118.1 (3)S6—C10—H10B109.5
S1—C1—H1A109.5H10A—C10—H10B109.5
S1—C1—H1B109.5S6—C10—H10C109.5
H1A—C1—H1B109.5H10A—C10—H10C109.5
S1—C1—H1C109.5H10B—C10—H10C109.5
H1A—C1—H1C109.5S5—C11—H11A109.5
H1B—C1—H1C109.5S5—C11—H11B109.5
S1—C2—H2A109.5H11A—C11—H11B109.5
S1—C2—H2B109.5S5—C11—H11C109.5
H2A—C2—H2B109.5H11A—C11—H11C109.5
S1—C2—H2C109.5H11B—C11—H11C109.5
H2A—C2—H2C109.5S5—C12—H12A109.5
H2B—C2—H2C109.5S5—C12—H12B109.5
S2—C3—H3A109.5H12A—C12—H12B109.5
S2—C3—H3B109.5S5—C12—H12C109.5
H3A—C3—H3B109.5H12A—C12—H12C109.5
S2—C3—H3C109.5H12B—C12—H12C109.5
H3A—C3—H3C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···I2i0.983.033.926 (10)152
C6—H6B···I10.983.053.878 (12)143
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The X-Ray Centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer. This project was supported by Austrian Science Fund (FWF): P28866-N34.

References

First citationBenito-Garagorri, D., Becker, E., Wiedermann, J., Lackner, W., Pollak, M., Mereiter, K., Kisala, J. & Kirchner, K. (2006). Organometallics, 25, 1900–1913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT-Plus and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMastalir, M., Glatz, M., Stöger, B., Weil, M., Pittenauer, E., Allmaier, G. & Kirchner, K. (2016). Inorg. Chim. Acta, doi: 10.1016/j. ica. 2016.02.064.  Google Scholar
First citationMigdał-Mikuli, A., Szostak, E. & Nitek, W. (2006). Acta Cryst. E62, m2581–m2582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurugesan, S. & Kirchner, K. (2016). Dalton Trans. 45, 416–439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzabo, K. J. & Wendt, O. F. (2014). Editors. Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis. London: Wiley.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds