research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Disodium hydrogen citrate sesquihydrate, Na2HC6H5O7(H2O)1.5

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu HI , USA, bDepartment of Chemistry, Northwestern University, Evanston IL, USA, and cIllinois Institute of Technology, Department of Chemistry, 3101 S. Dearborn St., Chicago IL 60616, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 20 May 2016; accepted 3 June 2016; online 14 June 2016)

The crystal structure of disodium hydrogen citrate sesquihydrate, 2Na2+·C6H6O72−·1.5H2O, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. The asymmetric unit contains two independent hydrogen citrate anions, four sodium cations and three water molecules. The coordination polyhedra of the cations (three with a coordination number of six, one with seven) share edges to form isolated 8-rings. The un-ionized terminal carb­oxy­lic acid groups form very strong hydrogen bonds to non-coordinating O atoms, with O⋯O distances of 2.46 Å.

1. Chemical context

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.]). Four of the new structures – NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, and a second polymorph of NaH2C6H5O7 – have been published recently (Rammohan & Kaduk, 2016b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170-173.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403-406.],d[Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 793-796.],e[Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 854-857.]) and two additional structures – KH2C6H5O7 and KH2C6H5O7(H2O)2 – have been communicated to the CSD (Kaduk & Stern, 2016a[Kaduk, J. A. & Stern, C. (2016a). Private Communication (refcodes 1446457 and 1446458). CCDC, Cambridge, England.],b[Kaduk, J. A. & Stern, C. (2016b). Private Communication (refcodes 1446460 and 1446461). CCDC, Cambridge, England.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The root-mean-square deviation of the non-hydrogen atoms in the refined and DFT-optimized structures is only 0.048 Å. The excellent agreement between the two structures (Fig. 2[link]) is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). This discussion uses the DFT-optimized structure. Almost all of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). Only the C3—O13 bond length [observed = 1.416 (2), optimized = 1.410, Mogul average = 1.445 (11) Å, Z-score = 3.3] and the C2—C3—C4—C5 torsion angle [observed = −55.7 (1), optimized = −50.6°] are flagged as unusual. The standard deviation on the Mogul average for the C3—O13 distance is exceptionally low, resulting in the elevated Z-score. The C2—C3—C4—C5 torsion angle lies in the tail of a minority gauche conformation. None of the experimental qu­anti­ties are flagged as unusual.

[Figure 1]
Figure 1
The asymmetric unit of the DFT-optimized structure, with the atom numbering. The atoms are represented by 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of disodium hydrogen citrate sesquihydrate. The refined structure is in red, and the DFT-optimized structure is in blue.

The two independent citrate ions in the optimized structure are very similar; the root-mean-square displacement of the non-hydrogen atoms is 0.10 Å. Both anions occur in a gauche,trans conformation, which is one of the two low-energy conformations of an isolated citrate. The central carboxyl­ate and hydroxyl groups are in the normal planar arrangement. The central and one terminal carboxyl­ate groups in each hydrogen citrate anion are deprotonated. Both citrates chelate to Na2 atom through the end carboxyl­ate atom O8, the central carboxyl­ate atom O10, and the hydroxyl group O13.

The four independent Na1, Na2, Na3, and Na4 cations are 6-, 7-, 6-, and 6-coordinate. The 6-coordinate Na+ cations are in an approximately octa­hedral environment. The bond-valence sums are 1.12, 1.26, 1.16, and 1.20, respectively. Only the oxygen atoms O12 and O12A do not coordinate to an Na atom; these are part of central carboxyl­ate groups, and the Na—O distances are very long at 2.76 Å. There are one, one, one, and three water mol­ecules in the coordination spheres of atoms Na1, Na2, Na3, and Na4.

3. Supra­molecular features

The [NaOx coordination polyhedra (x = 6, 7) share edges to form 8-ring units (Fig. 3[link]), which are isolated from each other in the crystal structure (Fig. 4[link]).

[Figure 3]
Figure 3
The 8-rings formed by edge sharing of the Na coordination polyhedra.
[Figure 4]
Figure 4
The crystal structure of Na2HC6H5O7(H2O)1.5, viewed down the a axis.

The OH functions of the carboxy groups, O7—H19 and O17A—H19A, form very strong hydrogen bonds to the non-coordinating atoms O12A and O12, respectively (Table 1[link]). The experimental donor–hydrogen distances are significantly longer than the DFT-optimized ones. The refined O7—H19 and O7A—H19A distances are both 1.20 (3) Å, and the optimized distances are both 1.079 Å. The other hydrogen bonds participate in a variety of rings.

Table 1
Hydrogen-bond geometry (Å, °) [link]

D—H⋯A D—H H⋯A DA D—H⋯A
O7A—H19A⋯O12 1.079 1.393 2.465 171.1
O7—H19⋯O12A 1.079 1.382 2.456 172.5
O13A—H16A⋯O11A 0.986 1.725 2.698 168.3
O13—H16⋯O11 0.987 1.760 2.743 173.4
O1W—H1W⋯O10 0.988 1.806 2.772 165.0
O3W—H5W⋯O12A 0.981 1.751 2.714 165.9
O3W—H6W⋯O9A 0.979 1.945 2.881 159.0
O1W—H2W⋯O10A 0.980 2.122 3.067 161.4
O2W—H4W⋯O12 0.971 2.171 2.877 128.5
O2W—H3W⋯O8 0.972 2.146 2.946 138.6
O2W—H3W⋯O1W 0.972 2.503 3.166 125.3

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2016a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.]). The observed powder pattern matched that of Na2HC6H5O7(H2O)2 in PDF entry 00-016-1182 (de Wolff et al., 1966[Wolff, P. de (1966). ICDD Grant-in-Aid, PDF entry 00-016-1182.]) A reduced-cell search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 104 hits, but limiting the chemistry to C, H, Na, and O only resulted in no hits.

5. Synthesis and crystallization

The sample was purchased from Sigma–Aldrich (lot #BCBC6031V). Single crystals were isolated from the as-received material.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen-atom parameters were refined.

Table 2
Experimental details

Crystal data
Chemical formula 2Na2+·C6H6O72−·1.5H2O
Mr 263.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.6713 (3), 10.6475 (4), 10.9961 (4)
α, β, γ (°) 68.461 (1), 79.617 (2), 81.799 (2)
V3) 925.63 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.34
Crystal size (mm) 0.24 × 0.14 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.652, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 9177, 3235, 3137
Rint 0.021
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.10
No. of reflections 3235
No. of parameters 370
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.36, −0.31
The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XM and XL (Bruker, 2004[Bruker (2004). XL and XM. Bruker AXS Inc., Madison, Wisconsin, USA.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Materials Studio (Dassault Systemes, 2014[Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego CA.]).

7. DFT Calculations

A density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the C, H, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Na was that of Dovesi et al. (1991[Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11-19.]). The calculation used 8 k-points and the B3LYP functional, and took about 10 days on a 2.4 GHz PC. Uiso values were assigned to the optimized fractional coordinates based on the Ueq values from the refined structure.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006) for na2c. Cell refinement: SAINT (Bruker, 2006) for na2c. Data reduction: SAINT (Bruker, 2006) for na2c. Program(s) used to solve structure: XM (Bruker, 2004) for na2c. Program(s) used to refine structure: XL (Bruker, 2004) for na2c. Molecular graphics: OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2006) and Materials Studio (Dassault Systemes, 2014) for na2c. Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for na2c.

(na2c) Disodium hydrogen citrate sesquihydrate top
Crystal data top
2Na+·C6H6O72·1.5H2OZ = 4
Mr = 263.11F(000) = 540
Triclinic, P1Dx = 1.888 Mg m3
a = 8.6713 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.6475 (4) ÅCell parameters from 7113 reflections
c = 10.9961 (4) Åθ = 4.4–67.1°
α = 68.461 (1)°µ = 2.34 mm1
β = 79.617 (2)°T = 100 K
γ = 81.799 (2)°Rod, colourless
V = 925.63 (6) Å30.24 × 0.14 × 0.06 mm
Data collection top
Bruker Kappa APEX CCD area detector
diffractometer
3235 independent reflections
Radiation source: microsource3137 reflections with I > 2σ(I)
MX optics monochromatorRint = 0.021
Detector resolution: 8 pixels mm-1θmax = 67.6°, θmin = 4.4°
ω and φ scansh = 710
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 1212
Tmin = 0.652, Tmax = 0.753l = 1312
9177 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.4756P]
where P = (Fo2 + 2Fc2)/3
3235 reflections(Δ/σ)max = 0.002
370 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Experimental. SADABS (Bruker,2006) was used for absorption correction. R(int) was 0.0787 before and 0.0318 after correction. The Ratio of minimum to maximum transmission is 0.8655. The λ/2 correction factor is 0.0015.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.36905 (6)0.67174 (5)1.09406 (5)0.01145 (13)
Na20.26692 (6)0.20337 (5)0.79550 (5)0.01118 (14)
Na30.08801 (6)1.08405 (5)0.67885 (5)0.01112 (13)
Na40.34928 (6)0.86038 (5)0.85665 (5)0.01460 (14)
O1W0.26747 (14)0.99605 (11)0.99770 (10)0.0155 (2)
H1W0.333 (3)1.053 (3)0.943 (3)0.047 (7)*
H2W0.181 (3)1.034 (2)0.983 (2)0.037 (6)*
O2W0.62348 (12)0.82465 (11)0.87230 (11)0.0161 (2)
H3W0.679 (3)0.886 (3)0.849 (3)0.047 (7)*
H4W0.647 (4)0.789 (3)0.814 (3)0.067 (9)*
O3W0.09169 (12)0.84523 (10)0.82906 (11)0.0134 (2)
H5W0.065 (3)0.813 (2)0.779 (2)0.036 (6)*
H6W0.029 (3)0.813 (2)0.901 (2)0.029 (5)*
O70.16831 (11)0.95459 (10)0.52380 (9)0.0127 (2)
O80.20033 (11)1.04882 (10)0.67830 (9)0.0123 (2)
O90.63550 (11)1.06594 (9)0.68976 (9)0.0109 (2)
O100.53711 (11)1.17365 (9)0.79545 (9)0.0107 (2)
O110.46736 (11)1.50841 (9)0.30164 (9)0.0108 (2)
O120.49461 (11)1.33279 (9)0.24551 (9)0.0114 (2)
O130.36210 (11)1.32227 (10)0.57450 (9)0.0098 (2)
H160.419 (2)1.378 (2)0.603 (2)0.023 (5)*
C10.23366 (15)1.04395 (13)0.57558 (13)0.0091 (3)
C20.35405 (16)1.14161 (13)0.49599 (13)0.0092 (3)
H140.413 (2)1.0882 (17)0.4733 (16)0.009 (4)*
H150.291 (2)1.1960 (18)0.4148 (18)0.015 (4)*
C30.46014 (15)1.23514 (13)0.55909 (13)0.0087 (3)
C40.58579 (15)1.31651 (13)0.46879 (13)0.0094 (3)
H170.648 (2)1.3845 (17)0.5050 (17)0.011 (4)*
H180.6557 (19)1.2561 (16)0.4648 (15)0.006 (4)*
C50.51150 (15)1.39448 (13)0.33037 (13)0.0090 (3)
C60.55179 (15)1.15103 (13)0.69346 (13)0.0087 (3)
O7A0.33313 (12)0.47238 (10)1.04866 (9)0.0137 (2)
O8A0.32692 (11)0.32406 (9)0.94823 (9)0.0112 (2)
O9A0.10082 (11)0.29981 (10)0.93250 (9)0.0125 (2)
O10A0.00229 (11)0.19514 (9)0.82508 (10)0.0118 (2)
O11A0.01900 (11)0.69477 (9)0.48444 (9)0.0112 (2)
O12A0.01213 (11)0.75754 (9)0.65463 (9)0.0114 (2)
O13A0.15562 (11)0.42424 (9)0.68263 (9)0.0099 (2)
H16A0.101 (3)0.395 (2)0.626 (2)0.029 (5)*
C1A0.27937 (15)0.42486 (13)0.95554 (13)0.0095 (3)
C2A0.15323 (16)0.50579 (13)0.85584 (13)0.0099 (3)
H14A0.088 (2)0.5291 (17)0.9052 (17)0.011 (4)*
H15A0.209 (2)0.5897 (19)0.8023 (18)0.019 (4)*
C3A0.05408 (15)0.43861 (13)0.76326 (13)0.0087 (3)
C4A0.07926 (16)0.52892 (13)0.67715 (13)0.0097 (3)
H17A0.138 (2)0.4872 (18)0.6159 (18)0.014 (4)*
H18A0.148 (2)0.5361 (16)0.7318 (17)0.010 (4)*
C5A0.01286 (15)0.66847 (13)0.59661 (13)0.0088 (3)
C6A0.02354 (15)0.29878 (13)0.84637 (13)0.0091 (3)
H19A0.415 (4)0.402 (3)1.143 (3)0.078 (10)*
H190.090 (4)0.861 (3)0.591 (3)0.069 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0130 (3)0.0106 (3)0.0106 (3)0.0013 (2)0.0011 (2)0.0038 (2)
Na20.0106 (3)0.0124 (3)0.0117 (3)0.0022 (2)0.0012 (2)0.0053 (2)
Na30.0120 (3)0.0112 (3)0.0102 (3)0.0002 (2)0.0019 (2)0.0040 (2)
Na40.0160 (3)0.0117 (3)0.0137 (3)0.0042 (2)0.0051 (2)0.0009 (2)
O1W0.0162 (5)0.0143 (5)0.0132 (5)0.0023 (4)0.0003 (4)0.0020 (4)
O2W0.0163 (5)0.0145 (5)0.0150 (5)0.0029 (4)0.0018 (4)0.0021 (4)
O3W0.0150 (5)0.0154 (5)0.0105 (5)0.0042 (4)0.0025 (4)0.0040 (4)
O70.0153 (5)0.0116 (5)0.0123 (5)0.0038 (4)0.0041 (4)0.0064 (4)
O80.0144 (5)0.0127 (5)0.0108 (5)0.0010 (4)0.0039 (4)0.0052 (4)
O90.0118 (5)0.0101 (5)0.0105 (5)0.0037 (4)0.0024 (4)0.0018 (4)
O100.0120 (5)0.0118 (5)0.0088 (5)0.0023 (4)0.0003 (4)0.0043 (4)
O110.0120 (5)0.0091 (5)0.0105 (5)0.0018 (4)0.0007 (4)0.0025 (4)
O120.0146 (5)0.0112 (5)0.0088 (5)0.0031 (4)0.0003 (4)0.0035 (4)
O130.0094 (5)0.0096 (5)0.0117 (5)0.0024 (4)0.0008 (4)0.0050 (4)
C10.0082 (6)0.0084 (6)0.0094 (6)0.0032 (5)0.0011 (5)0.0018 (5)
C20.0100 (6)0.0096 (6)0.0085 (6)0.0012 (5)0.0018 (5)0.0033 (5)
C30.0083 (6)0.0081 (6)0.0099 (6)0.0011 (5)0.0017 (5)0.0031 (5)
C40.0088 (6)0.0092 (6)0.0089 (6)0.0011 (5)0.0006 (5)0.0020 (5)
C50.0059 (6)0.0105 (6)0.0095 (6)0.0019 (5)0.0025 (5)0.0025 (5)
C60.0064 (6)0.0077 (6)0.0103 (7)0.0026 (5)0.0020 (5)0.0021 (5)
O7A0.0178 (5)0.0129 (5)0.0108 (5)0.0048 (4)0.0044 (4)0.0063 (4)
O8A0.0139 (5)0.0090 (5)0.0102 (5)0.0024 (4)0.0004 (4)0.0029 (4)
O9A0.0122 (5)0.0140 (5)0.0111 (5)0.0017 (4)0.0043 (4)0.0027 (4)
O10A0.0128 (5)0.0098 (5)0.0136 (5)0.0006 (4)0.0014 (4)0.0051 (4)
O11A0.0126 (5)0.0116 (5)0.0085 (5)0.0005 (4)0.0013 (4)0.0026 (4)
O12A0.0148 (5)0.0090 (5)0.0111 (5)0.0003 (4)0.0034 (4)0.0037 (4)
O13A0.0096 (5)0.0124 (5)0.0090 (5)0.0007 (4)0.0022 (4)0.0049 (4)
C1A0.0101 (6)0.0088 (6)0.0083 (6)0.0018 (5)0.0032 (5)0.0017 (5)
C2A0.0105 (6)0.0097 (6)0.0094 (6)0.0016 (5)0.0003 (5)0.0035 (5)
C3A0.0085 (6)0.0090 (6)0.0088 (6)0.0012 (5)0.0022 (5)0.0029 (5)
C4A0.0089 (6)0.0096 (6)0.0098 (6)0.0004 (5)0.0010 (5)0.0027 (5)
C5A0.0053 (6)0.0101 (6)0.0102 (6)0.0033 (5)0.0019 (5)0.0029 (5)
C6A0.0063 (6)0.0111 (6)0.0077 (6)0.0012 (5)0.0024 (5)0.0021 (5)
Geometric parameters (Å, º) top
Na1—O2Wi2.3901 (11)O10—Na2ix2.4085 (10)
Na1—O10ii2.3618 (11)O10—C61.2612 (17)
Na1—O11iii2.4017 (10)O11—Na1x2.4017 (10)
Na1—O7A2.3207 (11)O11—C51.2351 (17)
Na1—O8Aiv2.7499 (11)O12—Na4vii2.7435 (11)
Na1—O9Av2.3405 (11)O12—C51.3027 (17)
Na2—O1Wv2.4765 (11)O13—Na2ix2.5209 (11)
Na2—O8vi2.3917 (11)O13—H160.83 (2)
Na2—O10vi2.4085 (10)O13—C31.4158 (16)
Na2—O13vi2.5209 (11)C1—C21.5127 (18)
Na2—O8A2.4128 (11)C2—H140.940 (18)
Na2—O10A2.3995 (11)C2—H150.982 (19)
Na2—O13A2.4647 (11)C2—C31.5282 (18)
Na3—O3W2.4713 (11)C3—C41.5533 (18)
Na3—O7vii2.3774 (11)C3—C61.5572 (18)
Na3—O82.5820 (11)C4—H170.997 (18)
Na3—O9viii2.3989 (10)C4—H180.962 (17)
Na3—O10Aix2.2918 (11)C4—C51.5139 (18)
Na3—O11Avii2.4512 (10)O7A—C1A1.2896 (17)
Na4—O1W2.4397 (12)O7A—H19A1.20 (3)
Na4—O2W2.3810 (12)O8A—Na1iv2.7499 (11)
Na4—O3W2.3430 (11)O8A—Na4v2.3157 (10)
Na4—O9viii2.2851 (10)O8A—C1A1.2368 (17)
Na4—O12vii2.7435 (11)O9A—Na1v2.3405 (11)
Na4—O8Av2.3157 (10)O9A—C6A1.2588 (17)
O1W—Na2v2.4765 (11)O10A—Na3vi2.2918 (11)
O1W—H1W0.87 (3)O10A—C6A1.2528 (17)
O1W—H2W0.81 (3)O11A—Na3vii2.4512 (10)
O2W—Na1viii2.3902 (11)O11A—C5A1.2342 (17)
O2W—H3W0.80 (3)O12A—C5A1.2997 (17)
O2W—H4W0.84 (3)O12A—H191.25 (3)
O3W—H5W0.82 (3)O13A—H16A0.84 (2)
O3W—H6W0.86 (2)O13A—C3A1.4157 (16)
O7—Na3vii2.3773 (11)C1A—C2A1.5112 (18)
O7—C11.2955 (17)C2A—H14A0.960 (18)
O7—H191.20 (3)C2A—H15A0.99 (2)
O8—Na2ix2.3917 (11)C2A—C3A1.5268 (18)
O8—C11.2357 (17)C3A—C4A1.5530 (18)
O9—Na3i2.3988 (10)C3A—C6A1.5626 (18)
O9—Na4i2.2851 (10)C4A—H17A0.971 (19)
O9—C61.2549 (17)C4A—H18A0.946 (18)
O10—Na1ii2.3618 (11)C4A—C5A1.5156 (18)
O2Wi—Na1—O11iii156.26 (4)C5—O11—Na1x131.75 (9)
O2Wi—Na1—O8Aiv75.81 (4)C5—O12—Na4vii152.04 (8)
O10ii—Na1—O2Wi98.54 (4)Na2ix—O13—H1690.8 (14)
O10ii—Na1—O11iii83.03 (4)C3—O13—Na2ix106.96 (7)
O10ii—Na1—O8Aiv87.71 (3)C3—O13—H16108.1 (14)
O11iii—Na1—O8Aiv80.60 (3)O7—C1—C2112.53 (11)
O7A—Na1—O2Wi97.21 (4)O8—C1—O7123.49 (12)
O7A—Na1—O10ii159.74 (4)O8—C1—C2123.98 (12)
O7A—Na1—O11iii77.44 (4)C1—C2—H14105.8 (10)
O7A—Na1—O8Aiv83.87 (4)C1—C2—H15104.2 (11)
O7A—Na1—O9Av95.46 (4)C1—C2—C3117.38 (11)
O9Av—Na1—O2Wi88.70 (4)H14—C2—H15107.8 (14)
O9Av—Na1—O10ii97.56 (4)C3—C2—H14111.4 (10)
O9Av—Na1—O11iii114.69 (4)C3—C2—H15109.7 (10)
O9Av—Na1—O8Aiv164.25 (4)O13—C3—C2107.07 (10)
O8vi—Na2—O1Wv87.53 (4)O13—C3—C4111.32 (10)
O8vi—Na2—O10vi86.15 (4)O13—C3—C6111.84 (11)
O8vi—Na2—O13vi73.84 (4)C2—C3—C4109.53 (11)
O8vi—Na2—O8A169.75 (4)C2—C3—C6110.59 (10)
O8vi—Na2—O10A91.46 (4)C4—C3—C6106.52 (10)
O8vi—Na2—O13A114.69 (4)C3—C4—H17109.6 (10)
O10vi—Na2—O1Wv88.39 (4)C3—C4—H18109.9 (9)
O10vi—Na2—O13vi66.13 (3)H17—C4—H18109.3 (14)
O10vi—Na2—O8A94.93 (4)C5—C4—C3111.88 (11)
O10vi—Na2—O13A122.23 (4)C5—C4—H17106.8 (10)
O8A—Na2—O1Wv82.32 (4)C5—C4—H18109.3 (9)
O8A—Na2—O13vi115.91 (4)O11—C5—O12122.67 (12)
O8A—Na2—O13A73.28 (3)O11—C5—C4121.45 (12)
O10A—Na2—O1Wv81.90 (4)O12—C5—C4115.87 (11)
O10A—Na2—O10vi170.09 (4)O9—C6—O10125.63 (12)
O10A—Na2—O13vi122.36 (4)O9—C6—C3116.04 (11)
O10A—Na2—O8A85.75 (4)O10—C6—C3118.32 (11)
O10A—Na2—O13A67.43 (3)C1A—O7A—Na1142.00 (9)
O13A—Na2—O1Wv141.65 (4)C1A—O7A—H19A117.2 (15)
O13A—Na2—O13vi69.45 (3)Na2—O8A—Na1iv83.21 (3)
O3W—Na3—O882.77 (3)Na4v—O8A—Na1iv94.23 (3)
O7vii—Na3—O3W98.24 (4)Na4v—O8A—Na298.57 (4)
O7vii—Na3—O891.42 (4)C1A—O8A—Na1iv120.62 (8)
O7vii—Na3—O9viii84.83 (4)C1A—O8A—Na2135.06 (9)
O7vii—Na3—O11Avii77.67 (4)C1A—O8A—Na4v115.13 (8)
O9viii—Na3—O3W86.33 (4)C6A—O9A—Na1v127.26 (9)
O9viii—Na3—O8167.85 (4)Na3vi—O10A—Na291.98 (4)
O9viii—Na3—O11Avii108.24 (4)C6A—O10A—Na2109.60 (8)
O10Aix—Na3—O3W101.16 (4)C6A—O10A—Na3vi141.08 (9)
O10Aix—Na3—O7vii160.52 (4)C5A—O11A—Na3vii128.77 (9)
O10Aix—Na3—O889.27 (4)C5A—O12A—H19111.2 (13)
O10Aix—Na3—O9viii98.11 (4)Na2—O13A—H16A90.1 (14)
O10Aix—Na3—O11Avii83.15 (4)C3A—O13A—Na2108.01 (7)
O11Avii—Na3—O3W164.23 (4)C3A—O13A—H16A108.3 (15)
O11Avii—Na3—O882.12 (3)O7A—C1A—Na4v90.36 (8)
O1W—Na4—O12vii163.29 (4)O7A—C1A—C2A112.97 (11)
O2W—Na4—O1W99.15 (4)O8A—C1A—O7A123.45 (12)
O2W—Na4—O12vii68.41 (4)O8A—C1A—C2A123.57 (12)
O3W—Na4—O1W94.02 (4)C2A—C1A—Na4v143.09 (9)
O3W—Na4—O2W165.55 (5)C1A—C2A—H14A106.4 (10)
O3W—Na4—O12vii97.48 (4)C1A—C2A—H15A105.5 (11)
O9viii—Na4—O1W84.11 (4)C1A—C2A—C3A116.50 (11)
O9viii—Na4—O2W95.14 (4)H14A—C2A—H15A108.4 (15)
O9viii—Na4—O3W92.09 (4)C3A—C2A—H14A111.1 (10)
O9viii—Na4—O12vii107.45 (4)C3A—C2A—H15A108.6 (11)
O9viii—Na4—O8Av169.12 (4)O13A—C3A—C2A107.23 (10)
O8Av—Na4—O1W85.14 (4)O13A—C3A—C4A110.39 (10)
O8Av—Na4—O2W84.91 (4)O13A—C3A—C6A111.81 (10)
O8Av—Na4—O3W90.34 (4)C2A—C3A—C4A109.74 (11)
O8Av—Na4—O12vii82.72 (3)C2A—C3A—C6A109.50 (11)
Na4—O1W—Na2v93.62 (4)C4A—C3A—C6A108.16 (10)
Na4—O2W—Na1viii102.60 (4)C3A—C4A—H17A108.9 (10)
Na4—O3W—Na388.36 (4)C3A—C4A—H18A109.7 (10)
C1—O7—Na3vii144.02 (9)H17A—C4A—H18A109.0 (14)
C1—O7—H19116.4 (14)C5A—C4A—C3A111.23 (11)
Na2ix—O8—Na385.37 (3)C5A—C4A—H17A107.7 (10)
C1—O8—Na2ix135.12 (9)C5A—C4A—H18A110.2 (10)
C1—O8—Na3116.99 (8)O11A—C5A—O12A122.21 (12)
Na4i—O9—Na3i91.51 (4)O11A—C5A—C4A122.11 (12)
C6—O9—Na3i129.89 (8)O12A—C5A—C4A115.66 (12)
C6—O9—Na4i119.94 (8)O9A—C6A—C3A116.26 (11)
Na1ii—O10—Na2ix92.19 (4)O10A—C6A—O9A125.12 (12)
C6—O10—Na1ii140.73 (8)O10A—C6A—C3A118.60 (12)
C6—O10—Na2ix110.53 (8)
Na1iv—Na2—O8A—Na4v93.28 (4)O8vi—Na2—O10A—C6A158.19 (9)
Na1iv—Na2—O8A—C1A127.35 (13)O8vi—Na2—O13A—C3A117.77 (8)
Na1iv—Na2—O10A—Na3vi178.42 (3)O8—Na3—O3W—Na4175.84 (4)
Na1iv—Na2—O10A—C6A31.42 (10)O8—C1—C2—C311.14 (19)
Na1iv—Na2—O13A—C3A103.13 (8)O9viii—Na3—O3W—Na49.53 (4)
Na1viii—Na4—O1W—Na2v43.16 (3)O9viii—Na3—O8—Na2ix138.10 (17)
Na1viii—Na4—O3W—Na3161.99 (4)O9viii—Na3—O8—C182.7 (2)
Na1ii—O10—C6—Na2ix121.50 (14)O9viii—Na4—O1W—Na2v173.86 (4)
Na1ii—O10—C6—Na4i123.34 (11)O9viii—Na4—O2W—Na1viii155.76 (5)
Na1ii—O10—C6—O999.84 (16)O9viii—Na4—O3W—Na39.99 (4)
Na1ii—O10—C6—C379.80 (16)O10ii—Na1—O7A—C1A165.62 (14)
Na1x—O11—C5—O128.17 (19)O10vi—Na2—O8A—Na1iv10.14 (3)
Na1x—O11—C5—C4173.27 (8)O10vi—Na2—O8A—Na4v83.14 (4)
Na1—O7A—C1A—Na4v177.29 (11)O10vi—Na2—O8A—C1A137.49 (12)
Na1—O7A—C1A—O8A152.86 (11)O10vi—Na2—O13A—C3A140.54 (7)
Na1—O7A—C1A—C2A26.7 (2)O11iii—Na1—O7A—C1A178.65 (15)
Na1iv—O8A—C1A—Na4v111.85 (10)O12vii—Na4—O1W—Na2v39.06 (15)
Na1iv—O8A—C1A—O7A65.38 (15)O12vii—Na4—O2W—Na1viii97.49 (5)
Na1iv—O8A—C1A—C2A114.13 (12)O12vii—Na4—O3W—Na3117.89 (4)
Na1v—O9A—C6A—O10A91.30 (15)O13vi—Na2—O8A—Na1iv55.68 (4)
Na1v—O9A—C6A—C3A90.26 (13)O13vi—Na2—O8A—Na4v148.96 (4)
Na2iv—Na1—O7A—C1A122.96 (14)O13vi—Na2—O8A—C1A71.67 (13)
Na2ix—Na3—O3W—Na4134.10 (3)O13vi—Na2—O10A—Na3vi60.54 (5)
Na2ix—Na3—O8—C1139.16 (10)O13vi—Na2—O10A—C6A86.46 (9)
Na2v—Na4—O2W—Na1viii28.21 (4)O13vi—Na2—O13A—C3A177.81 (8)
Na2v—Na4—O3W—Na3117.97 (3)O13—C3—C4—C562.49 (14)
Na2ix—O8—C1—O7172.37 (9)O13—C3—C6—Na2ix25.63 (9)
Na2ix—O8—C1—C27.3 (2)O13—C3—C6—Na4i136.59 (11)
Na2ix—O10—C6—Na4i115.17 (5)O13—C3—C6—O9176.47 (11)
Na2ix—O10—C6—O9138.67 (11)O13—C3—C6—O103.86 (16)
Na2ix—O10—C6—C341.70 (13)C1—C2—C3—O1364.88 (14)
Na2ix—O13—C3—C288.15 (10)C1—C2—C3—C4174.29 (11)
Na2ix—O13—C3—C4152.17 (8)C1—C2—C3—C657.19 (15)
Na2ix—O13—C3—C633.14 (11)C2—C3—C4—C555.72 (14)
Na2—O8A—C1A—Na4v134.67 (14)C2—C3—C6—Na2ix93.60 (9)
Na2—O8A—C1A—O7A178.86 (9)C2—C3—C6—Na4i17.36 (18)
Na2—O8A—C1A—C2A0.6 (2)C2—C3—C6—O957.24 (15)
Na2—O10A—C6A—O9A136.65 (11)C2—C3—C6—O10123.09 (12)
Na2—O10A—C6A—C3A41.76 (13)C3—C4—C5—O1185.63 (15)
Na2—O13A—C3A—C2A89.61 (10)C3—C4—C5—O1293.01 (14)
Na2—O13A—C3A—C4A150.89 (8)C4—C3—C6—Na2ix147.46 (9)
Na2—O13A—C3A—C6A30.44 (11)C4—C3—C6—Na4i101.58 (14)
Na3vi—Na2—O8A—Na1iv178.64 (3)C4—C3—C6—O961.70 (14)
Na3vi—Na2—O8A—Na4v88.08 (4)C4—C3—C6—O10117.96 (12)
Na3vi—Na2—O8A—C1A51.29 (13)C6vi—Na2—O8A—Na1iv1.39 (4)
Na3vi—Na2—O10A—C6A147.00 (10)C6vi—Na2—O8A—Na4v91.88 (4)
Na3vi—Na2—O13A—C3A78.33 (8)C6vi—Na2—O8A—C1A128.75 (12)
Na3vii—O7—C1—O8148.29 (11)C6vi—Na2—O10A—Na3vi4.19 (12)
Na3vii—O7—C1—C231.4 (2)C6vi—Na2—O10A—C6A151.19 (11)
Na3—O8—C1—O759.85 (15)C6vi—Na2—O13A—C3A166.14 (7)
Na3—O8—C1—C2119.78 (11)C6viii—Na4—O1W—Na2v156.30 (5)
Na3i—O9—C6—Na2ix146.76 (11)C6viii—Na4—O2W—Na1viii141.70 (5)
Na3i—O9—C6—Na4i121.40 (13)C6viii—Na4—O3W—Na30.92 (5)
Na3i—O9—C6—O1082.71 (16)C6—C3—C4—C5175.35 (11)
Na3i—O9—C6—C396.93 (12)O7A—C1A—C2A—C3A164.94 (11)
Na3vi—O10A—C6A—O9A103.39 (16)O8Aiv—Na1—O7A—C1A99.65 (15)
Na3vi—O10A—C6A—C3A78.20 (17)O8A—Na2—O10A—Na3vi178.68 (4)
Na3vii—O11A—C5A—O12A12.16 (18)O8A—Na2—O10A—C6A31.68 (9)
Na3vii—O11A—C5A—C4A169.68 (9)O8A—Na2—O13A—C3A55.33 (8)
Na4i—Na1—O7A—C1A63.79 (15)O8Av—Na4—O1W—Na2v4.45 (4)
Na4v—Na2—O8A—Na1iv93.28 (4)O8Av—Na4—O2W—Na1viii13.32 (5)
Na4v—Na2—O8A—C1A139.37 (14)O8Av—Na4—O3W—Na3159.40 (4)
Na4v—Na2—O10A—Na3vi141.48 (3)O8A—C1A—C2A—C3A15.50 (19)
Na4v—Na2—O10A—C6A71.52 (8)O9Av—Na1—O7A—C1A64.53 (15)
Na4v—Na2—O13A—C3A38.47 (8)O10A—Na2—O8A—Na1iv179.78 (3)
Na4i—O9—C6—Na2ix25.4 (2)O10A—Na2—O8A—Na4v86.94 (4)
Na4i—O9—C6—O1038.70 (17)O10A—Na2—O8A—C1A52.43 (12)
Na4i—O9—C6—C3141.66 (9)O10A—Na2—O13A—C3A37.02 (7)
Na4vii—O12—C5—O11105.06 (18)O10Aix—Na3—O3W—Na488.02 (4)
Na4vii—O12—C5—C473.6 (2)O10Aix—Na3—O8—Na2ix10.42 (4)
Na4v—O8A—C1A—O7A46.47 (16)O10Aix—Na3—O8—C1149.57 (9)
Na4v—O8A—C1A—C2A134.02 (11)O11Avii—Na3—O3W—Na4167.43 (13)
Na4v—C1A—C2A—C3A39.8 (2)O11Avii—Na3—O8—Na2ix72.77 (3)
O1Wv—Na2—O8A—Na1iv97.84 (4)O11Avii—Na3—O8—C166.39 (9)
O1Wv—Na2—O8A—Na4v4.56 (4)O13A—Na2—O8A—Na1iv112.08 (3)
O1Wv—Na2—O8A—C1A134.81 (12)O13A—Na2—O8A—Na4v154.64 (4)
O1Wv—Na2—O10A—Na3vi98.48 (4)O13A—Na2—O8A—C1A15.27 (12)
O1Wv—Na2—O10A—C6A114.52 (9)O13A—Na2—O10A—Na3vi105.03 (4)
O1Wv—Na2—O13A—C3A2.52 (11)O13A—Na2—O10A—C6A41.97 (8)
O1W—Na4—O2W—Na1viii70.91 (5)O13A—C3A—C4A—C5A59.20 (14)
O1W—Na4—O3W—Na374.25 (4)O13A—C3A—C6A—O9A171.79 (11)
O2Wi—Na1—O7A—C1A24.84 (15)O13A—C3A—C6A—O10A6.76 (16)
O2W—Na4—O1W—Na2v79.59 (4)C1Av—Na4—O1W—Na2v16.94 (5)
O2W—Na4—O3W—Na3130.03 (17)C1Av—Na4—O2W—Na1viii32.71 (5)
O3W—Na3—O8—Na2ix111.76 (4)C1Av—Na4—O3W—Na3176.38 (4)
O3W—Na3—O8—C1109.08 (10)C1A—C2A—C3A—O13A65.52 (14)
O3W—Na4—O1W—Na2v94.45 (4)C1A—C2A—C3A—C4A174.55 (11)
O3W—Na4—O2W—Na1viii84.54 (18)C1A—C2A—C3A—C6A55.98 (15)
O7vii—Na3—O3W—Na493.76 (4)C2A—C3A—C4A—C5A58.78 (14)
O7vii—Na3—O8—Na2ix150.11 (4)C2A—C3A—C6A—O9A53.09 (15)
O7vii—Na3—O8—C110.96 (9)C2A—C3A—C6A—O10A125.46 (12)
O7—C1—C2—C3169.19 (11)C3A—C4A—C5A—O11A90.55 (15)
O8vi—Na2—O8A—Na1iv105.8 (2)C3A—C4A—C5A—O12A87.73 (14)
O8vi—Na2—O8A—Na4v12.5 (2)C4A—C3A—C6A—O9A66.46 (14)
O8vi—Na2—O8A—C1A126.9 (2)C4A—C3A—C6A—O10A114.99 (13)
O8vi—Na2—O10A—Na3vi11.19 (4)C6A—C3A—C4A—C5A178.18 (11)
Symmetry codes: (i) x1, y, z; (ii) x1, y+2, z+2; (iii) x, y1, z+1; (iv) x1, y+1, z+2; (v) x, y+1, z+2; (vi) x, y1, z; (vii) x, y+2, z+1; (viii) x+1, y, z; (ix) x, y+1, z; (x) x, y+1, z1.
(na2c_DFT) top
Crystal data top
C12H12Na4O14(H2O)3α = 68.4610°
Mr = 526.22β = 79.6170°
Triclinic, P1γ = 81.7990°
a = 8.6713 ÅV = 925.63 Å3
b = 10.6475 ÅZ = 2
c = 10.9961 ÅT = 100 K
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.373430.676571.093520.01145*
Na20.263970.201150.798580.01118*
Na30.087321.082550.682500.01112*
Na40.344570.863900.854310.01460*
O70.167820.955310.525020.01270*
O80.200531.045840.682900.01230*
O90.641121.069400.687370.01090*
O100.537121.168420.799410.01070*
O110.472901.512650.293630.01080*
O120.497661.328810.248270.01140*
O130.360721.319750.580910.00980*
H160.423991.383780.620030.02300*
C10.234651.044700.578670.00910*
C20.353901.142800.497920.00920*
H140.423551.084200.468210.00900*
H150.286361.205260.406980.01500*
C30.460031.236810.561550.00870*
C40.584331.322990.470610.00940*
H170.642191.399390.511860.01100*
H180.671291.257210.473450.00600*
C50.514201.394860.328590.00900*
C60.554791.150960.694420.00870*
O7A0.335950.470561.050180.01370*
O8A0.324840.318340.952230.01120*
O9A0.102660.300450.939710.01250*
O10A0.008300.190410.833470.01180*
O11A0.015700.697140.483110.01120*
O12A0.017240.754390.658770.01140*
O13A0.152250.415960.687850.00990*
H16A0.087730.386710.617890.02900*
C1A0.278270.420980.956920.00950*
C2A0.153580.503290.857820.00990*
H14A0.082610.535240.911940.01100*
H15A0.216260.594890.797200.01900*
C3A0.051590.435040.766280.00870*
C4A0.079440.526780.676680.00970*
H17A0.143470.479180.607640.01400*
H18A0.161420.534100.737720.01000*
C5A0.012590.668030.598410.00880*
C6A0.027610.296830.852490.00910*
H19A0.412260.406661.131190.07800*
H190.099030.871700.587110.06900*
O1W0.258060.997250.991580.01550*
H1W0.340461.056820.935550.04700*
H2W0.162991.052110.959780.03700*
O2W0.613680.828060.875140.01610*
H3W0.688260.895570.853950.04700*
H4W0.642810.782760.811120.06700*
O3W0.089690.850120.822600.01340*
H5W0.059840.801820.770730.03600*
H6W0.015440.820920.904130.02900*
Bond lengths (Å) top
Na1—O10i2.333C1—C21.513
Na1—O11ii2.357C2—H141.090
Na1—O7A2.377C2—H151.094
Na1—O8Aiii2.741C2—C31.536
Na1—O9Aiv2.344C3—C41.561
Na1—O2Wv2.363C3—C61.564
Na2—O8vi2.385C4—H171.092
Na2—O10vi2.441C4—H181.089
Na2—O13vi2.496C4—C51.519
Na2—O8A2.393O7A—C1A1.311
Na2—O10A2.440O7A—H19A1.079
Na2—O13A2.411O8A—Na1iii2.741
Na2—O1Wiv2.494O8A—Na4iv2.292
Na3—O7vii2.424O8A—C1A1.239
Na3—O82.580O9A—Na1iv2.344
Na3—O9viii2.348O9A—C6A1.267
Na3—O10Aix2.304O10A—Na3vi2.304
Na3—O11Avii2.462O10A—C6A1.263
Na3—O3W2.387O11A—Na3vii2.462
Na4—O9viii2.284O11A—C5A1.251
Na4—O8Aiv2.292O12A—C5A1.293
Na4—O1W2.391O13A—H16A0.986
Na4—O2W2.349O13A—C3A1.413
Na4—O3W2.331C1A—C2A1.506
O7—Na3vii2.424C2A—H14A1.090
O7—C11.312C2A—H15A1.092
O7—H191.079C2A—C3A1.535
O8—Na2ix2.385C3A—C4A1.556
O8—C11.239C3A—C6A1.568
O9—Na4v2.284C4A—H17A1.092
O9—Na3v2.348C4A—H18A1.090
O9—C61.255C4A—C5A1.523
O10—Na2ix2.441O1W—Na2iv2.494
O10—Na1i2.333O1W—H1W0.988
O10—C61.273O1W—H2W0.980
O11—Na1x2.357O2W—Na1viii2.363
O11—C51.254O2W—H3W0.972
O12—C51.295O2W—H4W0.971
O13—Na2ix2.496O3W—H5W0.981
O13—H160.987O3W—H6W0.979
O13—C31.410
Symmetry codes: (i) x1, y+2, z+2; (ii) x, y1, z+1; (iii) x1, y+1, z+2; (iv) x, y+1, z+2; (v) x1, y, z; (vi) x, y1, z; (vii) x, y+2, z+1; (viii) x+1, y, z; (ix) x, y+1, z; (x) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7A—H19A···O121.0791.3932.465171.1
O7—H19···O12A1.0791.3822.456172.5
O13A—H16A···O11A0.9861.7252.698168.3
O13—H16···O110.9871.7602.743173.4
O1W—H1W···O100.9881.8062.772165.0
O3W—H5W···O12A0.9811.7512.714165.9
O3W—H6W···O9A0.9791.9452.881159.0
O1W—H2W···O10A0.9802.1223.067161.4
O2W—H4W···O120.9712.1712.877128.5
O2W—H3W···O80.9722.1462.946138.6
O2W—H3W···O1W0.9722.5033.166125.3
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). XL and XM. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDassault Systemes (2014). Materials Studio. BIOVIA, San Diego CA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571–573.  Web of Science CrossRef CAS Google Scholar
First citationDovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19.  CrossRef CAS Web of Science Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaduk, J. A. & Stern, C. (2016a). Private Communication (refcodes 1446457 and 1446458). CCDC, Cambridge, England.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016b). Private Communication (refcodes 1446460 and 1446461). CCDC, Cambridge, England.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. B. Submitted.  Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 170–173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 403–406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 793–796.  CSD CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 854–857.  CSD CrossRef IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, P. de (1966). ICDD Grant-in-Aid, PDF entry 00-016-1182.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds