research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The alluaudite-type crystal structures of Na2(Fe/Co)2Co(VO4)3 and Ag2(Fe/Co)2Co(VO4)3

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: mhadouchi@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 May 2016; accepted 19 June 2016; online 24 June 2016)

Single crystals of the title compounds, disodium di(cobalt/iron) cobalt tris­(orthovanadate), Na2(Fe/Co)2Co(VO4)3, and disilver di(cobalt/iron) cobalt tris­(orthovanadate), Ag2(Fe/Co)2Co(VO4)3, were grown from a melt consisting of stoichiometric mixtures of three metallic cation precursors and vanadium pentoxide. The difficulty to distinguish between cobalt and iron by using X-ray diffraction alone forced us to explore several models, assuming an oxidation state of +II for Co and +III for Fe and a partial cationic disorder in the Wyckoff site 8f containing a mixture of Co and Fe with a statistical distribution for the Na compound and an occupancy ratio of 0.4875:0.5125 (Co:Fe) for the Ag compound. The alluaudite-type structure is made up from [10-1] chains of [(Co,Fe)2O10] double octa­hedra linked by highly distorted [CoO6] octa­hedra via a common edge. The chains are linked through VO4 tetra­hedra, forming polyhedral sheets perpendicular to [010]. The stacking of the sheets defines two types of channels parallel to [001] where the Na+ cations (both with full occupancy) or Ag+ cations (one with occupancy 0.97) are located.

1. Chemical context

The needs of the society on the `energy front' is one of the greatest challenges for present and future times. Materials with three-dimensional framework structures delimiting channels, as built of transition metal cations and polyanions (XO4)n, have become a subject of very intensive research worldwide since the discovery of the electrochemical activity of LiFePO4 (Padhi et al., 1997a[Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1997a). J. Electrochem. Soc. 144, 1188-1194.],b[Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. (1997b). J. Electrochem. Soc. 144, 1609-1613.]). Hence, new transition metal-based materials adopting open three-dimensional framework structures have been synthesized and investigated by us over the last years. Thereby our attention has focused on the synthesis and characterization of new materials belonging to the family of alluaudites that, according to Moore (1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]), has the general formula A(1)A(2)M(1)M(2)2(XO4)3. The A sites may be occupied by larger mono- and/or divalent cations, while the M sites correspond to bi- or trivalent transition metal cations in an octa­hedral environment. Alluaudite-like compounds, having open-framework structures, allow a certain prediction of physical properties and promising practical applications in several fields. For instance, alluaudite-like compounds exhibit electronic and/or ionic conductivity, as has been shown by Warner et al. (1993[Warner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301-309.], 1994[Warner, T. E., Milius, W. & Maier, J. (1994). Solid State Ionics, 74, 119-123.]), which make them worthy of investigating their electrochemical performance. Mainly, several alluaudite-like phosphates have been tested as anode and/or cathode materials in Li-ion and/or Na-ion batteries. For example, Li0.78Na0.22MnPO4 was proposed by Kim et al. (2014[Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014). J. Mater. Chem. A, 2, 8632-8636.]) as a promising new positive electrode for Li-ion batteries. The sulfates Na2.44Mn1.79(SO4)3 (Dwibedi et al., 2015[Dwibedi, D., Araujo, R. B., Chakraborty, S., Shanbogh, P. P., Sundaram, N. G., Ahuja, R. & Barpanda, P. (2015). J. Mater. Chem. A, 3, 18564-18571.]) and Na2+2xFe2−x(SO4)3 (Dwibedi et al., 2016[Dwibedi, D., Ling, C. D., Araujo, R. B., Chakraborty, S., Duraisamy, S., Munichandraiah, N., Ahuja, R. & Barpanda, P. (2016). Appl. Mater. Interfaces, 8, 6982-6991.]) were tested as electroactive materials for Na-ion batteries. In this context, we have investigated pseudo-ternary A2O/MO/P2O5, pseudo-quaternary A2O/MO/Fe2O3/P2O5, and more recently, A2O/MO/Fe2O3/V2O5 systems synthesized via hydro­thermal or solid-state routes, resulting in new alluaudite-like phosphates AgMg3(HPO4)2PO4 (Assani et al., 2011[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i5.]), NaMg3(HPO4)2PO4 (Ould Saleck et al., 2015[Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813-815.]), Na2Co2Fe(PO4)3 (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]), Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]), and most lately, the first alluaudite-like vanadate (Na0.70)(Na0.70Mn0.30)(Fe3+/Fe2+)2Fe2+(VO4)3 (Benhsina et al., 2016[Benhsina, E., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 220-222.]). As a continuation of our studies of phases with alluaudite-like structures, the present work reports details of the synthesis and crystal structures of the compounds M2(Fe/Co)2Co(VO4)3 (M = Na, Ag).

2. Structural commentary

The two alluaudite-like vanadates, Na2(Fe/Co)2Co(VO4)3 and Ag2(Fe/Co)2Co(VO4)3, are isotypic. In the structure of Na2(Fe/Co)2Co(VO4)3 all sites are fully occupied and only the cationic site on Wyckoff position 8f shows disorder with a statistical distribution of Co and Fe, assuming oxidation state +II for Co and +III for Fe. In the structure of Ag2(Fe/Co)2Co(VO4)3 a small deficit in the Ag2 site was considered (occupancy 0.97) that is compensated by a slight excess of Fe (occupancy 0.51) compared with Co (occupancy 0.49) in the 8f mixed site, again under the assumption of oxidation state +II for Co and +III for Fe. The (Fe1,Co1) and Co2 sites have octa­hedral environments while the vanadium atoms are located in tetra­hedral environments. The sequence of different polyhedra forming the principal building units are shown in Figs. 1[link] and 2[link]. The mixed-occupied sites containing the (Fe1,Co1) atoms form [(Co,Fe)2O10] dimers through edge-sharing of a single octa­hedron and are linked by highly distorted [CoO6] octa­hedra. The linkage of alternating [CoO6] octa­hedra and [(Co,Fe)2O10] double octa­hedra leads to the formation of infinite chains along the [10[\overline{1}]] direction (Fig. 3[link]). The connection of these chains through VO4 tetra­hedra makes up sheets perpendicular to [010], as shown in Fig. 4[link]. The stacking of these sheets defines an open three-dimensional framework delimiting two types of channels parallel to [001] where the M+ cations (M = Na, Ag) are situated (Fig. 5[link]). In the sodium compound, the Na1 site is coordinated by eight oxygen atoms with Na1—O distances in the range between 2.4118 (14) and 2.8820 (15) Å, while Na2 is surrounded by six oxygen atoms in a range between 2.4347 (14) and 2.780 (2) Å. In the silver compound, the Ag1 site is coordinated by six oxygen atoms in a range between 2.4244 (12) and 2.5960 (13) Å, whereas the Ag2 site is surrounded by four oxygen atoms in a range between 2.4708 (14) and 2.4779 (14) Å.

[Figure 1]
Figure 1
The principal building units in the structure of Na2(Fe/Co)2Co(VO4)3. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{3\over 2}], −z + 2; (iii) x, y, z + 1; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (v) −x + 1, y, −z + [{3\over 2}]; (vi) x, y, z − 1; (vii) −x + 1, y, −z + [{1\over 2}]; (viii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (ix) −x + 1, −y + 1, −z + 1; (x) x, −y + 1, z − [{1\over 2}]; (xi) −x + 2, y, −z + [{3\over 2}]; (xii) −x + 2, −y + 1, −z + 1.]
[Figure 2]
Figure 2
The principal building units in the structure of Ag2(Fe/Co)2Co(VO4)3. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{3\over 2}], −z + 2; (iii) x, y, z + 1; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (v) −x + 1, y, −z + [{3\over 2}]; (vi) x, y, z − 1; (vii) −x + 1, y, −z + [{1\over 2}]; (viii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (ix) −x + 1, −y + 1, −z + 1; (x) x, −y + 1, z − [{1\over 2}]; (xi) −x + 2, y, −z + [{3\over 2}]; (xii) −x + 2, −y + 1, −z + 1.]
[Figure 3]
Figure 3
Edge-sharing octa­hedra forming an infinite zigzag chain running along [10[\overline{1}]]. Data from Na2(Fe/Co)2Co(VO4)3.
[Figure 4]
Figure 4
A sheet perpendicular to [010], resulting from the connection of individual chains via VO4 tetra­hedra. Data from Na2(Fe/Co)2Co(VO4)3.
[Figure 5]
Figure 5
Polyhedral representation of Na2(Fe/Co)2Co(VO4)3 showing sodium cations in the channels extending along [001].

3. Synthesis and crystallization

The target compounds were obtained by solid-state reactions. A starting mixture of metallic iron (+ a few drops of HNO3), Co(CH3COO)2·4H2O, NH4VO3 and NaNO3 or AgNO3 was mixed in molar ratios M: Co: Fe: V = 2: 2: 1: 3 (M = Na or Ag). The mixture was placed in a platinum crucible and then heated gradually until melting (1253 K). Single crystals were obtained by cooling the molten product to room temperature at rate of 5 Kh−1. The resulting mixtures contained pink crystals (for M = Na) or green crystals (for M = Ag) of a suitable size for the X-ray diffraction study. The powder X-ray diffraction patterns are in good agreement with the simulated patterns, generated from the final structure models of the two compounds (see supplementary material).

4. Refinement

Crystal data, data collection and structure refinement details for both structures are summarized in Table 1[link].

Table 1
Experimental details

  (I) (II)
Crystal data
Chemical formula Na2(Co0.5Fe0.5)2Co(VO4)3 Ag1.97(Co0.49Fe0.51)2Co(VO4)3
Mr 564.51 730.96
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 296 296
a, b, c (Å) 11.7258 (2), 12.7819 (2), 6.8264 (1) 11.7846 (4), 12.8314 (4), 6.8064 (2)
β (°) 111.069 (1) 111.001 (1)
V3) 954.73 (3) 960.85 (5)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.85 11.60
Crystal size (mm) 0.32 × 0.25 × 0.19 0.34 × 0.22 × 0.17
 
Data collection
Diffractometer Bruker X8 APEX Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.572, 0.747 0.439, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 17675, 2094, 1893 15366, 2113, 1987
Rint 0.047 0.039
(sin θ/λ)max−1) 0.806 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.10 0.018, 0.041, 1.14
No. of reflections 2094 2113
No. of parameters 95 104
Δρmax, Δρmin (e Å−3) 0.88, −1.00 0.80, −1.66
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

As a matter of fact, the distinction between cobalt and iron by X-ray diffraction is nearly impossible. Therefore we have examined several crystallographic models during crystal structure refinements of the title compounds. Based on the stoichiometric ratio of 1:2 for iron and cobalt in the starting materials, we assumed the same ratio in the crystal structures with oxidation states of +II for cobalt and and +III for iron. In the final model, Fe1 and Co1 atoms are constrained to share the same general position 8f of the space group C2/c. Electrical neutrality and bond valence sum calculations of all atoms (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) in the structures are in reasonable agreement with the final models. Bond valence sums (in valence units) for Na2(Fe/Co)2Co(VO4)3 are 1.07 for Na1, 0.86 for Na2, 2.24 for Co1, 1.97 for Co2, 2.69 for Fe1, 5.01 for V1, and 4.99 for V2. Values of the bond valence sums calculated for all oxygen atoms are between 1.90 and 2.07. Bond valence sums for Ag2(Fe/Co)2Co(VO4)3 are 1.01 for Ag1, O.72 for Ag2, 2.27 for Co1, 1.98 for Co2, 2.72 for Fe1, 4.99 for V1, and 4.94 for V2. The values of the O atoms are in the range 1.94 to 2.03. A very similar cationic distribution was observed by Yakubovich et al. (1977[Yakubovich, O. V., Simonov, M. A., Egorov-Tismenko, Yu. K. & belov, N. V. (1977). Sov. Phys. Dokl. 22, 550-552.]) in the alluaudite-type phosphate Na2(Fe3+/Fe2+)2Fe2+(PO4)3.

Refinement of Na2(Fe/Co)2Co(VO4)3: Co1 and Fe1 were constrained to share the same site in a statistical occupation with common displacement parameters. Reflection (132) probably was affected by the beam-stop and was omitted from the refinement. The remaining electron densities (max/min) in the final Fourier map were 0.46 Å and 0.71 Å away from atoms Na1 and Na2, respectively.

Refinement of Ag2(Fe/Co)2Co(VO4)3: The coordinates and displacement factors of Co1 and Fe1 atoms were refined independent from each other. An underoccupation of the Ag2 site was modelled with an occupancy of 0.97 which made it necessary to constrain the occupancies of the Co1 site (0.4875) and Fe1 site (0.5125) for electroneutrality. The remaining electron densities (max/min) in the final Fourier map were 0.61 Å and 0.66 Å away from Ag2.

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) Disodium di(cobalt/iron) cobalt tris(orthovanadate) top
Crystal data top
Na2(Co·Fe)2Co(VO4)3F(000) = 1068
Mr = 564.51Dx = 3.927 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.7258 (2) ÅCell parameters from 2094 reflections
b = 12.7819 (2) Åθ = 2.5–35.0°
c = 6.8264 (1) ŵ = 7.85 mm1
β = 111.069 (1)°T = 296 K
V = 954.73 (3) Å3Block, pink
Z = 40.32 × 0.25 × 0.19 mm
Data collection top
Bruker X8 APEX
diffractometer
2094 independent reflections
Radiation source: fine-focus sealed tube1893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 35.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1718
Tmin = 0.572, Tmax = 0.747k = 2020
17675 measured reflectionsl = 1010
Refinement top
Refinement on F295 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0186P)2 + 2.754P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.88 e Å3
2094 reflectionsΔρmin = 1.00 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.79142 (2)0.66131 (2)0.88043 (4)0.00595 (6)0.5
Co10.79142 (2)0.66131 (2)0.88043 (4)0.00595 (6)0.5
Co20.50000.73184 (3)0.25000.00727 (7)
V10.77138 (3)0.61298 (2)0.38340 (4)0.00555 (6)
V20.50000.70722 (3)0.75000.00629 (8)
Na10.50000.50000.50000.0123 (2)
Na21.00000.50245 (14)0.75000.0257 (3)
O10.84286 (13)0.67273 (11)0.6264 (2)0.0102 (2)
O20.62045 (12)0.60248 (11)0.3329 (2)0.0116 (2)
O30.78619 (13)0.68309 (11)0.1758 (2)0.0113 (2)
O60.61413 (13)0.62261 (11)0.7671 (2)0.0120 (2)
O50.53637 (12)0.77735 (11)0.9853 (2)0.0104 (2)
O40.84074 (13)0.49296 (11)0.4032 (2)0.0108 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.00562 (10)0.00715 (11)0.00541 (10)0.00056 (7)0.00237 (7)0.00051 (7)
Co10.00562 (10)0.00715 (11)0.00541 (10)0.00056 (7)0.00237 (7)0.00051 (7)
Co20.00669 (14)0.00821 (15)0.00752 (13)0.0000.00330 (11)0.000
V10.00559 (12)0.00635 (12)0.00449 (11)0.00001 (9)0.00155 (9)0.00011 (8)
V20.00700 (17)0.00647 (17)0.00459 (15)0.0000.00113 (12)0.000
Na10.0208 (6)0.0070 (5)0.0074 (4)0.0057 (4)0.0030 (4)0.0015 (3)
Na20.0097 (5)0.0565 (10)0.0105 (5)0.0000.0031 (4)0.000
O10.0115 (6)0.0116 (6)0.0074 (5)0.0037 (5)0.0031 (4)0.0016 (4)
O20.0077 (5)0.0107 (6)0.0158 (6)0.0008 (4)0.0035 (5)0.0004 (5)
O30.0138 (6)0.0126 (6)0.0080 (5)0.0004 (5)0.0043 (4)0.0006 (4)
O60.0092 (6)0.0098 (6)0.0148 (6)0.0012 (4)0.0015 (5)0.0019 (5)
O50.0075 (5)0.0156 (6)0.0082 (5)0.0017 (5)0.0028 (4)0.0025 (4)
O40.0102 (6)0.0092 (6)0.0129 (6)0.0002 (4)0.0042 (5)0.0015 (4)
Geometric parameters (Å, º) top
Fe1—O62.0021 (14)V2—O6v1.6917 (14)
Fe1—O12.0359 (14)V2—O51.7531 (13)
Fe1—O4i2.0451 (14)V2—O5v1.7531 (13)
Fe1—O5ii2.0497 (14)Na1—O62.4118 (14)
Fe1—O3iii2.0581 (14)Na1—O6ix2.4119 (14)
Fe1—O3iv2.1633 (14)Na1—O2ix2.4841 (14)
Co2—O5v2.0831 (14)Na1—O22.4841 (14)
Co2—O5vi2.0831 (14)Na1—O2i2.5626 (14)
Co2—O22.1153 (14)Na1—O2vii2.5626 (14)
Co2—O2vii2.1153 (14)Na1—O6x2.8820 (15)
Co2—O1iv2.1159 (13)Na1—O6v2.8820 (15)
Co2—O1viii2.1159 (13)Na2—O4xi2.4347 (14)
V1—O21.6823 (14)Na2—O42.4347 (14)
V1—O41.7188 (14)Na2—O4i2.4472 (15)
V1—O31.7374 (14)Na2—O4xii2.4472 (15)
V1—O11.7428 (13)Na2—O12.780 (2)
V2—O61.6917 (14)Na2—O1xi2.780 (2)
O6—Fe1—O1105.84 (6)O6—Na1—O2ix104.36 (5)
O6—Fe1—O4i90.98 (6)O6ix—Na1—O2ix75.63 (5)
O1—Fe1—O4i88.38 (6)O6—Na1—O275.64 (5)
O6—Fe1—O5ii170.54 (6)O6ix—Na1—O2104.37 (5)
O1—Fe1—O5ii78.91 (5)O2ix—Na1—O2180.0
O4i—Fe1—O5ii97.39 (6)O6—Na1—O2i71.50 (5)
O6—Fe1—O3iii91.12 (6)O6ix—Na1—O2i108.50 (5)
O1—Fe1—O3iii161.29 (6)O2ix—Na1—O2i63.02 (6)
O4i—Fe1—O3iii99.39 (6)O2—Na1—O2i116.98 (6)
O5ii—Fe1—O3iii83.21 (5)O6—Na1—O2vii108.50 (5)
O6—Fe1—O3iv81.17 (6)O6ix—Na1—O2vii71.50 (5)
O1—Fe1—O3iv91.00 (5)O2ix—Na1—O2vii116.98 (6)
O4i—Fe1—O3iv171.64 (6)O2—Na1—O2vii63.02 (6)
O5ii—Fe1—O3iv90.67 (6)O2i—Na1—O2vii180.0
O3iii—Fe1—O3iv83.72 (5)O6—Na1—O6x121.93 (6)
O5v—Co2—O5vi147.57 (8)O6ix—Na1—O6x58.07 (6)
O5v—Co2—O2108.15 (5)O2ix—Na1—O6x114.84 (4)
O5vi—Co2—O297.18 (6)O2—Na1—O6x65.16 (4)
O5v—Co2—O2vii97.18 (6)O2i—Na1—O6x89.66 (4)
O5vi—Co2—O2vii108.15 (5)O2vii—Na1—O6x90.34 (4)
O2—Co2—O2vii77.17 (8)O6—Na1—O6v58.07 (6)
O5v—Co2—O1iv85.04 (5)O6ix—Na1—O6v121.93 (6)
O5vi—Co2—O1iv76.38 (5)O2ix—Na1—O6v65.16 (4)
O2—Co2—O1iv86.67 (5)O2—Na1—O6v114.84 (4)
O2vii—Co2—O1iv163.59 (6)O2i—Na1—O6v90.34 (4)
O5v—Co2—O1viii76.38 (5)O2vii—Na1—O6v89.66 (4)
O5vi—Co2—O1viii85.04 (5)O6x—Na1—O6v180.0
O2—Co2—O1viii163.59 (6)O4xi—Na2—O4174.29 (11)
O2vii—Co2—O1viii86.67 (5)O4xi—Na2—O4i91.26 (5)
O1iv—Co2—O1viii109.60 (8)O4—Na2—O4i88.87 (5)
O2—V1—O4112.22 (7)O4xi—Na2—O4xii88.87 (5)
O2—V1—O3106.27 (7)O4—Na2—O4xii91.26 (5)
O4—V1—O3109.96 (7)O4i—Na2—O4xii177.25 (11)
O2—V1—O1109.92 (7)O4xi—Na2—O1121.82 (7)
O4—V1—O1105.32 (7)O4—Na2—O163.31 (5)
O3—V1—O1113.29 (7)O4i—Na2—O165.58 (5)
O6—V2—O6v100.53 (10)O4xii—Na2—O1112.08 (6)
O6—V2—O5109.75 (7)O4xi—Na2—O1xi63.31 (5)
O6v—V2—O5108.41 (7)O4—Na2—O1xi121.82 (7)
O6—V2—O5v108.42 (7)O4i—Na2—O1xi112.08 (6)
O6v—V2—O5v109.75 (7)O4xii—Na2—O1xi65.58 (5)
O5—V2—O5v118.49 (10)O1—Na2—O1xi76.92 (7)
O6—Na1—O6ix180.0
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+3/2, y+3/2, z+2; (iii) x, y, z+1; (iv) x+3/2, y+3/2, z+1; (v) x+1, y, z+3/2; (vi) x, y, z1; (vii) x+1, y, z+1/2; (viii) x1/2, y+3/2, z1/2; (ix) x+1, y+1, z+1; (x) x, y+1, z1/2; (xi) x+2, y, z+3/2; (xii) x+2, y+1, z+1.
(II) Disilver di(cobalt/iron) cobalt tris(orthovanadate) top
Crystal data top
Ag1.97(Co0.49Fe0.51)2Co(VO4)3F(000) = 1350
Mr = 730.96Dx = 5.053 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.7846 (4) ÅCell parameters from 2113 reflections
b = 12.8314 (4) Åθ = 2.4–35.0°
c = 6.8064 (2) ŵ = 11.60 mm1
β = 111.001 (1)°T = 296 K
V = 960.85 (5) Å3Block, green
Z = 40.34 × 0.22 × 0.17 mm
Data collection top
Bruker X8 APEX
diffractometer
2113 independent reflections
Radiation source: fine-focus sealed tube1987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 35.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.439, Tmax = 0.747k = 2020
15366 measured reflectionsl = 910
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0093P)2 + 2.3975P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max = 0.001
wR(F2) = 0.041Δρmax = 0.80 e Å3
S = 1.14Δρmin = 1.66 e Å3
2113 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
104 parametersExtinction coefficient: 0.00190 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.00000.50000.00000.02187 (6)
Ag20.50000.50840 (2)0.75000.02578 (6)0.97
Co10.2919 (4)0.6616 (4)0.3791 (8)0.0066 (12)0.4875
Fe10.2923 (4)0.6620 (4)0.3814 (8)0.0061 (12)0.5125
Co20.00000.73364 (2)0.75000.00755 (6)
V10.27106 (2)0.38672 (2)0.38255 (4)0.00573 (5)
V20.00000.70581 (3)0.25000.00609 (6)
O10.34160 (11)0.32595 (9)0.62391 (19)0.0103 (2)
O20.28472 (11)0.31626 (10)0.17435 (19)0.0109 (2)
O30.12124 (11)0.39463 (10)0.3352 (2)0.0121 (2)
O40.33731 (12)0.50845 (9)0.3988 (2)0.0123 (2)
O50.03699 (11)0.77654 (10)0.48520 (19)0.0100 (2)
O60.11558 (11)0.62338 (9)0.2663 (2)0.0114 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03724 (13)0.01563 (9)0.01248 (9)0.01172 (8)0.00860 (8)0.00330 (6)
Ag20.01181 (9)0.04845 (15)0.01618 (10)0.0000.00390 (8)0.000
Co10.0072 (18)0.0061 (17)0.0085 (18)0.0017 (12)0.0052 (12)0.0004 (12)
Fe10.0059 (17)0.0082 (18)0.0032 (15)0.0027 (12)0.0007 (11)0.0007 (11)
Co20.00710 (12)0.00870 (12)0.00779 (13)0.0000.00380 (10)0.000
V10.00651 (10)0.00586 (10)0.00488 (10)0.00018 (7)0.00212 (8)0.00004 (7)
V20.00679 (14)0.00648 (13)0.00465 (14)0.0000.00161 (11)0.000
O10.0119 (5)0.0111 (5)0.0081 (5)0.0027 (4)0.0038 (4)0.0013 (4)
O20.0129 (5)0.0121 (5)0.0083 (5)0.0007 (4)0.0045 (4)0.0007 (4)
O30.0094 (5)0.0113 (5)0.0156 (6)0.0007 (4)0.0045 (4)0.0005 (4)
O40.0132 (5)0.0087 (5)0.0156 (6)0.0002 (4)0.0060 (5)0.0010 (4)
O50.0091 (5)0.0136 (5)0.0078 (5)0.0018 (4)0.0036 (4)0.0019 (4)
O60.0088 (5)0.0103 (5)0.0137 (5)0.0000 (4)0.0024 (4)0.0021 (4)
Geometric parameters (Å, º) top
Ag1—O6i2.4244 (12)Fe1—O1ii2.040 (6)
Ag1—O62.4244 (12)Fe1—O5vii2.045 (5)
Ag1—O3ii2.5051 (13)Fe1—O2v2.047 (5)
Ag1—O3iii2.5051 (13)Fe1—O2viii2.154 (5)
Ag1—O32.5960 (13)Co2—O5ix2.0747 (12)
Ag1—O3i2.5960 (13)Co2—O52.0748 (12)
Ag2—O42.4708 (14)Co2—O1x2.1156 (12)
Ag2—O4iv2.4709 (14)Co2—O1xi2.1156 (12)
Ag2—O4v2.4779 (14)Co2—O3xii2.1197 (13)
Ag2—O4vi2.4779 (14)Co2—O3v2.1197 (13)
Co1—O62.001 (5)V1—O31.6804 (13)
Co1—O1ii2.028 (6)V1—O41.7319 (12)
Co1—O42.028 (5)V1—O21.7363 (12)
Co1—O5vii2.053 (5)V1—O11.7375 (12)
Co1—O2v2.061 (5)V2—O61.6965 (12)
Co1—O2viii2.157 (5)V2—O6iii1.6965 (12)
Fe1—O62.007 (5)V2—O5iii1.7539 (12)
Fe1—O42.033 (5)V2—O51.7539 (12)
O6i—Ag1—O6180.0O6—Fe1—O5vii170.5 (3)
O6i—Ag1—O3ii105.99 (4)O4—Fe1—O5vii98.8 (2)
O6—Ag1—O3ii74.01 (4)O1ii—Fe1—O5vii79.3 (2)
O6i—Ag1—O3iii74.01 (4)O6—Fe1—O2v90.7 (2)
O6—Ag1—O3iii105.99 (4)O4—Fe1—O2v100.2 (2)
O3ii—Ag1—O3iii180.0O1ii—Fe1—O2v162.1 (3)
O6i—Ag1—O3107.57 (4)O5vii—Fe1—O2v83.95 (17)
O6—Ag1—O372.43 (4)O6—Fe1—O2viii81.09 (17)
O3ii—Ag1—O3116.87 (5)O4—Fe1—O2viii170.3 (2)
O3iii—Ag1—O363.13 (5)O1ii—Fe1—O2viii90.6 (2)
O6i—Ag1—O3i72.43 (4)O5vii—Fe1—O2viii90.5 (2)
O6—Ag1—O3i107.57 (4)O2v—Fe1—O2viii83.31 (18)
O3ii—Ag1—O3i63.13 (5)O5ix—Co2—O5149.23 (7)
O3iii—Ag1—O3i116.87 (5)O5ix—Co2—O1x85.91 (5)
O3—Ag1—O3i180.0O5—Co2—O1x76.96 (5)
O4—Ag2—O4iv179.97 (6)O5ix—Co2—O1xi76.96 (5)
O4—Ag2—O4v87.12 (4)O5—Co2—O1xi85.91 (5)
O4iv—Ag2—O4v92.89 (4)O1x—Co2—O1xi111.91 (7)
O4—Ag2—O4vi92.89 (4)O5ix—Co2—O3xii96.48 (5)
O4iv—Ag2—O4vi87.12 (4)O5—Co2—O3xii107.40 (5)
O4v—Ag2—O4vi169.99 (6)O1x—Co2—O3xii162.94 (5)
O6—Co1—O1ii105.6 (2)O1xi—Co2—O3xii85.03 (5)
O6—Co1—O490.1 (2)O5ix—Co2—O3v107.40 (5)
O1ii—Co1—O489.02 (19)O5—Co2—O3v96.48 (5)
O6—Co1—O5vii170.0 (3)O1x—Co2—O3v85.03 (5)
O1ii—Co1—O5vii79.4 (2)O1xi—Co2—O3v162.94 (5)
O4—Co1—O5vii98.73 (19)O3xii—Co2—O3v78.12 (7)
O6—Co1—O2v90.4 (2)O3—V1—O4112.11 (6)
O1ii—Co1—O2v161.7 (3)O3—V1—O2105.86 (6)
O4—Co1—O2v99.9 (2)O4—V1—O2110.50 (6)
O5vii—Co1—O2v83.40 (18)O3—V1—O1108.79 (6)
O6—Co1—O2viii81.15 (16)O4—V1—O1107.01 (6)
O1ii—Co1—O2viii90.9 (2)O2—V1—O1112.65 (6)
O4—Co1—O2viii170.8 (3)O6—V2—O6iii102.86 (8)
O5vii—Co1—O2viii90.3 (2)O6—V2—O5iii108.27 (6)
O2v—Co1—O2viii82.90 (17)O6iii—V2—O5iii109.38 (6)
O6—Fe1—O489.8 (2)O6—V2—O5109.37 (6)
O6—Fe1—O1ii105.0 (2)O6iii—V2—O5108.27 (6)
O4—Fe1—O1ii88.6 (2)O5iii—V2—O5117.68 (8)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2; (iii) x, y, z+1/2; (iv) x+1, y, z+3/2; (v) x, y+1, z+1/2; (vi) x+1, y+1, z+1; (vii) x+1/2, y+3/2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x, y, z+3/2; (x) x+1/2, y+1/2, z+3/2; (xi) x1/2, y+1/2, z; (xii) x, y+1, z+1.
 

Acknowledgements

This work was done with the support of CNRST in the Excellence Research Scholarships Program. The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University in Rabat, Morocco, for the financial support.

References

First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i5.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBenhsina, E., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 220–222.  CSD CrossRef IUCr Journals Google Scholar
First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDwibedi, D., Araujo, R. B., Chakraborty, S., Shanbogh, P. P., Sundaram, N. G., Ahuja, R. & Barpanda, P. (2015). J. Mater. Chem. A, 3, 18564–18571.  CrossRef CAS Google Scholar
First citationDwibedi, D., Ling, C. D., Araujo, R. B., Chakraborty, S., Duraisamy, S., Munichandraiah, N., Ahuja, R. & Barpanda, P. (2016). Appl. Mater. Interfaces, 8, 6982–6991.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014). J. Mater. Chem. A, 2, 8632–8636.  Web of Science CrossRef CAS Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationOuld Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPadhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1997a). J. Electrochem. Soc. 144, 1188–1194.  CrossRef CAS Google Scholar
First citationPadhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. (1997b). J. Electrochem. Soc. 144, 1609–1613.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWarner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309.  CrossRef CAS Web of Science Google Scholar
First citationWarner, T. E., Milius, W. & Maier, J. (1994). Solid State Ionics, 74, 119–123.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakubovich, O. V., Simonov, M. A., Egorov-Tismenko, Yu. K. & belov, N. V. (1977). Sov. Phys. Dokl. 22, 550–552.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds