research communications
The alluaudite-type crystal structures of Na2(Fe/Co)2Co(VO4)3 and Ag2(Fe/Co)2Co(VO4)3
aLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: mhadouchi@yahoo.com
Single crystals of the title compounds, disodium di(cobalt/iron) cobalt tris(orthovanadate), Na2(Fe/Co)2Co(VO4)3, and disilver di(cobalt/iron) cobalt tris(orthovanadate), Ag2(Fe/Co)2Co(VO4)3, were grown from a melt consisting of stoichiometric mixtures of three metallic cation precursors and vanadium pentoxide. The difficulty to distinguish between cobalt and iron by using X-ray diffraction alone forced us to explore several models, assuming an of +II for Co and +III for Fe and a partial cationic disorder in the Wyckoff site 8f containing a mixture of Co and Fe with a statistical distribution for the Na compound and an occupancy ratio of 0.4875:0.5125 (Co:Fe) for the Ag compound. The alluaudite-type structure is made up from [10-1] chains of [(Co,Fe)2O10] double octahedra linked by highly distorted [CoO6] octahedra via a common edge. The chains are linked through VO4 tetrahedra, forming polyhedral sheets perpendicular to [010]. The stacking of the sheets defines two types of channels parallel to [001] where the Na+ cations (both with full occupancy) or Ag+ cations (one with occupancy 0.97) are located.
1. Chemical context
The needs of the society on the `energy front' is one of the greatest challenges for present and future times. Materials with three-dimensional framework structures delimiting channels, as built of transition metal cations and polyanions (XO4)n−, have become a subject of very intensive research worldwide since the discovery of the electrochemical activity of LiFePO4 (Padhi et al., 1997a,b). Hence, new transition metal-based materials adopting open three-dimensional framework structures have been synthesized and investigated by us over the last years. Thereby our attention has focused on the synthesis and characterization of new materials belonging to the family of alluaudites that, according to Moore (1971), has the general formula A(1)A(2)M(1)M(2)2(XO4)3. The A sites may be occupied by larger mono- and/or divalent cations, while the M sites correspond to bi- or trivalent transition metal cations in an octahedral environment. Alluaudite-like compounds, having open-framework structures, allow a certain prediction of physical properties and promising practical applications in several fields. For instance, alluaudite-like compounds exhibit electronic and/or as has been shown by Warner et al. (1993, 1994), which make them worthy of investigating their electrochemical performance. Mainly, several alluaudite-like phosphates have been tested as anode and/or cathode materials in Li-ion and/or Na-ion batteries. For example, Li0.78Na0.22MnPO4 was proposed by Kim et al. (2014) as a promising new positive electrode for Li-ion batteries. The sulfates Na2.44Mn1.79(SO4)3 (Dwibedi et al., 2015) and Na2+2xFe2−x(SO4)3 (Dwibedi et al., 2016) were tested as electroactive materials for Na-ion batteries. In this context, we have investigated pseudo-ternary A2O/MO/P2O5, pseudo-quaternary A2O/MO/Fe2O3/P2O5, and more recently, A2O/MO/Fe2O3/V2O5 systems synthesized via hydrothermal or solid-state routes, resulting in new alluaudite-like phosphates AgMg3(HPO4)2PO4 (Assani et al., 2011), NaMg3(HPO4)2PO4 (Ould Saleck et al., 2015), Na2Co2Fe(PO4)3 (Bouraima et al., 2015), Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015), and most lately, the first alluaudite-like vanadate (Na0.70)(Na0.70Mn0.30)(Fe3+/Fe2+)2Fe2+(VO4)3 (Benhsina et al., 2016). As a continuation of our studies of phases with alluaudite-like structures, the present work reports details of the synthesis and crystal structures of the compounds M2(Fe/Co)2Co(VO4)3 (M = Na, Ag).
2. Structural commentary
The two alluaudite-like vanadates, Na2(Fe/Co)2Co(VO4)3 and Ag2(Fe/Co)2Co(VO4)3, are isotypic. In the structure of Na2(Fe/Co)2Co(VO4)3 all sites are fully occupied and only the cationic site on 8f shows disorder with a statistical distribution of Co and Fe, assuming +II for Co and +III for Fe. In the structure of Ag2(Fe/Co)2Co(VO4)3 a small deficit in the Ag2 site was considered (occupancy 0.97) that is compensated by a slight excess of Fe (occupancy 0.51) compared with Co (occupancy 0.49) in the 8f mixed site, again under the assumption of +II for Co and +III for Fe. The (Fe1,Co1) and Co2 sites have octahedral environments while the vanadium atoms are located in tetrahedral environments. The sequence of different polyhedra forming the principal building units are shown in Figs. 1 and 2. The mixed-occupied sites containing the (Fe1,Co1) atoms form [(Co,Fe)2O10] dimers through edge-sharing of a single octahedron and are linked by highly distorted [CoO6] octahedra. The linkage of alternating [CoO6] octahedra and [(Co,Fe)2O10] double octahedra leads to the formation of infinite chains along the [10] direction (Fig. 3). The connection of these chains through VO4 tetrahedra makes up sheets perpendicular to [010], as shown in Fig. 4. The stacking of these sheets defines an open three-dimensional framework delimiting two types of channels parallel to [001] where the M+ cations (M = Na, Ag) are situated (Fig. 5). In the sodium compound, the Na1 site is coordinated by eight oxygen atoms with Na1—O distances in the range between 2.4118 (14) and 2.8820 (15) Å, while Na2 is surrounded by six oxygen atoms in a range between 2.4347 (14) and 2.780 (2) Å. In the silver compound, the Ag1 site is coordinated by six oxygen atoms in a range between 2.4244 (12) and 2.5960 (13) Å, whereas the Ag2 site is surrounded by four oxygen atoms in a range between 2.4708 (14) and 2.4779 (14) Å.
3. Synthesis and crystallization
The target compounds were obtained by solid-state reactions. A starting mixture of metallic iron (+ a few drops of HNO3), Co(CH3COO)2·4H2O, NH4VO3 and NaNO3 or AgNO3 was mixed in molar ratios M: Co: Fe: V = 2: 2: 1: 3 (M = Na or Ag). The mixture was placed in a platinum crucible and then heated gradually until melting (1253 K). Single crystals were obtained by cooling the molten product to room temperature at rate of 5 Kh−1. The resulting mixtures contained pink crystals (for M = Na) or green crystals (for M = Ag) of a suitable size for the X-ray diffraction study. The powder X-ray diffraction patterns are in good agreement with the simulated patterns, generated from the final structure models of the two compounds (see supplementary material).
4. Refinement
Crystal data, data collection and structure .
details for both structures are summarized in Table 1As a matter of fact, the distinction between cobalt and iron by X-ray diffraction is nearly impossible. Therefore we have examined several crystallographic models during f of the C2/c. Electrical neutrality and bond valence sum calculations of all atoms (Brown & Altermatt, 1985) in the structures are in reasonable agreement with the final models. Bond valence sums (in valence units) for Na2(Fe/Co)2Co(VO4)3 are 1.07 for Na1, 0.86 for Na2, 2.24 for Co1, 1.97 for Co2, 2.69 for Fe1, 5.01 for V1, and 4.99 for V2. Values of the bond valence sums calculated for all oxygen atoms are between 1.90 and 2.07. Bond valence sums for Ag2(Fe/Co)2Co(VO4)3 are 1.01 for Ag1, O.72 for Ag2, 2.27 for Co1, 1.98 for Co2, 2.72 for Fe1, 4.99 for V1, and 4.94 for V2. The values of the O atoms are in the range 1.94 to 2.03. A very similar cationic distribution was observed by Yakubovich et al. (1977) in the alluaudite-type phosphate Na2(Fe3+/Fe2+)2Fe2+(PO4)3.
refinements of the title compounds. Based on the stoichiometric ratio of 1:2 for iron and cobalt in the starting materials, we assumed the same ratio in the crystal structures with oxidation states of +II for cobalt and and +III for iron. In the final model, Fe1 and Co1 atoms are constrained to share the same general position 8Refinement of Na2(Fe/Co)2Co(VO4)3: Co1 and Fe1 were constrained to share the same site in a statistical occupation with common displacement parameters. Reflection (132) probably was affected by the beam-stop and was omitted from the The remaining electron densities (max/min) in the final Fourier map were 0.46 Å and 0.71 Å away from atoms Na1 and Na2, respectively.
Refinement of Ag2(Fe/Co)2Co(VO4)3: The coordinates and displacement factors of Co1 and Fe1 atoms were refined independent from each other. An underoccupation of the Ag2 site was modelled with an occupancy of 0.97 which made it necessary to constrain the occupancies of the Co1 site (0.4875) and Fe1 site (0.5125) for electroneutrality. The remaining electron densities (max/min) in the final Fourier map were 0.61 Å and 0.66 Å away from Ag2.
Supporting information
https://doi.org/10.1107/S2056989016009981/wm5292sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016009981/wm5292Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989016009981/wm5292IIsup3.hkl
For both compounds, data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Na2(Co·Fe)2Co(VO4)3 | F(000) = 1068 |
Mr = 564.51 | Dx = 3.927 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7258 (2) Å | Cell parameters from 2094 reflections |
b = 12.7819 (2) Å | θ = 2.5–35.0° |
c = 6.8264 (1) Å | µ = 7.85 mm−1 |
β = 111.069 (1)° | T = 296 K |
V = 954.73 (3) Å3 | Block, pink |
Z = 4 | 0.32 × 0.25 × 0.19 mm |
Bruker X8 APEX diffractometer | 2094 independent reflections |
Radiation source: fine-focus sealed tube | 1893 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
φ and ω scans | θmax = 35.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −17→18 |
Tmin = 0.572, Tmax = 0.747 | k = −20→20 |
17675 measured reflections | l = −10→10 |
Refinement on F2 | 95 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0186P)2 + 2.754P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.054 | (Δ/σ)max = 0.001 |
S = 1.10 | Δρmax = 0.88 e Å−3 |
2094 reflections | Δρmin = −1.00 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.79142 (2) | 0.66131 (2) | 0.88043 (4) | 0.00595 (6) | 0.5 |
Co1 | 0.79142 (2) | 0.66131 (2) | 0.88043 (4) | 0.00595 (6) | 0.5 |
Co2 | 0.5000 | 0.73184 (3) | 0.2500 | 0.00727 (7) | |
V1 | 0.77138 (3) | 0.61298 (2) | 0.38340 (4) | 0.00555 (6) | |
V2 | 0.5000 | 0.70722 (3) | 0.7500 | 0.00629 (8) | |
Na1 | 0.5000 | 0.5000 | 0.5000 | 0.0123 (2) | |
Na2 | 1.0000 | 0.50245 (14) | 0.7500 | 0.0257 (3) | |
O1 | 0.84286 (13) | 0.67273 (11) | 0.6264 (2) | 0.0102 (2) | |
O2 | 0.62045 (12) | 0.60248 (11) | 0.3329 (2) | 0.0116 (2) | |
O3 | 0.78619 (13) | 0.68309 (11) | 0.1758 (2) | 0.0113 (2) | |
O6 | 0.61413 (13) | 0.62261 (11) | 0.7671 (2) | 0.0120 (2) | |
O5 | 0.53637 (12) | 0.77735 (11) | 0.9853 (2) | 0.0104 (2) | |
O4 | 0.84074 (13) | 0.49296 (11) | 0.4032 (2) | 0.0108 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.00562 (10) | 0.00715 (11) | 0.00541 (10) | −0.00056 (7) | 0.00237 (7) | −0.00051 (7) |
Co1 | 0.00562 (10) | 0.00715 (11) | 0.00541 (10) | −0.00056 (7) | 0.00237 (7) | −0.00051 (7) |
Co2 | 0.00669 (14) | 0.00821 (15) | 0.00752 (13) | 0.000 | 0.00330 (11) | 0.000 |
V1 | 0.00559 (12) | 0.00635 (12) | 0.00449 (11) | −0.00001 (9) | 0.00155 (9) | −0.00011 (8) |
V2 | 0.00700 (17) | 0.00647 (17) | 0.00459 (15) | 0.000 | 0.00113 (12) | 0.000 |
Na1 | 0.0208 (6) | 0.0070 (5) | 0.0074 (4) | −0.0057 (4) | 0.0030 (4) | −0.0015 (3) |
Na2 | 0.0097 (5) | 0.0565 (10) | 0.0105 (5) | 0.000 | 0.0031 (4) | 0.000 |
O1 | 0.0115 (6) | 0.0116 (6) | 0.0074 (5) | −0.0037 (5) | 0.0031 (4) | −0.0016 (4) |
O2 | 0.0077 (5) | 0.0107 (6) | 0.0158 (6) | −0.0008 (4) | 0.0035 (5) | 0.0004 (5) |
O3 | 0.0138 (6) | 0.0126 (6) | 0.0080 (5) | −0.0004 (5) | 0.0043 (4) | 0.0006 (4) |
O6 | 0.0092 (6) | 0.0098 (6) | 0.0148 (6) | 0.0012 (4) | 0.0015 (5) | −0.0019 (5) |
O5 | 0.0075 (5) | 0.0156 (6) | 0.0082 (5) | −0.0017 (5) | 0.0028 (4) | −0.0025 (4) |
O4 | 0.0102 (6) | 0.0092 (6) | 0.0129 (6) | 0.0002 (4) | 0.0042 (5) | −0.0015 (4) |
Fe1—O6 | 2.0021 (14) | V2—O6v | 1.6917 (14) |
Fe1—O1 | 2.0359 (14) | V2—O5 | 1.7531 (13) |
Fe1—O4i | 2.0451 (14) | V2—O5v | 1.7531 (13) |
Fe1—O5ii | 2.0497 (14) | Na1—O6 | 2.4118 (14) |
Fe1—O3iii | 2.0581 (14) | Na1—O6ix | 2.4119 (14) |
Fe1—O3iv | 2.1633 (14) | Na1—O2ix | 2.4841 (14) |
Co2—O5v | 2.0831 (14) | Na1—O2 | 2.4841 (14) |
Co2—O5vi | 2.0831 (14) | Na1—O2i | 2.5626 (14) |
Co2—O2 | 2.1153 (14) | Na1—O2vii | 2.5626 (14) |
Co2—O2vii | 2.1153 (14) | Na1—O6x | 2.8820 (15) |
Co2—O1iv | 2.1159 (13) | Na1—O6v | 2.8820 (15) |
Co2—O1viii | 2.1159 (13) | Na2—O4xi | 2.4347 (14) |
V1—O2 | 1.6823 (14) | Na2—O4 | 2.4347 (14) |
V1—O4 | 1.7188 (14) | Na2—O4i | 2.4472 (15) |
V1—O3 | 1.7374 (14) | Na2—O4xii | 2.4472 (15) |
V1—O1 | 1.7428 (13) | Na2—O1 | 2.780 (2) |
V2—O6 | 1.6917 (14) | Na2—O1xi | 2.780 (2) |
O6—Fe1—O1 | 105.84 (6) | O6—Na1—O2ix | 104.36 (5) |
O6—Fe1—O4i | 90.98 (6) | O6ix—Na1—O2ix | 75.63 (5) |
O1—Fe1—O4i | 88.38 (6) | O6—Na1—O2 | 75.64 (5) |
O6—Fe1—O5ii | 170.54 (6) | O6ix—Na1—O2 | 104.37 (5) |
O1—Fe1—O5ii | 78.91 (5) | O2ix—Na1—O2 | 180.0 |
O4i—Fe1—O5ii | 97.39 (6) | O6—Na1—O2i | 71.50 (5) |
O6—Fe1—O3iii | 91.12 (6) | O6ix—Na1—O2i | 108.50 (5) |
O1—Fe1—O3iii | 161.29 (6) | O2ix—Na1—O2i | 63.02 (6) |
O4i—Fe1—O3iii | 99.39 (6) | O2—Na1—O2i | 116.98 (6) |
O5ii—Fe1—O3iii | 83.21 (5) | O6—Na1—O2vii | 108.50 (5) |
O6—Fe1—O3iv | 81.17 (6) | O6ix—Na1—O2vii | 71.50 (5) |
O1—Fe1—O3iv | 91.00 (5) | O2ix—Na1—O2vii | 116.98 (6) |
O4i—Fe1—O3iv | 171.64 (6) | O2—Na1—O2vii | 63.02 (6) |
O5ii—Fe1—O3iv | 90.67 (6) | O2i—Na1—O2vii | 180.0 |
O3iii—Fe1—O3iv | 83.72 (5) | O6—Na1—O6x | 121.93 (6) |
O5v—Co2—O5vi | 147.57 (8) | O6ix—Na1—O6x | 58.07 (6) |
O5v—Co2—O2 | 108.15 (5) | O2ix—Na1—O6x | 114.84 (4) |
O5vi—Co2—O2 | 97.18 (6) | O2—Na1—O6x | 65.16 (4) |
O5v—Co2—O2vii | 97.18 (6) | O2i—Na1—O6x | 89.66 (4) |
O5vi—Co2—O2vii | 108.15 (5) | O2vii—Na1—O6x | 90.34 (4) |
O2—Co2—O2vii | 77.17 (8) | O6—Na1—O6v | 58.07 (6) |
O5v—Co2—O1iv | 85.04 (5) | O6ix—Na1—O6v | 121.93 (6) |
O5vi—Co2—O1iv | 76.38 (5) | O2ix—Na1—O6v | 65.16 (4) |
O2—Co2—O1iv | 86.67 (5) | O2—Na1—O6v | 114.84 (4) |
O2vii—Co2—O1iv | 163.59 (6) | O2i—Na1—O6v | 90.34 (4) |
O5v—Co2—O1viii | 76.38 (5) | O2vii—Na1—O6v | 89.66 (4) |
O5vi—Co2—O1viii | 85.04 (5) | O6x—Na1—O6v | 180.0 |
O2—Co2—O1viii | 163.59 (6) | O4xi—Na2—O4 | 174.29 (11) |
O2vii—Co2—O1viii | 86.67 (5) | O4xi—Na2—O4i | 91.26 (5) |
O1iv—Co2—O1viii | 109.60 (8) | O4—Na2—O4i | 88.87 (5) |
O2—V1—O4 | 112.22 (7) | O4xi—Na2—O4xii | 88.87 (5) |
O2—V1—O3 | 106.27 (7) | O4—Na2—O4xii | 91.26 (5) |
O4—V1—O3 | 109.96 (7) | O4i—Na2—O4xii | 177.25 (11) |
O2—V1—O1 | 109.92 (7) | O4xi—Na2—O1 | 121.82 (7) |
O4—V1—O1 | 105.32 (7) | O4—Na2—O1 | 63.31 (5) |
O3—V1—O1 | 113.29 (7) | O4i—Na2—O1 | 65.58 (5) |
O6—V2—O6v | 100.53 (10) | O4xii—Na2—O1 | 112.08 (6) |
O6—V2—O5 | 109.75 (7) | O4xi—Na2—O1xi | 63.31 (5) |
O6v—V2—O5 | 108.41 (7) | O4—Na2—O1xi | 121.82 (7) |
O6—V2—O5v | 108.42 (7) | O4i—Na2—O1xi | 112.08 (6) |
O6v—V2—O5v | 109.75 (7) | O4xii—Na2—O1xi | 65.58 (5) |
O5—V2—O5v | 118.49 (10) | O1—Na2—O1xi | 76.92 (7) |
O6—Na1—O6ix | 180.0 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+3/2, −y+3/2, −z+2; (iii) x, y, z+1; (iv) −x+3/2, −y+3/2, −z+1; (v) −x+1, y, −z+3/2; (vi) x, y, z−1; (vii) −x+1, y, −z+1/2; (viii) x−1/2, −y+3/2, z−1/2; (ix) −x+1, −y+1, −z+1; (x) x, −y+1, z−1/2; (xi) −x+2, y, −z+3/2; (xii) −x+2, −y+1, −z+1. |
Ag1.97(Co0.49Fe0.51)2Co(VO4)3 | F(000) = 1350 |
Mr = 730.96 | Dx = 5.053 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7846 (4) Å | Cell parameters from 2113 reflections |
b = 12.8314 (4) Å | θ = 2.4–35.0° |
c = 6.8064 (2) Å | µ = 11.60 mm−1 |
β = 111.001 (1)° | T = 296 K |
V = 960.85 (5) Å3 | Block, green |
Z = 4 | 0.34 × 0.22 × 0.17 mm |
Bruker X8 APEX diffractometer | 2113 independent reflections |
Radiation source: fine-focus sealed tube | 1987 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
φ and ω scans | θmax = 35.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −18→18 |
Tmin = 0.439, Tmax = 0.747 | k = −20→20 |
15366 measured reflections | l = −9→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0093P)2 + 2.3975P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.018 | (Δ/σ)max = 0.001 |
wR(F2) = 0.041 | Δρmax = 0.80 e Å−3 |
S = 1.14 | Δρmin = −1.66 e Å−3 |
2113 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
104 parameters | Extinction coefficient: 0.00190 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.0000 | 0.5000 | 0.0000 | 0.02187 (6) | |
Ag2 | 0.5000 | 0.50840 (2) | 0.7500 | 0.02578 (6) | 0.97 |
Co1 | 0.2919 (4) | 0.6616 (4) | 0.3791 (8) | 0.0066 (12) | 0.4875 |
Fe1 | 0.2923 (4) | 0.6620 (4) | 0.3814 (8) | 0.0061 (12) | 0.5125 |
Co2 | 0.0000 | 0.73364 (2) | 0.7500 | 0.00755 (6) | |
V1 | 0.27106 (2) | 0.38672 (2) | 0.38255 (4) | 0.00573 (5) | |
V2 | 0.0000 | 0.70581 (3) | 0.2500 | 0.00609 (6) | |
O1 | 0.34160 (11) | 0.32595 (9) | 0.62391 (19) | 0.0103 (2) | |
O2 | 0.28472 (11) | 0.31626 (10) | 0.17435 (19) | 0.0109 (2) | |
O3 | 0.12124 (11) | 0.39463 (10) | 0.3352 (2) | 0.0121 (2) | |
O4 | 0.33731 (12) | 0.50845 (9) | 0.3988 (2) | 0.0123 (2) | |
O5 | 0.03699 (11) | 0.77654 (10) | 0.48520 (19) | 0.0100 (2) | |
O6 | 0.11558 (11) | 0.62338 (9) | 0.2663 (2) | 0.0114 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.03724 (13) | 0.01563 (9) | 0.01248 (9) | −0.01172 (8) | 0.00860 (8) | −0.00330 (6) |
Ag2 | 0.01181 (9) | 0.04845 (15) | 0.01618 (10) | 0.000 | 0.00390 (8) | 0.000 |
Co1 | 0.0072 (18) | 0.0061 (17) | 0.0085 (18) | 0.0017 (12) | 0.0052 (12) | −0.0004 (12) |
Fe1 | 0.0059 (17) | 0.0082 (18) | 0.0032 (15) | −0.0027 (12) | 0.0007 (11) | −0.0007 (11) |
Co2 | 0.00710 (12) | 0.00870 (12) | 0.00779 (13) | 0.000 | 0.00380 (10) | 0.000 |
V1 | 0.00651 (10) | 0.00586 (10) | 0.00488 (10) | 0.00018 (7) | 0.00212 (8) | 0.00004 (7) |
V2 | 0.00679 (14) | 0.00648 (13) | 0.00465 (14) | 0.000 | 0.00161 (11) | 0.000 |
O1 | 0.0119 (5) | 0.0111 (5) | 0.0081 (5) | 0.0027 (4) | 0.0038 (4) | 0.0013 (4) |
O2 | 0.0129 (5) | 0.0121 (5) | 0.0083 (5) | −0.0007 (4) | 0.0045 (4) | −0.0007 (4) |
O3 | 0.0094 (5) | 0.0113 (5) | 0.0156 (6) | 0.0007 (4) | 0.0045 (4) | −0.0005 (4) |
O4 | 0.0132 (5) | 0.0087 (5) | 0.0156 (6) | −0.0002 (4) | 0.0060 (5) | 0.0010 (4) |
O5 | 0.0091 (5) | 0.0136 (5) | 0.0078 (5) | −0.0018 (4) | 0.0036 (4) | −0.0019 (4) |
O6 | 0.0088 (5) | 0.0103 (5) | 0.0137 (5) | 0.0000 (4) | 0.0024 (4) | −0.0021 (4) |
Ag1—O6i | 2.4244 (12) | Fe1—O1ii | 2.040 (6) |
Ag1—O6 | 2.4244 (12) | Fe1—O5vii | 2.045 (5) |
Ag1—O3ii | 2.5051 (13) | Fe1—O2v | 2.047 (5) |
Ag1—O3iii | 2.5051 (13) | Fe1—O2viii | 2.154 (5) |
Ag1—O3 | 2.5960 (13) | Co2—O5ix | 2.0747 (12) |
Ag1—O3i | 2.5960 (13) | Co2—O5 | 2.0748 (12) |
Ag2—O4 | 2.4708 (14) | Co2—O1x | 2.1156 (12) |
Ag2—O4iv | 2.4709 (14) | Co2—O1xi | 2.1156 (12) |
Ag2—O4v | 2.4779 (14) | Co2—O3xii | 2.1197 (13) |
Ag2—O4vi | 2.4779 (14) | Co2—O3v | 2.1197 (13) |
Co1—O6 | 2.001 (5) | V1—O3 | 1.6804 (13) |
Co1—O1ii | 2.028 (6) | V1—O4 | 1.7319 (12) |
Co1—O4 | 2.028 (5) | V1—O2 | 1.7363 (12) |
Co1—O5vii | 2.053 (5) | V1—O1 | 1.7375 (12) |
Co1—O2v | 2.061 (5) | V2—O6 | 1.6965 (12) |
Co1—O2viii | 2.157 (5) | V2—O6iii | 1.6965 (12) |
Fe1—O6 | 2.007 (5) | V2—O5iii | 1.7539 (12) |
Fe1—O4 | 2.033 (5) | V2—O5 | 1.7539 (12) |
O6i—Ag1—O6 | 180.0 | O6—Fe1—O5vii | 170.5 (3) |
O6i—Ag1—O3ii | 105.99 (4) | O4—Fe1—O5vii | 98.8 (2) |
O6—Ag1—O3ii | 74.01 (4) | O1ii—Fe1—O5vii | 79.3 (2) |
O6i—Ag1—O3iii | 74.01 (4) | O6—Fe1—O2v | 90.7 (2) |
O6—Ag1—O3iii | 105.99 (4) | O4—Fe1—O2v | 100.2 (2) |
O3ii—Ag1—O3iii | 180.0 | O1ii—Fe1—O2v | 162.1 (3) |
O6i—Ag1—O3 | 107.57 (4) | O5vii—Fe1—O2v | 83.95 (17) |
O6—Ag1—O3 | 72.43 (4) | O6—Fe1—O2viii | 81.09 (17) |
O3ii—Ag1—O3 | 116.87 (5) | O4—Fe1—O2viii | 170.3 (2) |
O3iii—Ag1—O3 | 63.13 (5) | O1ii—Fe1—O2viii | 90.6 (2) |
O6i—Ag1—O3i | 72.43 (4) | O5vii—Fe1—O2viii | 90.5 (2) |
O6—Ag1—O3i | 107.57 (4) | O2v—Fe1—O2viii | 83.31 (18) |
O3ii—Ag1—O3i | 63.13 (5) | O5ix—Co2—O5 | 149.23 (7) |
O3iii—Ag1—O3i | 116.87 (5) | O5ix—Co2—O1x | 85.91 (5) |
O3—Ag1—O3i | 180.0 | O5—Co2—O1x | 76.96 (5) |
O4—Ag2—O4iv | 179.97 (6) | O5ix—Co2—O1xi | 76.96 (5) |
O4—Ag2—O4v | 87.12 (4) | O5—Co2—O1xi | 85.91 (5) |
O4iv—Ag2—O4v | 92.89 (4) | O1x—Co2—O1xi | 111.91 (7) |
O4—Ag2—O4vi | 92.89 (4) | O5ix—Co2—O3xii | 96.48 (5) |
O4iv—Ag2—O4vi | 87.12 (4) | O5—Co2—O3xii | 107.40 (5) |
O4v—Ag2—O4vi | 169.99 (6) | O1x—Co2—O3xii | 162.94 (5) |
O6—Co1—O1ii | 105.6 (2) | O1xi—Co2—O3xii | 85.03 (5) |
O6—Co1—O4 | 90.1 (2) | O5ix—Co2—O3v | 107.40 (5) |
O1ii—Co1—O4 | 89.02 (19) | O5—Co2—O3v | 96.48 (5) |
O6—Co1—O5vii | 170.0 (3) | O1x—Co2—O3v | 85.03 (5) |
O1ii—Co1—O5vii | 79.4 (2) | O1xi—Co2—O3v | 162.94 (5) |
O4—Co1—O5vii | 98.73 (19) | O3xii—Co2—O3v | 78.12 (7) |
O6—Co1—O2v | 90.4 (2) | O3—V1—O4 | 112.11 (6) |
O1ii—Co1—O2v | 161.7 (3) | O3—V1—O2 | 105.86 (6) |
O4—Co1—O2v | 99.9 (2) | O4—V1—O2 | 110.50 (6) |
O5vii—Co1—O2v | 83.40 (18) | O3—V1—O1 | 108.79 (6) |
O6—Co1—O2viii | 81.15 (16) | O4—V1—O1 | 107.01 (6) |
O1ii—Co1—O2viii | 90.9 (2) | O2—V1—O1 | 112.65 (6) |
O4—Co1—O2viii | 170.8 (3) | O6—V2—O6iii | 102.86 (8) |
O5vii—Co1—O2viii | 90.3 (2) | O6—V2—O5iii | 108.27 (6) |
O2v—Co1—O2viii | 82.90 (17) | O6iii—V2—O5iii | 109.38 (6) |
O6—Fe1—O4 | 89.8 (2) | O6—V2—O5 | 109.37 (6) |
O6—Fe1—O1ii | 105.0 (2) | O6iii—V2—O5 | 108.27 (6) |
O4—Fe1—O1ii | 88.6 (2) | O5iii—V2—O5 | 117.68 (8) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+1, z−1/2; (iii) −x, y, −z+1/2; (iv) −x+1, y, −z+3/2; (v) x, −y+1, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) −x+1/2, −y+3/2, −z+1; (viii) −x+1/2, y+1/2, −z+1/2; (ix) −x, y, −z+3/2; (x) −x+1/2, y+1/2, −z+3/2; (xi) x−1/2, y+1/2, z; (xii) −x, −y+1, −z+1. |
Acknowledgements
This work was done with the support of CNRST in the Excellence Research Scholarships Program. The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University in Rabat, Morocco, for the financial support.
References
Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i5. Web of Science CrossRef IUCr Journals Google Scholar
Benhsina, E., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 220–222. CSD CrossRef IUCr Journals Google Scholar
Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dwibedi, D., Araujo, R. B., Chakraborty, S., Shanbogh, P. P., Sundaram, N. G., Ahuja, R. & Barpanda, P. (2015). J. Mater. Chem. A, 3, 18564–18571. CrossRef CAS Google Scholar
Dwibedi, D., Ling, C. D., Araujo, R. B., Chakraborty, S., Duraisamy, S., Munichandraiah, N., Ahuja, R. & Barpanda, P. (2016). Appl. Mater. Interfaces, 8, 6982–6991. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014). J. Mater. Chem. A, 2, 8632–8636. Web of Science CrossRef CAS Google Scholar
Moore, P. B. (1971). Am. Mineral. 56, 1955–1975. CAS Google Scholar
Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815. Web of Science CSD CrossRef IUCr Journals Google Scholar
Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1997a). J. Electrochem. Soc. 144, 1188–1194. CrossRef CAS Google Scholar
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. (1997b). J. Electrochem. Soc. 144, 1609–1613. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Warner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309. CrossRef CAS Web of Science Google Scholar
Warner, T. E., Milius, W. & Maier, J. (1994). Solid State Ionics, 74, 119–123. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yakubovich, O. V., Simonov, M. A., Egorov-Tismenko, Yu. K. & belov, N. V. (1977). Sov. Phys. Dokl. 22, 550–552. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.