research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(isonicotinamide-κN1)bis­­(thio­cyanato-κN)zinc

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 May 2016; accepted 3 June 2016; online 10 June 2016)

The asymmetric unit of the title complex, [Zn(SCN)2(C6H6N2O)2], consists of one Zn2+ cation located on a twofold rotation axis, as well as of one thio­cyanate anion and one neutral isonicotinamide ligand, both occupying general positions. The Zn2+ cation is tetra­hedrally coordinated into a discrete complex by the N atoms of two symmetry-related thio­cyanate anions and by the pyridine N atoms of two isonicotinamide ligands. The complexes are linked by inter­molecular C—H⋯O and N—H⋯O, and weak inter­molecular N—H⋯S hydrogen-bonding inter­actions into a three-dimensional network.

1. Chemical context

The synthesis of magnetic materials is still a major field in coordination chemistry (Liu et al., 2006[Liu, X.-T., Wang, W.-Z., Zhang, W.-X., Cui, P. & Gao, S. (2006). Adv. Mater. 18, 2852-2856.]). For their construction, paramagnetic cations can be linked by small anionic ligands such as thio­cyanate anions to enable a magnetic exchange between the cations (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Banerjee et al., 2005[Banerjee, S., Drew, M. G. B., Lu, C.-Z., Tercero, J., Diaz, C. & Ghosh, A. (2005). Eur. J. Inorg. Chem. pp. 2376-2383.]). In this context we have reported on a number of coordination polymers with thio­cyanato ligands that show different magnetic phenomena, including a slow relaxation of the magnetization which is indicative of single-chain magnetism (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]; 2015a[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.],b[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3236-3245.],c[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). Dalton Trans. 44, 14149-14158.]). In several cases, such phases can only be prepared by thermal decomposition of suitable precursor compounds (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]), leading to microcrystalline powders for which a straightforward crystal structure determination is difficult. In order to avoid this scenario, compounds of the same composition based on cadmium or zinc can be prepared in the form of single crystals. In many cases, such zinc and cadmium compounds are isotypic to the paramagnetic analogues, and the structure of the latter can then easily be refined by the Rietveld method (Wöhlert et al., 2013[Wöhlert, S., Peters, L. & Näther, C. (2013). Dalton Trans. 42, 10746-10758.]). It should be mentioned that the structures of cadmium compounds are useful as prototypes for transition metal compounds with octa­hedral coordination spheres, whereas the structures of zinc compounds are useful prototypes for compounds with tetra­hedral coordination spheres for the transition metal. The thermal decomposition of cobalt complexes is an example of the latter. In the course of our systematic investigation in this regard, we became inter­ested in isonicotinamide as a co-ligand to be reacted with Zn(SCN)2. The synthesis and crystal structure of the resulting compound, [Zn(NCS)2(C6H6N2O)2], are reported here.

2. Structural commentary

The asymmetric unit of the title compound consists of one Zn2+ cation, one thio­cyanate anion and one neutral isonicotinamide ligand. The thio­cyanate anion and the isonicotinamide ligand are located on general positions whereas the Zn2+ cation is located on a twofold rotation axis. The Zn2+ cation is tetra­hedrally coordinated by two terminal N-bonded thio­cyanato ligands and by two isonicotinamide ligands through their pyridine N atoms into a discrete complex (Fig. 1[link]). As expected, the Zn—N bond length involving the thio­cyanate anion (N1) is significantly shorter than that to the pyridine N atom (N11) of the neutral ligand (Table 1[link]). The angular distortion of the ZnN4 tetra­hedron is noticeable, with N—Zn—N angles ranging from 104.32 (13) to 123.6 (2)°.

[Scheme 1]

Table 1
Selected bond lengths (Å)

Zn1—N1 1.921 (3) Zn1—N11 2.033 (3)
[Figure 1]
Figure 1
View of the discrete complex with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y + 1, z.]

3. Supra­molecular features

In the crystal structure, the discrete complexes are stacked along the c axis and are linked by inter­molecular N—H⋯O hydrogen bonding between one of the two amide H atoms and the amide O atom of a neighboring complex (Fig. 2[link] and Table 2[link]). There is a further weak contact between one aromatic H atom of the pyridine ring and the carbonyl O atom of a neighboring complex (Table 2[link]). The second H atom of the NH2 group is involved in inter­molecular N—H⋯S hydrogen bonding to the S atoms of the anionic ligand. In this way a three-dimensional hydrogen-bonded network is formed.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O11i 0.95 2.54 3.365 (6) 145
N12—H12A⋯S1ii 0.88 2.62 3.407 (3) 150
N12—H12B⋯O11i 0.88 1.97 2.821 (4) 162
Symmetry codes: (i) [x+{\script{1\over 4}}, -y+{\script{5\over 4}}, z+{\script{1\over 4}}]; (ii) [-x+{\script{3\over 4}}, y+{\script{1\over 4}}, z+{\script{7\over 4}}].
[Figure 2]
Figure 2
The packing of the complexes in the title compound, in a view along the c axis. Inter­molecular hydrogen bonding is shown as dashed lines.

4. Database survey

To the best of our knowledge, there are only five coordination polymers with isonicotinamide and thio­cyanate anions deposited in the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). This includes two clathrate-structures of Ni compounds with μ-1,3-bridging thio­cyanate anions and with 9,10-anthra­quinone and pyrene as solvate mol­ecules (Sekiya et al., 2009[Sekiya, R., Nishikiori, S. & Kuroda, R. (2009). CrystEngComm, 11, 2251-2253.]). Furthermore, a one-dimensional μ-1,3-thio­cyanate-bridged cadmium compound with 9,10-di­chloro­anthracene as clathrate mol­ecule (Sekiya & Nishikiori, 2005[Sekiya, R. & Nishikiori, S. (2005). Chem. Lett. 34, 1076-1077.]) as well as a three-dimensional network of Cd with μ-1,3-bridging thio­cyanate anions (Yang et al., 2001[Yang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580-585.]) are known. Finally, a compound consisting of CuII–NCS sheets has been reported (Đaković et al., 2010[Đaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910-1917.]).

5. Synthesis and crystallization

Ba(NCS)2·3H2O, ZnSO4·H2O and isonicotinamide were purchased from Alfa Aesar. Zn(NCS)2 was synthesized by stirring 3.076 g Ba(NCS)2·3H2O (10 mmol) with 1.795 g ZnSO4·H2O (10 mmol) in 350 ml water. The white residue was filtered off and the filtrate was dried using a rotary evaporator. The homogenity was checked by X-ray powder diffraction and elemental analysis. Crystals of the title compound suitable for single crystal X-Ray diffraction were obtained by the reaction of 27.2 mg Zn(NCS)2 (0.15 mmol) with 36.64 mg isonicotinamide (0.3 mmol) in methyl­cyanide (1.5 ml) within a few days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C- and N-bound H atoms were located in a difference Fourier map but were positioned with idealized geometry. They were refined with Uiso(H) = 1.2Ueq(C, N) using a riding model with C—H = 0.95 Å for aromatic and N—H = 0.88 Å for the amide H atoms. The absolute structure was determined and is in agreement with the selected setting [Flack x parameter: 0.005 (19) by classical fit to all intensities (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) and −0.005 (8) from 819 selected quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])].

Table 3
Experimental details

Crystal data
Chemical formula [Zn(NCS)2(C6H6N2O)2]
Mr 425.79
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 200
a, b, c (Å) 19.1926 (9), 36.3044 (12), 5.2930 (2)
V3) 3688.0 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.58
Crystal size (mm) 0.20 × 0.16 × 0.11
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.595, 0.742
No. of measured, independent and observed [I > 2σ(I)] reflections 15338, 2132, 2012
Rint 0.035
(sin θ/λ)max−1) 0.662
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.067, 1.13
No. of reflections 2132
No. of parameters 114
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.27
Absolute structure Flack x determined using 819 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.005 (8)
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(isonicotinamide-κN1)bis(thiocyanato-κN)zinc top
Crystal data top
[Zn(NCS)2(C6H6N2O)2]Dx = 1.534 Mg m3
Mr = 425.79Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 15683 reflections
a = 19.1926 (9) Åθ = 4.2–56.2°
b = 36.3044 (12) ŵ = 1.58 mm1
c = 5.2930 (2) ÅT = 200 K
V = 3688.0 (3) Å3Block, colorless
Z = 80.20 × 0.16 × 0.11 mm
F(000) = 1728
Data collection top
Stoe IPDS-2
diffractometer
2012 reflections with I > 2σ(I)
ω scansRint = 0.035
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
θmax = 28.1°, θmin = 2.2°
Tmin = 0.595, Tmax = 0.742h = 2525
15338 measured reflectionsk = 4747
2132 independent reflectionsl = 66
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0282P)2 + 4.6943P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.24 e Å3
2132 reflectionsΔρmin = 0.27 e Å3
114 parametersAbsolute structure: Flack x determined using 819 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.005 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.00134 (10)0.04197 (15)
N10.41911 (18)0.48143 (9)0.1702 (7)0.0562 (8)
C10.3688 (2)0.46990 (10)0.2648 (9)0.0514 (9)
S10.29987 (6)0.45456 (4)0.4003 (3)0.0802 (4)
N110.46205 (13)0.53943 (7)0.2367 (6)0.0399 (6)
C110.39419 (17)0.54254 (10)0.2958 (8)0.0465 (9)
H110.36160.52660.21640.056*
C120.37026 (17)0.56804 (10)0.4673 (8)0.0466 (8)
H120.32190.56970.50360.056*
C130.41714 (16)0.59132 (9)0.5870 (7)0.0373 (7)
C140.48690 (15)0.58811 (9)0.5240 (9)0.0438 (8)
H140.52050.60370.60110.053*
C150.50720 (17)0.56217 (10)0.3489 (7)0.0428 (8)
H150.55520.56040.30630.051*
C160.39066 (16)0.61924 (9)0.7711 (8)0.0429 (7)
N120.43541 (15)0.63295 (9)0.9372 (6)0.0486 (8)
H12A0.42150.64951.04790.058*
H12B0.47910.62550.93670.058*
O110.32905 (12)0.62889 (8)0.7653 (7)0.0590 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0442 (3)0.0394 (2)0.0424 (3)0.0020 (3)0.0000.000
N10.059 (2)0.0546 (19)0.055 (2)0.0028 (16)0.0093 (16)0.0096 (15)
C10.056 (2)0.0481 (18)0.050 (2)0.0044 (16)0.0007 (19)0.011 (2)
S10.0496 (6)0.0997 (10)0.0914 (10)0.0051 (6)0.0034 (6)0.0432 (8)
N110.0374 (13)0.0388 (13)0.0434 (16)0.0011 (10)0.0010 (13)0.0002 (13)
C110.0353 (16)0.0455 (17)0.059 (3)0.0030 (14)0.0043 (16)0.0088 (17)
C120.0311 (15)0.0500 (17)0.059 (2)0.0009 (13)0.0041 (15)0.0082 (18)
C130.0330 (15)0.0381 (15)0.0408 (17)0.0017 (12)0.0052 (13)0.0017 (13)
C140.0296 (16)0.0491 (16)0.053 (2)0.0052 (12)0.0021 (17)0.0081 (19)
C150.0341 (16)0.0471 (18)0.047 (2)0.0004 (13)0.0007 (15)0.0036 (15)
C160.0327 (14)0.0492 (17)0.0467 (19)0.0021 (12)0.0048 (15)0.0069 (17)
N120.0349 (14)0.0582 (18)0.053 (2)0.0051 (13)0.0076 (13)0.0151 (15)
O110.0322 (12)0.0719 (17)0.0728 (19)0.0104 (11)0.0097 (14)0.0258 (18)
Geometric parameters (Å, º) top
Zn1—N1i1.921 (3)C12—H120.9500
Zn1—N11.921 (3)C13—C141.385 (4)
Zn1—N112.033 (3)C13—C161.495 (5)
Zn1—N11i2.033 (3)C14—C151.378 (5)
N1—C11.165 (5)C14—H140.9500
C1—S11.605 (4)C15—H150.9500
N11—C151.336 (4)C16—O111.233 (4)
N11—C111.344 (4)C16—N121.326 (5)
C11—C121.376 (5)N12—H12A0.8800
C11—H110.9500N12—H12B0.8800
C12—C131.387 (5)
N1i—Zn1—N1123.6 (2)C13—C12—H12120.2
N1i—Zn1—N11109.39 (13)C14—C13—C12117.8 (3)
N1—Zn1—N11104.32 (13)C14—C13—C16122.9 (3)
N1i—Zn1—N11i104.32 (13)C12—C13—C16119.3 (3)
N1—Zn1—N11i109.40 (13)C15—C14—C13119.5 (3)
N11—Zn1—N11i104.42 (17)C15—C14—H14120.2
C1—N1—Zn1177.2 (4)C13—C14—H14120.2
N1—C1—S1178.8 (5)N11—C15—C14122.6 (3)
C15—N11—C11118.2 (3)N11—C15—H15118.7
C15—N11—Zn1118.4 (2)C14—C15—H15118.7
C11—N11—Zn1123.3 (2)O11—C16—N12122.1 (4)
N11—C11—C12122.3 (3)O11—C16—C13120.1 (3)
N11—C11—H11118.9N12—C16—C13117.8 (3)
C12—C11—H11118.9C16—N12—H12A120.0
C11—C12—C13119.7 (3)C16—N12—H12B120.0
C11—C12—H12120.2H12A—N12—H12B120.0
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O11ii0.952.543.365 (6)145
N12—H12A···S1iii0.882.623.407 (3)150
N12—H12B···O11ii0.881.972.821 (4)162
Symmetry codes: (ii) x+1/4, y+5/4, z+1/4; (iii) x+3/4, y+1/4, z+7/4.
 

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBanerjee, S., Drew, M. G. B., Lu, C.-Z., Tercero, J., Diaz, C. & Ghosh, A. (2005). Eur. J. Inorg. Chem. pp. 2376–2383.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationĐaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910–1917.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-T., Wang, W.-Z., Zhang, W.-X., Cui, P. & Gao, S. (2006). Adv. Mater. 18, 2852–2856.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSekiya, R. & Nishikiori, S. (2005). Chem. Lett. 34, 1076–1077.  Web of Science CSD CrossRef CAS Google Scholar
First citationSekiya, R., Nishikiori, S. & Kuroda, R. (2009). CrystEngComm, 11, 2251–2253.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Peters, L. & Näther, C. (2013). Dalton Trans. 42, 10746–10758.  Web of Science PubMed Google Scholar
First citationYang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580–585.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds