research communications
Li2GeMo3O8: a novel reduced molybdenum oxide containing Mo3O13 cluster units
aInstitut des Sciences, Chimiques de Rennes, UMR 6226 CNRS – INSA Rennes – Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: patrick.gougeon@univ-rennes1.fr
The ABAC along [001] that are held together by alternating lithium–germanium and molybdenum layers. The two Li+ and Ge4+ ions all have 3m. and occupy, respectively, tetrahedral and octahedral sites in the ratio 2:1. The Mo atom has a formal of +3.3 and occupies an octahedral site (site symmetry .m.) and forms strongly bonded triangular cluster units [Mo—Mo distance = 2.4728 (8) Å] involving three MoO6 octahedra that are each shared along two edges, constituting an Mo3O13 unit.
of the title compound, dilithium germanium trimolybdenum octaoxide, consists of distorted hexagonal-close-packed oxygen layers with stacking sequenceCCDC reference: 1485831
1. Chemical context
Reduced molybdenum oxides containing the Mo3O13 cluster unit crystallize either in the hexagonal type P63mc (a ∼ 5.7–5.8 Å, c ∼ 10.0–10.2 Å) or in the trigonal types P3m1 (a ∼ 5.7–5.8 Å, c ∼ 4.9–5.3 Å) or Rm (a ∼ 5.8–5.9 Å, c ∼ 30.0–30.1 Å). Representatives of the first family are the ternary compounds M2Mo3O8 (McCarroll et al., 1957) where M is a divalent metal such as Mg, Zn, Fe, Co, Ni, Zn and Cd as well as the quaternary compounds ScZnMo3O8 and Li2MMo3O8 (M = Sn, In) (Gall et al., 2013a,b). The LiRMo3O8 series (R = Sc, Y, In, Sm, Gd, Tb, Dy, Ho, Er and Yb) (DeBenedittis & Katz, 1965; McCarroll, 1977) crystallize in the P3m1 and finally, LiZn2Mo3O8 and Zn3Mo3O8 (Torardi & McCarley, 1985) crystallize in Rm. The crystal structures of all these compounds consist of distorted hexagonal-close-packed oxygen layers with stacking sequences ABAC, ABAB and ABC for compounds crystallizing in the space groups P63mc, P3m1 and Rm, respectively. The oxygen layers are separated by alternating mixed-metal atom (Li, M, or R) layers and molybdenum layers. The metal atoms occupy both tetrahedral and octahedral sites in a ratio of 1:1 (M2Mo3O8 and LiRMo3O8) or 2:1 (LiZn2Mo3O8 and Zn3Mo3O8) between two adjacent oxygen layers. The molybdenum atoms occupy three quarters of the octahedral sites and form strongly bonded triangular cluster units involving three MoO6 octahedra that are each shared along two edges, the whole constituting an Mo3O13 unit. The Mo—Mo bonds within the trinuclear cluster units range from about 2.5 to 2.6 Å, and the number of electrons available for Mo–Mo bonding is six in M2Mo3O8 and LiRMo3O8, seven in LiZn2Mo3O8 and Li2InMo3O8, and eight in Zn3Mo3O8 and Li2SnMo3O8. The energy-level diagram deduced from LCAO–MO calculations on the Mo3O13 unit shows three bonding orbitals (a1 and e), a non-bonding level (a1), and five anti-bonding orbitals (2e and a2) (Cotton, 1964). This explains why the compounds with seven electrons per Mo3 cluster unit are paramagnetic with moments corresponding to one unpaired electron per Mo3 cluster unit, and those with six and eight electrons per Mo3 show temperature-independent paramagnetism.
We present here the 2GeMo3O8 in which the Mo3 cluster unit has eight electrons available for bonding.
of the new quaternary compound Li2. Structural commentary
Li2GeMo3O8 is isotypic with the Li2MMo3O8 (M = Sn, In) compounds (Gall et al., 2013a,b). Its consists of distorted hexagonal-close-packed oxygen layers with stacking sequence ABAC along [001] that are held together by alternating lithium–germanium and molybdenum layers (Fig. 1). The Li+ and Ge4+ ions occupy, respectively, tetrahedral and octahedral sites in the ratio 2:1. The Mo atoms occupy octahedral sites and form strongly bonded triangular cluster units involving three MoO6 octahedra that are each shared along two edges, constituting an Mo3O13 unit (Fig. 2). The Mo—Mo distance within the Mo3 triangle is 2.4728 (8) Å compared to 2.5036 (7) and 2.5455 (4) Å found in the tin and indium analogues, respectively. The Mo—O distances range from 2.004 (6) to 2.146 (3) Å (Table 1) while in Li2InMo3O8 they range from 2.0212 (17) to 2.1241 (16) Å and in Li2SnMo3O8 from 2.020 (6) to 2.122 (3) Å. The Li—O distances in the title structure range from 1.78 (2) to 2.012 (13) Å with average distances of 1.97 and 1.86 Å for the Li1 and Li2 sites, respectively. Both Li sites have 3m.. For the Ge site, likewise with 3m., the Ge—O distances are 3×1.883 (5) and 3×2.016 (5) Å. The average distance of 1.95 Å is close to the value of 1.92 Å calculated from the sum of the ionic radii of O2− and Ge4+ in octahedral coordination according to Shannon & Prewitt (1969). The of +4 for the Ge atoms was also confirmed from the Ge—O bond lengths by using the relationship of Brown & Wu (1976) {s = [d(Ge—O)/1.746]−6.05} which leads to a value of +3.5 (1). The latter relationship applied to Mo—O bonds {s = [d(Mo—O)/1.882]−6} yield an of +3.38 for the Mo atom, and thus 7.86 electrons per Mo3 cluster unit, close to the expected value of 8. This is consistent with the chemical composition Li2+Ge4+Mo33.33+O82−.
3. Database survey
The M2Mo3O8 (Mg, Zn, Fe, Co, Ni, Zn and Cd) compounds containing triangular Mo3 clusters were first synthesized by McCarroll et al. (1957). They presented the results of a on Zn2Mo3O8 from photographic data (R = 0.118). Later, a of the structure was accomplished by Ansell & Katz (1966) with an R factor of 0.069. Among the above compounds, it is interesting to note that Fe2Mo3O8 is a mineral known as kamiokite (Kanazawa & Sasaki, 1986). Later, DeBenedittis & Katz (1965) reported the existence of the LiRMo3O8 (R = Sc and Y) compounds. Subsequently, McCarroll (1977) obtained isotypic compounds with R = In, Sm, Gd, Tb, Dy, Ho, Er, and Yb. In 1985, Torardi & McCarley (1985) described the new Mo3 cluster compounds LiZn2Mo3O8, Zn3Mo3O8 and ScZnMo3O8 and, in 2013, Gall et al. (2013a,b), the quaternary compounds Li2MMo3O8 (M = Sn and In).
4. Synthesis and crystallization
Single crystals of Li2GeMo3O8 were obtained by heating a mixture of Li2MoO4, O2, MoO3 and Mo with the nominal composition Li2GeMo6O12 at 1923 K for 72 h in a molybdenum crucible sealed under low argon pressure using an arc-welding system. The molybdate Li2MoO4 was synthesized by heating an equimolar ratio of MoO3 (CERAC 99.95%) and Li2CO3 (CERAC 99.9%) in an alumina vessel at 873 K in air over 12 h. Before use, the Mo powder was heated under a hydrogen flow at 1273 K for 6 h. The composition of the final crystals thus obtained was determined after a complete X-ray structural study on one of them.
5. Refinement
Crystal data, data collection and structure . All atoms were refined with anisotropic displacement parameters, except for the Li atoms, which were refined isotropically.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1485831
https://doi.org/10.1107/S2056989016009750/wm5299sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016009750/wm5299Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Li2GeMo3O8 | Dx = 5.883 Mg m−3 |
Mr = 502.29 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63mc | Cell parameters from 4457 reflections |
Hall symbol: P 6c -2c | θ = 4.1–35.0° |
a = 5.7268 (3) Å | µ = 11.74 mm−1 |
c = 9.9841 (6) Å | T = 293 K |
V = 283.57 (3) Å3 | Irregular block, black |
Z = 2 | 0.21 × 0.13 × 0.07 mm |
F(000) = 456 |
Nonius KappaCCD diffractometer | 522 independent reflections |
Radiation source: fine-focus sealed tube | 501 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
φ scans (κ = 0) + additional ω scans | θmax = 35.0°, θmin = 4.1° |
Absorption correction: analytical (de Meulenaar & Tompa, 1965) | h = −7→9 |
Tmin = 0.048, Tmax = 0.157 | k = −9→9 |
4457 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0515P)2 + 0.3716P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.076 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 1.43 e Å−3 |
522 reflections | Δρmin = −1.33 e Å−3 |
31 parameters | Absolute structure: Flack (1983), 247 Friedel pairs |
1 restraint | Absolute structure parameter: 0.01 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 1.0000 | 1.0000 | 1.581 (2) | 0.014 (3)* | |
Li2 | 1.3333 | 0.6667 | 1.490 (2) | 0.014 (3)* | |
Ge1 | 1.3333 | 0.6667 | 1.09391 (9) | 0.0076 (2) | |
Mo1 | 1.37881 (9) | 1.18940 (4) | 1.30891 (9) | 0.00660 (13) | |
O1 | 1.4795 (4) | 0.5205 (4) | 1.9536 (5) | 0.0081 (8) | |
O2 | 1.1704 (6) | 0.8296 (6) | 1.1906 (5) | 0.0081 (8) | |
O3 | 1.0000 | 1.0000 | 1.3974 (7) | 0.0110 (14) | |
O4 | 1.3333 | 0.6667 | 1.6680 (8) | 0.0080 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ge1 | 0.0076 (3) | 0.0076 (3) | 0.0076 (4) | 0.00381 (14) | 0.000 | 0.000 |
Mo1 | 0.00622 (19) | 0.00662 (16) | 0.00683 (19) | 0.00311 (10) | −0.00015 (18) | −0.00007 (9) |
O1 | 0.0079 (13) | 0.0079 (13) | 0.0094 (18) | 0.0045 (14) | 0.0007 (8) | −0.0007 (8) |
O2 | 0.0071 (12) | 0.0071 (12) | 0.010 (2) | 0.0034 (13) | 0.0017 (9) | −0.0017 (9) |
O3 | 0.012 (2) | 0.012 (2) | 0.010 (3) | 0.0058 (10) | 0.000 | 0.000 |
O4 | 0.0102 (19) | 0.0102 (19) | 0.004 (3) | 0.0051 (9) | 0.000 | 0.000 |
Li1—O3 | 1.84 (2) | Ge1—O1xv | 2.016 (5) |
Li1—O2i | 2.012 (13) | Ge1—O1xvi | 2.016 (4) |
Li1—O2ii | 2.012 (13) | Mo1—O4xvii | 2.004 (6) |
Li1—O2iii | 2.012 (13) | Mo1—O1xvii | 2.039 (4) |
Li1—Mo1i | 2.949 (17) | Mo1—O1viii | 2.039 (4) |
Li1—Mo1iii | 2.949 (17) | Mo1—O3 | 2.076 (3) |
Li1—Mo1ii | 2.949 (17) | Mo1—O2 | 2.146 (3) |
Li1—Mo1iv | 3.305 (18) | Mo1—O2v | 2.146 (3) |
Li1—Mo1v | 3.305 (18) | Mo1—Mo1xviii | 2.4728 (8) |
Li1—Mo1 | 3.305 (18) | Mo1—Mo1xix | 2.4728 (8) |
Li1—Li2 | 3.430 (9) | Mo1—Li1xx | 2.949 (17) |
Li1—Li2vi | 3.430 (9) | O1—Li2xxi | 1.892 (6) |
Li2—O4 | 1.78 (3) | O1—Ge1xxii | 2.016 (4) |
Li2—O1vii | 1.892 (6) | O1—Mo1xxiii | 2.039 (4) |
Li2—O1viii | 1.892 (6) | O1—Mo1xxiv | 2.039 (4) |
Li2—O1ix | 1.892 (6) | O2—Li1xx | 2.012 (13) |
Li2—Li1x | 3.430 (9) | O2—Mo1iv | 2.146 (3) |
Li2—Li1xi | 3.430 (9) | O3—Mo1iv | 2.076 (3) |
Ge1—O2 | 1.883 (5) | O3—Mo1v | 2.076 (3) |
Ge1—O2xii | 1.883 (5) | O4—Mo1iii | 2.004 (5) |
Ge1—O2xiii | 1.883 (5) | O4—Mo1xxiv | 2.004 (5) |
Ge1—O1xiv | 2.016 (5) | O4—Mo1xxiii | 2.004 (5) |
O3—Li1—O2i | 122.9 (5) | Li1x—Li2—Li1xi | 113.2 (5) |
O3—Li1—O2ii | 122.9 (5) | O2—Ge1—O2xii | 96.1 (2) |
O2i—Li1—O2ii | 93.3 (7) | O2—Ge1—O2xiii | 96.1 (2) |
O3—Li1—O2iii | 122.9 (5) | O2xii—Ge1—O2xiii | 96.1 (2) |
O2i—Li1—O2iii | 93.3 (7) | O2—Ge1—O1xiv | 92.73 (17) |
O2ii—Li1—O2iii | 93.3 (7) | O2xii—Ge1—O1xiv | 166.8 (2) |
O3—Li1—Mo1i | 140.4 (3) | O2xiii—Ge1—O1xiv | 92.73 (18) |
O2i—Li1—Mo1i | 46.7 (4) | O2—Ge1—O1xv | 92.73 (17) |
O2ii—Li1—Mo1i | 46.7 (4) | O2xii—Ge1—O1xv | 92.73 (17) |
O2iii—Li1—Mo1i | 96.7 (8) | O2xiii—Ge1—O1xv | 166.8 (2) |
O3—Li1—Mo1iii | 140.4 (3) | O1xiv—Ge1—O1xv | 77.0 (2) |
O2i—Li1—Mo1iii | 46.7 (4) | O2—Ge1—O1xvi | 166.8 (2) |
O2ii—Li1—Mo1iii | 96.7 (8) | O2xii—Ge1—O1xvi | 92.73 (17) |
O2iii—Li1—Mo1iii | 46.7 (4) | O2xiii—Ge1—O1xvi | 92.73 (17) |
Mo1i—Li1—Mo1iii | 67.0 (4) | O1xiv—Ge1—O1xvi | 77.0 (2) |
O3—Li1—Mo1ii | 140.4 (3) | O1xv—Ge1—O1xvi | 77.0 (2) |
O2i—Li1—Mo1ii | 96.7 (8) | O4xvii—Mo1—O1xvii | 104.58 (15) |
O2ii—Li1—Mo1ii | 46.7 (4) | O4xvii—Mo1—O1viii | 104.58 (15) |
O2iii—Li1—Mo1ii | 46.7 (4) | O1xvii—Mo1—O1viii | 76.0 (2) |
Mo1i—Li1—Mo1ii | 67.0 (4) | O4xvii—Mo1—O3 | 160.6 (3) |
Mo1iii—Li1—Mo1ii | 67.0 (4) | O1xvii—Mo1—O3 | 90.60 (16) |
O3—Li1—Mo1iv | 34.6 (2) | O1viii—Mo1—O3 | 90.60 (16) |
O2i—Li1—Mo1iv | 133.2 (4) | O4xvii—Mo1—O2 | 87.53 (16) |
O2ii—Li1—Mo1iv | 133.2 (4) | O1xvii—Mo1—O2 | 167.40 (14) |
O2iii—Li1—Mo1iv | 88.2 (3) | O1viii—Mo1—O2 | 97.8 (2) |
Mo1i—Li1—Mo1iv | 175.1 (5) | O3—Mo1—O2 | 78.36 (18) |
Mo1iii—Li1—Mo1iv | 116.94 (6) | O4xvii—Mo1—O2v | 87.53 (16) |
Mo1ii—Li1—Mo1iv | 116.94 (6) | O1xvii—Mo1—O2v | 97.8 (2) |
O3—Li1—Mo1v | 34.6 (2) | O1viii—Mo1—O2v | 167.40 (14) |
O2i—Li1—Mo1v | 133.2 (4) | O3—Mo1—O2v | 78.36 (18) |
O2ii—Li1—Mo1v | 88.2 (3) | O2—Mo1—O2v | 86.0 (3) |
O2iii—Li1—Mo1v | 133.2 (4) | O4xvii—Mo1—Mo1xviii | 51.91 (12) |
Mo1i—Li1—Mo1v | 116.94 (6) | O1xvii—Mo1—Mo1xviii | 52.67 (9) |
Mo1iii—Li1—Mo1v | 175.1 (5) | O1viii—Mo1—Mo1xviii | 90.54 (10) |
Mo1ii—Li1—Mo1v | 116.94 (6) | O3—Mo1—Mo1xviii | 141.60 (11) |
Mo1iv—Li1—Mo1v | 59.0 (4) | O2—Mo1—Mo1xviii | 139.30 (11) |
O3—Li1—Mo1 | 34.6 (2) | O2v—Mo1—Mo1xviii | 94.37 (14) |
O2i—Li1—Mo1 | 88.2 (3) | O4xvii—Mo1—Mo1xix | 51.91 (12) |
O2ii—Li1—Mo1 | 133.2 (4) | O1xvii—Mo1—Mo1xix | 90.54 (9) |
O2iii—Li1—Mo1 | 133.2 (4) | O1viii—Mo1—Mo1xix | 52.67 (9) |
Mo1i—Li1—Mo1 | 116.94 (6) | O3—Mo1—Mo1xix | 141.60 (11) |
Mo1iii—Li1—Mo1 | 116.94 (6) | O2—Mo1—Mo1xix | 94.37 (13) |
Mo1ii—Li1—Mo1 | 175.1 (5) | O2v—Mo1—Mo1xix | 139.30 (11) |
Mo1iv—Li1—Mo1 | 59.0 (4) | Mo1xviii—Mo1—Mo1xix | 60.0 |
Mo1v—Li1—Mo1 | 59.0 (4) | O4xvii—Mo1—Li1xx | 85.0 (3) |
O3—Li1—Li2 | 74.6 (5) | O1xvii—Mo1—Li1xx | 139.97 (14) |
O2i—Li1—Li2 | 74.9 (3) | O1viii—Mo1—Li1xx | 139.97 (15) |
O2ii—Li1—Li2 | 162.6 (10) | O3—Mo1—Li1xx | 75.6 (3) |
O2iii—Li1—Li2 | 74.9 (3) | O2—Mo1—Li1xx | 43.02 (16) |
Mo1i—Li1—Li2 | 120.8 (5) | O2v—Mo1—Li1xx | 43.02 (16) |
Mo1iii—Li1—Li2 | 65.8 (4) | Mo1xviii—Mo1—Li1xx | 123.5 (2) |
Mo1ii—Li1—Li2 | 120.8 (5) | Mo1xix—Mo1—Li1xx | 123.5 (2) |
Mo1iv—Li1—Li2 | 60.5 (4) | O4xvii—Mo1—Li1 | 169.2 (3) |
Mo1v—Li1—Li2 | 109.2 (7) | O1xvii—Mo1—Li1 | 67.23 (18) |
Mo1—Li1—Li2 | 60.5 (4) | O1viii—Mo1—Li1 | 67.23 (18) |
O3—Li1—Li2vi | 74.6 (5) | O3—Mo1—Li1 | 30.2 (3) |
O2i—Li1—Li2vi | 162.6 (10) | O2—Mo1—Li1 | 100.31 (19) |
O2ii—Li1—Li2vi | 74.9 (3) | O2v—Mo1—Li1 | 100.31 (19) |
O2iii—Li1—Li2vi | 74.9 (3) | Mo1xviii—Mo1—Li1 | 119.49 (18) |
Mo1i—Li1—Li2vi | 120.8 (5) | Mo1xix—Mo1—Li1 | 119.49 (18) |
Mo1iii—Li1—Li2vi | 120.8 (5) | Li1xx—Mo1—Li1 | 105.78 (5) |
Mo1ii—Li1—Li2vi | 65.8 (4) | Li2xxi—O1—Ge1xxii | 124.9 (8) |
Mo1iv—Li1—Li2vi | 60.5 (4) | Li2xxi—O1—Mo1xxiii | 119.4 (6) |
Mo1v—Li1—Li2vi | 60.5 (4) | Ge1xxii—O1—Mo1xxiii | 103.46 (15) |
Mo1—Li1—Li2vi | 109.2 (7) | Li2xxi—O1—Mo1xxiv | 119.4 (6) |
Li2—Li1—Li2vi | 113.2 (5) | Ge1xxii—O1—Mo1xxiv | 103.46 (15) |
O4—Li2—O1vii | 101.1 (7) | Mo1xxiii—O1—Mo1xxiv | 74.66 (17) |
O4—Li2—O1viii | 101.1 (7) | Ge1—O2—Li1xx | 116.3 (6) |
O1vii—Li2—O1viii | 116.4 (5) | Ge1—O2—Mo1 | 125.62 (15) |
O4—Li2—O1ix | 101.1 (7) | Li1xx—O2—Mo1 | 90.3 (4) |
O1vii—Li2—O1ix | 116.4 (5) | Ge1—O2—Mo1iv | 125.62 (15) |
O1viii—Li2—O1ix | 116.4 (5) | Li1xx—O2—Mo1iv | 90.3 (4) |
O4—Li2—Li1 | 74.6 (5) | Mo1—O2—Mo1iv | 98.6 (2) |
O1vii—Li2—Li1 | 65.0 (2) | Li1—O3—Mo1iv | 115.18 (19) |
O1viii—Li2—Li1 | 65.0 (2) | Li1—O3—Mo1 | 115.18 (19) |
O1ix—Li2—Li1 | 175.6 (12) | Mo1iv—O3—Mo1 | 103.2 (2) |
O4—Li2—Li1x | 74.6 (5) | Li1—O3—Mo1v | 115.18 (19) |
O1vii—Li2—Li1x | 175.6 (12) | Mo1iv—O3—Mo1v | 103.2 (2) |
O1viii—Li2—Li1x | 65.0 (2) | Mo1—O3—Mo1v | 103.2 (2) |
O1ix—Li2—Li1x | 65.0 (2) | Li2—O4—Mo1iii | 134.58 (16) |
Li1—Li2—Li1x | 113.2 (5) | Li2—O4—Mo1xxiv | 134.58 (16) |
O4—Li2—Li1xi | 74.6 (5) | Mo1iii—O4—Mo1xxiv | 76.2 (2) |
O1vii—Li2—Li1xi | 65.0 (2) | Li2—O4—Mo1xxiii | 134.58 (16) |
O1viii—Li2—Li1xi | 175.6 (12) | Mo1iii—O4—Mo1xxiii | 76.2 (2) |
O1ix—Li2—Li1xi | 65.0 (2) | Mo1xxiv—O4—Mo1xxiii | 76.2 (2) |
Li1—Li2—Li1xi | 113.2 (5) |
Symmetry codes: (i) x−y+1, x, z+1/2; (ii) −x+2, −y+2, z+1/2; (iii) y, −x+y+1, z+1/2; (iv) −x+y+1, −x+2, z; (v) −y+2, x−y+1, z; (vi) x−1, y, z; (vii) x−y, x−1, z−1/2; (viii) y+1, −x+y+2, z−1/2; (ix) −x+3, −y+1, z−1/2; (x) x+1, y, z; (xi) x, y−1, z; (xii) −x+y+2, −x+2, z; (xiii) −y+2, x−y, z; (xiv) −x+y+2, −x+2, z−1; (xv) −y+2, x−y, z−1; (xvi) x, y, z−1; (xvii) −x+3, −y+2, z−1/2; (xviii) −x+y+2, −x+3, z; (xix) −y+3, x−y+1, z; (xx) −x+2, −y+2, z−1/2; (xxi) −x+3, −y+1, z+1/2; (xxii) x, y, z+1; (xxiii) x−y+1, x−1, z+1/2; (xxiv) −x+3, −y+2, z+1/2. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ansell, G. B. & Katz, L. (1966). Acta Cryst. 21, 482–485. CrossRef CAS IUCr Journals Web of Science Google Scholar
Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany. Google Scholar
Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957–1959. CrossRef CAS IUCr Journals Web of Science Google Scholar
Cotton, F. A. (1964). Inorg. Chem. 3, 1217–1220. CrossRef CAS Web of Science Google Scholar
DeBenedittis, J. & Katz, L. (1965). Inorg. Chem. 4, 1836–1839. CrossRef Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gall, P., Al Rahal Al Orabi, R., Guizouarn, T., Cuny, J., Fontaine, B., Gautier, R. & Gougeon, P. (2013a). J. Solid State Chem. 201, 312–316. CrossRef CAS Google Scholar
Gall, P., Al Rahal Al Orabi, R., Guizouarn, T. & Gougeon, P. (2013b). J. Solid State Chem. 208, 99–102. CrossRef CAS Google Scholar
Kanazawa, Y. & Sasaki, A. (1986). Acta Cryst. C42, 9–11. CrossRef CAS Web of Science IUCr Journals Google Scholar
McCarroll, W. H. (1977). Inorg. Chem. 16, 3351–3353. CrossRef CAS Web of Science Google Scholar
McCarroll, W. H., Katz, L. & Ward, R. (1957). J. Am. Chem. Soc. 79, 5410–5414. CrossRef CAS Web of Science Google Scholar
Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018. CrossRef IUCr Journals Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Torardi, C. C. & McCarley, R. E. (1985). Inorg. Chem. 24, 476–481. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.