research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Li2GeMo3O8: a novel reduced molybdenum oxide containing Mo3O13 cluster units

CROSSMARK_Color_square_no_text.svg

aInstitut des Sciences, Chimiques de Rennes, UMR 6226 CNRS – INSA Rennes – Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: patrick.gougeon@univ-rennes1.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 June 2016; accepted 15 June 2016; online 21 June 2016)

The crystal structure of the title compound, dilithium germanium trimolybdenum octa­oxide, consists of distorted hexa­gonal-close-packed oxygen layers with stacking sequence ABAC along [001] that are held together by alternating lithium–germanium and molybdenum layers. The two Li+ and Ge4+ ions all have site symmetry 3m. and occupy, respectively, tetra­hedral and octa­hedral sites in the ratio 2:1. The Mo atom has a formal oxidation state of +3.3 and occupies an octa­hedral site (site symmetry .m.) and forms strongly bonded triangular cluster units [Mo—Mo distance = 2.4728 (8) Å] involving three MoO6 octa­hedra that are each shared along two edges, constituting an Mo3O13 unit.

1. Chemical context

Reduced molybdenum oxides containing the Mo3O13 cluster unit crystallize either in the hexa­gonal space group type P63mc (a ∼ 5.7–5.8 Å, c ∼ 10.0–10.2 Å) or in the trigonal space group types P3m1 (a ∼ 5.7–5.8 Å, c ∼ 4.9–5.3 Å) or R[\overline{3}]m (a ∼ 5.8–5.9 Å, c ∼ 30.0–30.1 Å). Representatives of the first family are the ternary compounds M2Mo3O8 (McCarroll et al., 1957[McCarroll, W. H., Katz, L. & Ward, R. (1957). J. Am. Chem. Soc. 79, 5410-5414.]) where M is a divalent metal such as Mg, Zn, Fe, Co, Ni, Zn and Cd as well as the quaternary compounds ScZnMo3O8 and Li2MMo3O8 (M = Sn, In) (Gall et al., 2013a[Gall, P., Al Rahal Al Orabi, R., Guizouarn, T., Cuny, J., Fontaine, B., Gautier, R. & Gougeon, P. (2013a). J. Solid State Chem. 201, 312-316.],b[Gall, P., Al Rahal Al Orabi, R., Guizouarn, T. & Gougeon, P. (2013b). J. Solid State Chem. 208, 99-102.]). The LiRMo3O8 series (R = Sc, Y, In, Sm, Gd, Tb, Dy, Ho, Er and Yb) (DeBenedittis & Katz, 1965[DeBenedittis, J. & Katz, L. (1965). Inorg. Chem. 4, 1836-1839.]; McCarroll, 1977[McCarroll, W. H. (1977). Inorg. Chem. 16, 3351-3353.]) crystallize in the P3m1 space group and finally, LiZn2Mo3O8 and Zn3Mo3O8 (Torardi & McCarley, 1985[Torardi, C. C. & McCarley, R. E. (1985). Inorg. Chem. 24, 476-481.]) crystallize in space group R[\overline{3}]m. The crystal structures of all these compounds consist of distorted hexa­gonal-close-packed oxygen layers with stacking sequences ABAC, ABAB and ABC for compounds crystallizing in the space groups P63mc, P3m1 and R[\overline{3}]m, respectively. The oxygen layers are separated by alternating mixed-metal atom (Li, M, or R) layers and molybdenum layers. The metal atoms occupy both tetra­hedral and octa­hedral sites in a ratio of 1:1 (M2Mo3O8 and LiRMo3O8) or 2:1 (LiZn2Mo3O8 and Zn3Mo3O8) between two adjacent oxygen layers. The molybdenum atoms occupy three quarters of the octa­hedral sites and form strongly bonded triangular cluster units involving three MoO6 octa­hedra that are each shared along two edges, the whole constituting an Mo3O13 unit. The Mo—Mo bonds within the trinuclear cluster units range from about 2.5 to 2.6 Å, and the number of electrons available for Mo–Mo bonding is six in M2Mo3O8 and LiRMo3O8, seven in LiZn2Mo3O8 and Li2InMo3O8, and eight in Zn3Mo3O8 and Li2SnMo3O8. The energy-level diagram deduced from LCAO–MO calculations on the Mo3O13 unit shows three bonding orbitals (a1 and e), a non-bonding level (a1), and five anti-bonding orbitals (2e and a2) (Cotton, 1964[Cotton, F. A. (1964). Inorg. Chem. 3, 1217-1220.]). This explains why the compounds with seven electrons per Mo3 cluster unit are paramagnetic with moments corresponding to one unpaired electron per Mo3 cluster unit, and those with six and eight electrons per Mo3 show temperature-independent paramagnetism.

We present here the crystal structure of the new quaternary compound Li2GeMo3O8 in which the Mo3 cluster unit has eight electrons available for bonding.

2. Structural commentary

Li2GeMo3O8 is isotypic with the Li2MMo3O8 (M = Sn, In) compounds (Gall et al., 2013a[Gall, P., Al Rahal Al Orabi, R., Guizouarn, T., Cuny, J., Fontaine, B., Gautier, R. & Gougeon, P. (2013a). J. Solid State Chem. 201, 312-316.],b[Gall, P., Al Rahal Al Orabi, R., Guizouarn, T. & Gougeon, P. (2013b). J. Solid State Chem. 208, 99-102.]). Its crystal structure consists of distorted hexa­gonal-close-packed oxygen layers with stacking sequence ABAC along [001] that are held together by alternating lithium–germanium and molybdenum layers (Fig. 1[link]). The Li+ and Ge4+ ions occupy, respectively, tetra­hedral and octa­hedral sites in the ratio 2:1. The Mo atoms occupy octa­hedral sites and form strongly bonded triangular cluster units involving three MoO6 octa­hedra that are each shared along two edges, constituting an Mo3O13 unit (Fig. 2[link]). The Mo—Mo distance within the Mo3 triangle is 2.4728 (8) Å compared to 2.5036 (7) and 2.5455 (4) Å found in the tin and indium analogues, respectively. The Mo—O distances range from 2.004 (6) to 2.146 (3) Å (Table 1[link]) while in Li2InMo3O8 they range from 2.0212 (17) to 2.1241 (16) Å and in Li2SnMo3O8 from 2.020 (6) to 2.122 (3) Å. The Li—O distances in the title structure range from 1.78 (2) to 2.012 (13) Å with average distances of 1.97 and 1.86 Å for the Li1 and Li2 sites, respectively. Both Li sites have site symmetry 3m.. For the Ge site, likewise with site symmetry 3m., the Ge—O distances are 3×1.883 (5) and 3×2.016 (5) Å. The average distance of 1.95 Å is close to the value of 1.92 Å calculated from the sum of the ionic radii of O2− and Ge4+ in octa­hedral coordination according to Shannon & Prewitt (1969[Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.]). The oxidation state of +4 for the Ge atoms was also confirmed from the Ge—O bond lengths by using the relationship of Brown & Wu (1976[Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.]) {s = [d(Ge—O)/1.746]−6.05} which leads to a value of +3.5 (1). The latter relationship applied to Mo—O bonds {s = [d(Mo—O)/1.882]−6} yield an oxidation state of +3.38 for the Mo atom, and thus 7.86 electrons per Mo3 cluster unit, close to the expected value of 8. This is consistent with the chemical composition Li2+Ge4+Mo33.33+O82−.

Table 1
Selected bond lengths (Å)

Li1—O3 1.84 (2) Ge1—O1ix 2.016 (5)
Li1—O2i 2.012 (13) Ge1—O1x 2.016 (5)
Li1—O2ii 2.012 (13) Ge1—O1xi 2.016 (4)
Li1—O2iii 2.012 (13) Mo1—O4xii 2.004 (6)
Li2—O4 1.78 (3) Mo1—O1xii 2.039 (4)
Li2—O1iv 1.892 (6) Mo1—O1v 2.039 (4)
Li2—O1v 1.892 (6) Mo1—O3 2.076 (3)
Li2—O1vi 1.892 (6) Mo1—O2 2.146 (3)
Ge1—O2 1.883 (5) Mo1—O2xiii 2.146 (3)
Ge1—O2vii 1.883 (5) Mo1—Mo1xiv 2.4728 (8)
Ge1—O2viii 1.883 (5)    
Symmetry codes: (i) [x-y+1, x, z+{\script{1\over 2}}]; (ii) [-x+2, -y+2, z+{\script{1\over 2}}]; (iii) [y, -x+y+1, z+{\script{1\over 2}}]; (iv) [x-y, x-1, z-{\script{1\over 2}}]; (v) [y+1, -x+y+2, z-{\script{1\over 2}}]; (vi) [-x+3, -y+1, z-{\script{1\over 2}}]; (vii) -x+y+2, -x+2, z; (viii) -y+2, x-y, z; (ix) -x+y+2, -x+2, z-1; (x) -y+2, x-y, z-1; (xi) x, y, z-1; (xii) [-x+3, -y+2, z-{\script{1\over 2}}]; (xiii) -y+2, x-y+1, z; (xiv) -x+y+2, -x+3, z.
[Figure 1]
Figure 1
View of the crystal structure of Li2GeMo3O8 in a projection approximately along [010]. Displacement ellipsoids are drawn at the 97% probability level.
[Figure 2]
Figure 2
The Mo3O13 cluster unit with its numbering scheme, with ellipsoids drawn at the 97% probability level. [Symmetry codes: (v) y + 1, −x + y+2, z − [{1\over 2}]; (xii) −x + 3, −y + 2, z − [{1\over 2}]; (xiii) −y + 2, x-y + 1, z; (xiv) −x + y+2, −x + 3, z.]

3. Database survey

The M2Mo3O8 (Mg, Zn, Fe, Co, Ni, Zn and Cd) compounds containing triangular Mo3 clusters were first synthesized by McCarroll et al. (1957[McCarroll, W. H., Katz, L. & Ward, R. (1957). J. Am. Chem. Soc. 79, 5410-5414.]). They presented the results of a structure determination on Zn2Mo3O8 from photographic data (R = 0.118). Later, a refinement of the structure was accomplished by Ansell & Katz (1966[Ansell, G. B. & Katz, L. (1966). Acta Cryst. 21, 482-485.]) with an R factor of 0.069. Among the above compounds, it is inter­esting to note that Fe2Mo3O8 is a mineral known as kamiokite (Kanazawa & Sasaki, 1986[Kanazawa, Y. & Sasaki, A. (1986). Acta Cryst. C42, 9-11.]). Later, DeBenedittis & Katz (1965[DeBenedittis, J. & Katz, L. (1965). Inorg. Chem. 4, 1836-1839.]) reported the existence of the LiRMo3O8 (R = Sc and Y) compounds. Subsequently, McCarroll (1977[McCarroll, W. H. (1977). Inorg. Chem. 16, 3351-3353.]) obtained isotypic compounds with R = In, Sm, Gd, Tb, Dy, Ho, Er, and Yb. In 1985, Torardi & McCarley (1985[Torardi, C. C. & McCarley, R. E. (1985). Inorg. Chem. 24, 476-481.]) described the new Mo3 cluster compounds LiZn2Mo3O8, Zn3Mo3O8 and ScZnMo3O8 and, in 2013, Gall et al. (2013a[Gall, P., Al Rahal Al Orabi, R., Guizouarn, T., Cuny, J., Fontaine, B., Gautier, R. & Gougeon, P. (2013a). J. Solid State Chem. 201, 312-316.],b[Gall, P., Al Rahal Al Orabi, R., Guizouarn, T. & Gougeon, P. (2013b). J. Solid State Chem. 208, 99-102.]), the quaternary compounds Li2MMo3O8 (M = Sn and In).

4. Synthesis and crystallization

Single crystals of Li2GeMo3O8 were obtained by heating a mixture of Li2MoO4, O2, MoO3 and Mo with the nominal composition Li2GeMo6O12 at 1923 K for 72 h in a molybdenum crucible sealed under low argon pressure using an arc-welding system. The molybdate Li2MoO4 was synthesized by heating an equimolar ratio of MoO3 (CERAC 99.95%) and Li2CO3 (CERAC 99.9%) in an alumina vessel at 873 K in air over 12 h. Before use, the Mo powder was heated under a hydrogen flow at 1273 K for 6 h. The composition of the final crystals thus obtained was determined after a complete X-ray structural study on one of them.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All atoms were refined with anisotropic displacement parameters, except for the Li atoms, which were refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula Li2GeMo3O8
Mr 502.29
Crystal system, space group Hexagonal, P63mc
Temperature (K) 293
a, c (Å) 5.7268 (3), 9.9841 (6)
V3) 283.57 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 11.74
Crystal size (mm) 0.21 × 0.13 × 0.07
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Analytical (de Meulenaar & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.])
Tmin, Tmax 0.048, 0.157
No. of measured, independent and observed [I > 2σ(I)] reflections 4457, 522, 501
Rint 0.063
(sin θ/λ)max−1) 0.807
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.10
No. of reflections 522
No. of parameters 31
No. of restraints 1
Δρmax, Δρmin (e Å−3) 1.43, −1.33
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 247 Friedel pairs
Absolute structure parameter 0.01 (3)
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Bergerhoff, 1996[Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Dilithium germanium trimolybdenum octaoxide top
Crystal data top
Li2GeMo3O8Dx = 5.883 Mg m3
Mr = 502.29Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 4457 reflections
Hall symbol: P 6c -2cθ = 4.1–35.0°
a = 5.7268 (3) ŵ = 11.74 mm1
c = 9.9841 (6) ÅT = 293 K
V = 283.57 (3) Å3Irregular block, black
Z = 20.21 × 0.13 × 0.07 mm
F(000) = 456
Data collection top
Nonius KappaCCD
diffractometer
522 independent reflections
Radiation source: fine-focus sealed tube501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ scans (κ = 0) + additional ω scansθmax = 35.0°, θmin = 4.1°
Absorption correction: analytical
(de Meulenaar & Tompa, 1965)
h = 79
Tmin = 0.048, Tmax = 0.157k = 99
4457 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.3716P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.001
S = 1.10Δρmax = 1.43 e Å3
522 reflectionsΔρmin = 1.33 e Å3
31 parametersAbsolute structure: Flack (1983), 247 Friedel pairs
1 restraintAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li11.00001.00001.581 (2)0.014 (3)*
Li21.33330.66671.490 (2)0.014 (3)*
Ge11.33330.66671.09391 (9)0.0076 (2)
Mo11.37881 (9)1.18940 (4)1.30891 (9)0.00660 (13)
O11.4795 (4)0.5205 (4)1.9536 (5)0.0081 (8)
O21.1704 (6)0.8296 (6)1.1906 (5)0.0081 (8)
O31.00001.00001.3974 (7)0.0110 (14)
O41.33330.66671.6680 (8)0.0080 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0076 (3)0.0076 (3)0.0076 (4)0.00381 (14)0.0000.000
Mo10.00622 (19)0.00662 (16)0.00683 (19)0.00311 (10)0.00015 (18)0.00007 (9)
O10.0079 (13)0.0079 (13)0.0094 (18)0.0045 (14)0.0007 (8)0.0007 (8)
O20.0071 (12)0.0071 (12)0.010 (2)0.0034 (13)0.0017 (9)0.0017 (9)
O30.012 (2)0.012 (2)0.010 (3)0.0058 (10)0.0000.000
O40.0102 (19)0.0102 (19)0.004 (3)0.0051 (9)0.0000.000
Geometric parameters (Å, º) top
Li1—O31.84 (2)Ge1—O1xv2.016 (5)
Li1—O2i2.012 (13)Ge1—O1xvi2.016 (4)
Li1—O2ii2.012 (13)Mo1—O4xvii2.004 (6)
Li1—O2iii2.012 (13)Mo1—O1xvii2.039 (4)
Li1—Mo1i2.949 (17)Mo1—O1viii2.039 (4)
Li1—Mo1iii2.949 (17)Mo1—O32.076 (3)
Li1—Mo1ii2.949 (17)Mo1—O22.146 (3)
Li1—Mo1iv3.305 (18)Mo1—O2v2.146 (3)
Li1—Mo1v3.305 (18)Mo1—Mo1xviii2.4728 (8)
Li1—Mo13.305 (18)Mo1—Mo1xix2.4728 (8)
Li1—Li23.430 (9)Mo1—Li1xx2.949 (17)
Li1—Li2vi3.430 (9)O1—Li2xxi1.892 (6)
Li2—O41.78 (3)O1—Ge1xxii2.016 (4)
Li2—O1vii1.892 (6)O1—Mo1xxiii2.039 (4)
Li2—O1viii1.892 (6)O1—Mo1xxiv2.039 (4)
Li2—O1ix1.892 (6)O2—Li1xx2.012 (13)
Li2—Li1x3.430 (9)O2—Mo1iv2.146 (3)
Li2—Li1xi3.430 (9)O3—Mo1iv2.076 (3)
Ge1—O21.883 (5)O3—Mo1v2.076 (3)
Ge1—O2xii1.883 (5)O4—Mo1iii2.004 (5)
Ge1—O2xiii1.883 (5)O4—Mo1xxiv2.004 (5)
Ge1—O1xiv2.016 (5)O4—Mo1xxiii2.004 (5)
O3—Li1—O2i122.9 (5)Li1x—Li2—Li1xi113.2 (5)
O3—Li1—O2ii122.9 (5)O2—Ge1—O2xii96.1 (2)
O2i—Li1—O2ii93.3 (7)O2—Ge1—O2xiii96.1 (2)
O3—Li1—O2iii122.9 (5)O2xii—Ge1—O2xiii96.1 (2)
O2i—Li1—O2iii93.3 (7)O2—Ge1—O1xiv92.73 (17)
O2ii—Li1—O2iii93.3 (7)O2xii—Ge1—O1xiv166.8 (2)
O3—Li1—Mo1i140.4 (3)O2xiii—Ge1—O1xiv92.73 (18)
O2i—Li1—Mo1i46.7 (4)O2—Ge1—O1xv92.73 (17)
O2ii—Li1—Mo1i46.7 (4)O2xii—Ge1—O1xv92.73 (17)
O2iii—Li1—Mo1i96.7 (8)O2xiii—Ge1—O1xv166.8 (2)
O3—Li1—Mo1iii140.4 (3)O1xiv—Ge1—O1xv77.0 (2)
O2i—Li1—Mo1iii46.7 (4)O2—Ge1—O1xvi166.8 (2)
O2ii—Li1—Mo1iii96.7 (8)O2xii—Ge1—O1xvi92.73 (17)
O2iii—Li1—Mo1iii46.7 (4)O2xiii—Ge1—O1xvi92.73 (17)
Mo1i—Li1—Mo1iii67.0 (4)O1xiv—Ge1—O1xvi77.0 (2)
O3—Li1—Mo1ii140.4 (3)O1xv—Ge1—O1xvi77.0 (2)
O2i—Li1—Mo1ii96.7 (8)O4xvii—Mo1—O1xvii104.58 (15)
O2ii—Li1—Mo1ii46.7 (4)O4xvii—Mo1—O1viii104.58 (15)
O2iii—Li1—Mo1ii46.7 (4)O1xvii—Mo1—O1viii76.0 (2)
Mo1i—Li1—Mo1ii67.0 (4)O4xvii—Mo1—O3160.6 (3)
Mo1iii—Li1—Mo1ii67.0 (4)O1xvii—Mo1—O390.60 (16)
O3—Li1—Mo1iv34.6 (2)O1viii—Mo1—O390.60 (16)
O2i—Li1—Mo1iv133.2 (4)O4xvii—Mo1—O287.53 (16)
O2ii—Li1—Mo1iv133.2 (4)O1xvii—Mo1—O2167.40 (14)
O2iii—Li1—Mo1iv88.2 (3)O1viii—Mo1—O297.8 (2)
Mo1i—Li1—Mo1iv175.1 (5)O3—Mo1—O278.36 (18)
Mo1iii—Li1—Mo1iv116.94 (6)O4xvii—Mo1—O2v87.53 (16)
Mo1ii—Li1—Mo1iv116.94 (6)O1xvii—Mo1—O2v97.8 (2)
O3—Li1—Mo1v34.6 (2)O1viii—Mo1—O2v167.40 (14)
O2i—Li1—Mo1v133.2 (4)O3—Mo1—O2v78.36 (18)
O2ii—Li1—Mo1v88.2 (3)O2—Mo1—O2v86.0 (3)
O2iii—Li1—Mo1v133.2 (4)O4xvii—Mo1—Mo1xviii51.91 (12)
Mo1i—Li1—Mo1v116.94 (6)O1xvii—Mo1—Mo1xviii52.67 (9)
Mo1iii—Li1—Mo1v175.1 (5)O1viii—Mo1—Mo1xviii90.54 (10)
Mo1ii—Li1—Mo1v116.94 (6)O3—Mo1—Mo1xviii141.60 (11)
Mo1iv—Li1—Mo1v59.0 (4)O2—Mo1—Mo1xviii139.30 (11)
O3—Li1—Mo134.6 (2)O2v—Mo1—Mo1xviii94.37 (14)
O2i—Li1—Mo188.2 (3)O4xvii—Mo1—Mo1xix51.91 (12)
O2ii—Li1—Mo1133.2 (4)O1xvii—Mo1—Mo1xix90.54 (9)
O2iii—Li1—Mo1133.2 (4)O1viii—Mo1—Mo1xix52.67 (9)
Mo1i—Li1—Mo1116.94 (6)O3—Mo1—Mo1xix141.60 (11)
Mo1iii—Li1—Mo1116.94 (6)O2—Mo1—Mo1xix94.37 (13)
Mo1ii—Li1—Mo1175.1 (5)O2v—Mo1—Mo1xix139.30 (11)
Mo1iv—Li1—Mo159.0 (4)Mo1xviii—Mo1—Mo1xix60.0
Mo1v—Li1—Mo159.0 (4)O4xvii—Mo1—Li1xx85.0 (3)
O3—Li1—Li274.6 (5)O1xvii—Mo1—Li1xx139.97 (14)
O2i—Li1—Li274.9 (3)O1viii—Mo1—Li1xx139.97 (15)
O2ii—Li1—Li2162.6 (10)O3—Mo1—Li1xx75.6 (3)
O2iii—Li1—Li274.9 (3)O2—Mo1—Li1xx43.02 (16)
Mo1i—Li1—Li2120.8 (5)O2v—Mo1—Li1xx43.02 (16)
Mo1iii—Li1—Li265.8 (4)Mo1xviii—Mo1—Li1xx123.5 (2)
Mo1ii—Li1—Li2120.8 (5)Mo1xix—Mo1—Li1xx123.5 (2)
Mo1iv—Li1—Li260.5 (4)O4xvii—Mo1—Li1169.2 (3)
Mo1v—Li1—Li2109.2 (7)O1xvii—Mo1—Li167.23 (18)
Mo1—Li1—Li260.5 (4)O1viii—Mo1—Li167.23 (18)
O3—Li1—Li2vi74.6 (5)O3—Mo1—Li130.2 (3)
O2i—Li1—Li2vi162.6 (10)O2—Mo1—Li1100.31 (19)
O2ii—Li1—Li2vi74.9 (3)O2v—Mo1—Li1100.31 (19)
O2iii—Li1—Li2vi74.9 (3)Mo1xviii—Mo1—Li1119.49 (18)
Mo1i—Li1—Li2vi120.8 (5)Mo1xix—Mo1—Li1119.49 (18)
Mo1iii—Li1—Li2vi120.8 (5)Li1xx—Mo1—Li1105.78 (5)
Mo1ii—Li1—Li2vi65.8 (4)Li2xxi—O1—Ge1xxii124.9 (8)
Mo1iv—Li1—Li2vi60.5 (4)Li2xxi—O1—Mo1xxiii119.4 (6)
Mo1v—Li1—Li2vi60.5 (4)Ge1xxii—O1—Mo1xxiii103.46 (15)
Mo1—Li1—Li2vi109.2 (7)Li2xxi—O1—Mo1xxiv119.4 (6)
Li2—Li1—Li2vi113.2 (5)Ge1xxii—O1—Mo1xxiv103.46 (15)
O4—Li2—O1vii101.1 (7)Mo1xxiii—O1—Mo1xxiv74.66 (17)
O4—Li2—O1viii101.1 (7)Ge1—O2—Li1xx116.3 (6)
O1vii—Li2—O1viii116.4 (5)Ge1—O2—Mo1125.62 (15)
O4—Li2—O1ix101.1 (7)Li1xx—O2—Mo190.3 (4)
O1vii—Li2—O1ix116.4 (5)Ge1—O2—Mo1iv125.62 (15)
O1viii—Li2—O1ix116.4 (5)Li1xx—O2—Mo1iv90.3 (4)
O4—Li2—Li174.6 (5)Mo1—O2—Mo1iv98.6 (2)
O1vii—Li2—Li165.0 (2)Li1—O3—Mo1iv115.18 (19)
O1viii—Li2—Li165.0 (2)Li1—O3—Mo1115.18 (19)
O1ix—Li2—Li1175.6 (12)Mo1iv—O3—Mo1103.2 (2)
O4—Li2—Li1x74.6 (5)Li1—O3—Mo1v115.18 (19)
O1vii—Li2—Li1x175.6 (12)Mo1iv—O3—Mo1v103.2 (2)
O1viii—Li2—Li1x65.0 (2)Mo1—O3—Mo1v103.2 (2)
O1ix—Li2—Li1x65.0 (2)Li2—O4—Mo1iii134.58 (16)
Li1—Li2—Li1x113.2 (5)Li2—O4—Mo1xxiv134.58 (16)
O4—Li2—Li1xi74.6 (5)Mo1iii—O4—Mo1xxiv76.2 (2)
O1vii—Li2—Li1xi65.0 (2)Li2—O4—Mo1xxiii134.58 (16)
O1viii—Li2—Li1xi175.6 (12)Mo1iii—O4—Mo1xxiii76.2 (2)
O1ix—Li2—Li1xi65.0 (2)Mo1xxiv—O4—Mo1xxiii76.2 (2)
Li1—Li2—Li1xi113.2 (5)
Symmetry codes: (i) xy+1, x, z+1/2; (ii) x+2, y+2, z+1/2; (iii) y, x+y+1, z+1/2; (iv) x+y+1, x+2, z; (v) y+2, xy+1, z; (vi) x1, y, z; (vii) xy, x1, z1/2; (viii) y+1, x+y+2, z1/2; (ix) x+3, y+1, z1/2; (x) x+1, y, z; (xi) x, y1, z; (xii) x+y+2, x+2, z; (xiii) y+2, xy, z; (xiv) x+y+2, x+2, z1; (xv) y+2, xy, z1; (xvi) x, y, z1; (xvii) x+3, y+2, z1/2; (xviii) x+y+2, x+3, z; (xix) y+3, xy+1, z; (xx) x+2, y+2, z1/2; (xxi) x+3, y+1, z+1/2; (xxii) x, y, z+1; (xxiii) xy+1, x1, z+1/2; (xxiv) x+3, y+2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnsell, G. B. & Katz, L. (1966). Acta Cryst. 21, 482–485.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957–1959.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCotton, F. A. (1964). Inorg. Chem. 3, 1217–1220.  CrossRef CAS Web of Science Google Scholar
First citationDeBenedittis, J. & Katz, L. (1965). Inorg. Chem. 4, 1836–1839.  CrossRef Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGall, P., Al Rahal Al Orabi, R., Guizouarn, T., Cuny, J., Fontaine, B., Gautier, R. & Gougeon, P. (2013a). J. Solid State Chem. 201, 312–316.  CrossRef CAS Google Scholar
First citationGall, P., Al Rahal Al Orabi, R., Guizouarn, T. & Gougeon, P. (2013b). J. Solid State Chem. 208, 99–102.  CrossRef CAS Google Scholar
First citationKanazawa, Y. & Sasaki, A. (1986). Acta Cryst. C42, 9–11.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcCarroll, W. H. (1977). Inorg. Chem. 16, 3351–3353.  CrossRef CAS Web of Science Google Scholar
First citationMcCarroll, W. H., Katz, L. & Ward, R. (1957). J. Am. Chem. Soc. 79, 5410–5414.  CrossRef CAS Web of Science Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationShannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorardi, C. C. & McCarley, R. E. (1985). Inorg. Chem. 24, 476–481.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds