research communications
of non-centrosymmetric bis(4-methoxybenzylammonium) tetrachloridozincate
aLaboratoire des Sciences des Matériaux et d'Environnement, Faculté des Sciences, Université de Sfax, BP 1171, Route de Soukra, 3018 Sfax, Tunisia, bUnité de Recherche, Catalyse et Matériaux pour l'Environnement et les Procédés, URCMEP, (UR11ES85), Faculté des Sciences de Gabès, Campus Universitaire, 6072 Gabès, Tunisia, and cDipartimento di Chimica, Universitá di Parma, Parco Area delle Scienze 17A, I-43124 Parma, Italy
*Correspondence e-mail: gianluca.calestani@unipr.it
The structure of the title non-centrosymmetric organic–inorganic hybrid salt, (C8H12NO)2[ZnCl4], consists of two 4-methoxybenzylammonium cations sandwiched between anionic layers, formed by isolated tetrachloridozincate tetrahedra. The double layers extend parallel to the ac plane. The crystal packing is assured by Coulombic interactions and by a complex N—H⋯Cl and C—H⋯Cl hydrogen-bonding system mostly involving the positively charged ammonium groups and the chloride ligands of the isolated tetrahedral [ZnCl4]2− units. One of the methyleneammonium groups is disordered over two sets of sites in a 0.48 (2):0.52 (2) ratio. The crystal investigated was twinned by non-merohedry with a twin component ratio of 0.738 (2):0.262 (2).
CCDC reference: 1486826
1. Chemical context
Non-linear optical (NLO) materials have received much attention in different research areas due to their potential applications in high-density optical data storage, electro-optical shutters, optical communication and signal processing (Maury & Le Bozec, 2005; Green et al., 2011; Evans & Lin, 2002). Mostly connected in the past to a few families of inorganic materials, the research was then extended to organic materials, generally salts of amino acids with organic acids, which are expected to have relatively strong NLO properties due to delocalized electrons at π–π* orbitals. More recently, organic–inorganic hybrid materials showing non-centrosymmetric structures started gaining attention in the field, since they are expected to offer enhanced properties, such as second harmonic generation efficiency, by combining the characteristic features of both organic and inorganic moieties. These materials are usually constituted by the crystal packing of inorganic anions (typically halogenidometalates) and organic ammonium cations ensured by hydrogen bonds and Coulombic interactions (Brammer et al., 2002). Herein we report the synthesis and of a new organic–inorganic hybrid compound, bis(4-methoxybenzylammonium) tetrachloridozincate. This salt crystallizes in a non-centrosymmetric and hence could be a potential candidate for second order non-linear optical properties.
2. Structural commentary
The 4]2− and two 4-methoxybenzylammonium cations, (C8H12NO)+, as shown in Fig. 1. One of the cations shows positional disorder of the methyleneammonium moiety. The lengths of the C—C, C—N and C—O bonds in the two independent 4-methoxybenzylammonium cations are in accordance with corresponding distances found in the literature (Groom et al., 2016). The ZnII atom is tetrahedrally coordinated by four chloride ligands with Zn—Cl bond lengths ranging from 2.249 (2) to 2.289 (2) Å and Cl—Zn—Cl bond angles varying between 107.25 (8) and 112.41 (10)°.
of the consists of an isolated tetrachloridozincate anion, [ZnCl3. Supramolecular features
The ac plane, as shown in Fig. 2. The cationic units are linked into a two-dimensional network by weak C—H⋯π interactions (Table 1). The crystal packing is assured by a complex hydrogen-bonding system, mostly involving the positively charged ammonium groups and the chloride ligands of the isolated tetrahedral [ZnCl4]2− units (Table 1), which reinforce the Coulombic interactions, as depicted in Fig. 3. Whereas the N2 atom is blocked by a very efficient hydrogen-bonding system involving five donor⋯acceptor distances ranging from 3.279 (8) to 3.452 (7) Å, the N1 ammonium group is disordered over two sets of sites as a consequence of a less efficient hydrogen bonding.
consist of 4-methoxybenzylammonium cations sandwiched between tetrachloridozincate layers extending parallel to the4. Database survey
A search of the Cambridge Structural Database (Version 5.37; last update February 2016; Groom et al., 2016) for related compounds showed the occurrence of the cadmium analogue of formula (C8H12NO)2[CdCl4] (Kefi et al., 2011), in which the coordination sphere of the metal is octahedral, giving rise to the formation of perovskite-like edge-sharing units that built up two-dimensional anionic layers parallel to the bc plane.
5. Synthesis and crystallization
Single crystals of (C8H12NO)2[ZnCl4] were synthesized starting from 4-methoxybenzylamine (Sigma–Aldrich, 98%), zinc chloride (Sigma–Aldrich, 98%) and HCl (37%), which were weighted in the stoichiometric proportion conforming to the equation reaction:
2 C8H11NO + 2 HCl + ZnCl2 → (C8H12NO)2[ZnCl4]
After mixing the reagents in 50 ml of water and stirring at room temperature for more 3 h, the resulting solution was placed in a Petri dish and allowed to evaporate slowly. Single crystals suitable for X-ray diffraction were obtained within a week (yield: 75%).
6. Refinement
Crystal data, data collection and structure . The crystals of bis(4-methoxybenzylammonium) tetrachloridozincate were systematically affected by non-merohedral polar The ratio of the twin components of the crystal selected for X-ray analysis was refined to 0.738 (2):0.262 (2). One methyleneammonium group was found to be disordered over two sets of sites with a refined occupancy ratio of 0.52 (2):0.48 (2). During the of the disordered group, the C—C and C—N bond lengths were constrained to be 1.50 (2) and 1.47 (1) Å, respectively. EADP and ISOR restraints (Sheldrick, 2015b) were also applied. All H atoms were placed geometrically and refined using a riding-model approximation, with C—H = 0.93–0.97 Å, N—H = 0.89 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, N) for methyl and ammonium H atoms, for which a rotating model was applied.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1486826
https://doi.org/10.1107/S2056989016010069/wm5302sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016010069/wm5302Isup2.hkl
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 (Farrugia, 2012), VESTA (Momma & Izumi, 2011) and SCHAKAL (Keller, 1999); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).(C8H12NO)2[ZnCl4] | F(000) = 496 |
Mr = 483.54 | Dx = 1.508 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.6849 (10) Å | Cell parameters from 196 reflections |
b = 7.4540 (7) Å | θ = 7.3–17.5° |
c = 13.3961 (12) Å | µ = 1.67 mm−1 |
β = 93.482 (2)° | T = 294 K |
V = 1064.97 (17) Å3 | Prism, colourless |
Z = 2 | 0.31 × 0.29 × 0.11 mm |
Bruker SMART CCD diffractometer | 1932 reflections with I > 2σ(I) |
ω scan | θmax = 25.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −12→12 |
Tmin = 0.604, Tmax = 0.827 | k = 0→9 |
2132 measured reflections | l = 0→16 |
2132 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2617P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.42 e Å−3 |
2132 reflections | Δρmin = −0.44 e Å−3 |
239 parameters | Absolute structure: No quotients, so Flack parameter determined by classical intensity fit |
29 restraints | Absolute structure parameter: 0.09 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.23731 (7) | 0.06114 (12) | −0.04066 (6) | 0.0413 (2) | |
Cl1 | 0.35118 (19) | −0.1525 (3) | −0.11156 (13) | 0.0464 (5) | |
Cl2 | 0.3173 (2) | 0.3349 (3) | −0.08077 (16) | 0.0515 (5) | |
Cl3 | 0.2564 (2) | 0.0169 (3) | 0.12644 (14) | 0.0541 (5) | |
Cl4 | 0.03137 (18) | 0.0515 (5) | −0.09460 (17) | 0.0714 (7) | |
O1 | 0.2318 (5) | 0.1370 (9) | 0.5695 (4) | 0.0585 (16) | |
O2 | 0.3732 (5) | 0.6144 (8) | 0.5857 (4) | 0.0541 (15) | |
N1A | −0.039 (2) | −0.010 (3) | 0.1458 (15) | 0.060 (4) | 0.52 (2) |
H1A1 | 0.0398 | 0.0184 | 0.1345 | 0.090* | 0.52 (2) |
H1A2 | −0.0863 | −0.0023 | 0.0889 | 0.090* | 0.52 (2) |
H1A3 | −0.0418 | −0.1214 | 0.1693 | 0.090* | 0.52 (2) |
C8A | −0.087 (2) | 0.115 (3) | 0.2197 (13) | 0.051 (4) | 0.52 (2) |
H8A1 | −0.1741 | 0.0889 | 0.2288 | 0.062* | 0.52 (2) |
H8A2 | −0.0816 | 0.2370 | 0.1945 | 0.062* | 0.52 (2) |
N1B | −0.062 (2) | 0.077 (4) | 0.1398 (13) | 0.060 (4) | 0.48 (2) |
H1B1 | −0.0269 | 0.1835 | 0.1303 | 0.090* | 0.48 (2) |
H1B2 | −0.1227 | 0.0581 | 0.0926 | 0.090* | 0.48 (2) |
H1B3 | −0.0039 | −0.0084 | 0.1365 | 0.090* | 0.48 (2) |
C8B | −0.1142 (17) | 0.073 (4) | 0.2386 (12) | 0.051 (4) | 0.48 (2) |
H8B1 | −0.1541 | −0.0422 | 0.2483 | 0.062* | 0.48 (2) |
H8B2 | −0.1775 | 0.1656 | 0.2421 | 0.062* | 0.48 (2) |
N2 | 0.4066 (6) | 0.6363 (10) | 0.1058 (5) | 0.0491 (16) | |
H1N | 0.4869 | 0.6150 | 0.1236 | 0.074* | |
H2N | 0.3897 | 0.7516 | 0.1158 | 0.074* | |
H3N | 0.3916 | 0.6099 | 0.0414 | 0.074* | |
C1 | 0.1468 (6) | 0.1175 (9) | 0.4901 (5) | 0.0369 (16) | |
C2 | 0.1783 (7) | 0.2035 (10) | 0.4051 (5) | 0.0424 (18) | |
H2 | 0.2535 | 0.2663 | 0.4048 | 0.051* | |
C3 | 0.0987 (8) | 0.1978 (11) | 0.3188 (6) | 0.0456 (18) | |
H3 | 0.1199 | 0.2572 | 0.2612 | 0.055* | |
C4 | −0.0124 (7) | 0.1024 (10) | 0.3201 (5) | 0.0409 (18) | |
C5 | −0.0412 (7) | 0.0166 (11) | 0.4056 (6) | 0.049 (2) | |
H5 | −0.1157 | −0.0477 | 0.4061 | 0.059* | |
C6 | 0.0374 (7) | 0.0223 (10) | 0.4917 (6) | 0.047 (2) | |
H6 | 0.0162 | −0.0372 | 0.5493 | 0.057* | |
C7 | 0.2037 (11) | 0.0551 (19) | 0.6615 (7) | 0.085 (3) | |
H7A | 0.1208 | 0.0892 | 0.6781 | 0.128* | |
H7B | 0.2634 | 0.0939 | 0.7135 | 0.128* | |
H7C | 0.2078 | −0.0729 | 0.6549 | 0.128* | |
C11 | 0.3734 (7) | 0.5951 (10) | 0.4849 (5) | 0.0393 (16) | |
C12 | 0.4613 (7) | 0.4999 (11) | 0.4364 (6) | 0.0423 (18) | |
H12 | 0.5296 | 0.4487 | 0.4721 | 0.051* | |
C13 | 0.4466 (7) | 0.4808 (12) | 0.3325 (6) | 0.0450 (19) | |
H13 | 0.5050 | 0.4138 | 0.2997 | 0.054* | |
C14 | 0.3470 (6) | 0.5594 (13) | 0.2768 (5) | 0.0440 (16) | |
C15 | 0.2628 (7) | 0.6580 (10) | 0.3274 (6) | 0.0472 (18) | |
H15 | 0.1967 | 0.7140 | 0.2912 | 0.057* | |
C16 | 0.2727 (8) | 0.6769 (10) | 0.4303 (6) | 0.0468 (18) | |
H16 | 0.2134 | 0.7427 | 0.4629 | 0.056* | |
C17 | 0.4625 (10) | 0.5122 (14) | 0.6466 (6) | 0.070 (3) | |
H17A | 0.4541 | 0.3873 | 0.6299 | 0.105* | |
H17B | 0.4473 | 0.5292 | 0.7158 | 0.105* | |
H17C | 0.5458 | 0.5517 | 0.6346 | 0.105* | |
C18 | 0.3266 (7) | 0.5243 (12) | 0.1665 (6) | 0.054 (2) | |
H18A | 0.3437 | 0.3989 | 0.1535 | 0.065* | |
H18B | 0.2394 | 0.5470 | 0.1461 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0397 (4) | 0.0455 (4) | 0.0384 (4) | −0.0002 (5) | 0.0005 (4) | 0.0012 (4) |
Cl1 | 0.0524 (11) | 0.0456 (9) | 0.0416 (9) | 0.0014 (9) | 0.0070 (9) | −0.0042 (9) |
Cl2 | 0.0516 (11) | 0.0415 (10) | 0.0607 (11) | 0.0008 (10) | −0.0015 (10) | 0.0091 (9) |
Cl3 | 0.0695 (12) | 0.0560 (13) | 0.0369 (9) | 0.0119 (11) | 0.0042 (10) | 0.0018 (8) |
Cl4 | 0.0364 (9) | 0.115 (2) | 0.0623 (12) | −0.0014 (15) | −0.0031 (9) | −0.0049 (16) |
O1 | 0.056 (3) | 0.076 (4) | 0.042 (3) | 0.006 (3) | −0.014 (3) | 0.001 (3) |
O2 | 0.063 (3) | 0.056 (4) | 0.044 (3) | 0.002 (3) | 0.007 (3) | −0.004 (3) |
N1A | 0.056 (7) | 0.077 (12) | 0.047 (4) | −0.011 (9) | −0.007 (5) | −0.003 (8) |
C8A | 0.047 (6) | 0.055 (7) | 0.052 (6) | 0.001 (5) | −0.002 (5) | 0.004 (5) |
N1B | 0.056 (7) | 0.077 (12) | 0.047 (4) | −0.011 (9) | −0.007 (5) | −0.003 (8) |
C8B | 0.047 (6) | 0.055 (7) | 0.052 (6) | 0.001 (5) | −0.002 (5) | 0.004 (5) |
N2 | 0.051 (4) | 0.058 (4) | 0.038 (3) | 0.006 (3) | 0.006 (3) | 0.007 (3) |
C1 | 0.033 (4) | 0.037 (4) | 0.041 (4) | 0.003 (3) | 0.004 (3) | −0.001 (3) |
C2 | 0.037 (4) | 0.043 (4) | 0.048 (4) | −0.010 (3) | 0.010 (3) | −0.006 (3) |
C3 | 0.058 (5) | 0.048 (4) | 0.031 (4) | −0.005 (4) | 0.008 (3) | −0.001 (3) |
C4 | 0.041 (4) | 0.040 (5) | 0.041 (4) | 0.003 (3) | −0.004 (3) | −0.008 (3) |
C5 | 0.034 (4) | 0.044 (5) | 0.069 (5) | −0.010 (3) | 0.005 (4) | −0.002 (4) |
C6 | 0.052 (5) | 0.038 (4) | 0.053 (4) | 0.000 (4) | 0.014 (4) | 0.010 (3) |
C7 | 0.105 (8) | 0.086 (7) | 0.062 (5) | 0.012 (9) | −0.016 (6) | 0.013 (7) |
C11 | 0.044 (4) | 0.034 (4) | 0.041 (4) | −0.010 (4) | 0.007 (3) | −0.002 (3) |
C12 | 0.036 (4) | 0.038 (4) | 0.052 (5) | 0.002 (3) | 0.004 (4) | 0.005 (4) |
C13 | 0.038 (4) | 0.047 (4) | 0.052 (5) | 0.000 (4) | 0.016 (4) | 0.000 (4) |
C14 | 0.043 (4) | 0.042 (4) | 0.048 (4) | −0.006 (5) | 0.010 (3) | 0.007 (4) |
C15 | 0.042 (4) | 0.043 (4) | 0.057 (4) | 0.004 (4) | 0.007 (4) | 0.010 (4) |
C16 | 0.051 (4) | 0.039 (4) | 0.052 (4) | 0.006 (4) | 0.015 (4) | −0.002 (3) |
C17 | 0.093 (7) | 0.071 (7) | 0.045 (5) | 0.000 (6) | −0.004 (5) | 0.001 (5) |
C18 | 0.048 (4) | 0.067 (6) | 0.047 (4) | −0.016 (4) | 0.002 (4) | −0.006 (4) |
Zn1—Cl1 | 2.249 (2) | C2—C3 | 1.393 (11) |
Zn1—Cl3 | 2.2595 (19) | C2—H2 | 0.9300 |
Zn1—Cl4 | 2.275 (2) | C3—C4 | 1.385 (11) |
Zn1—Cl2 | 2.289 (2) | C3—H3 | 0.9300 |
O1—C1 | 1.363 (8) | C4—C5 | 1.363 (11) |
O1—C7 | 1.424 (11) | C5—C6 | 1.385 (11) |
O2—C11 | 1.359 (9) | C5—H5 | 0.9300 |
O2—C17 | 1.435 (11) | C6—H6 | 0.9300 |
N1A—C8A | 1.473 (10) | C7—H7A | 0.9600 |
N1A—H1A1 | 0.8900 | C7—H7B | 0.9600 |
N1A—H1A2 | 0.8900 | C7—H7C | 0.9600 |
N1A—H1A3 | 0.8900 | C11—C12 | 1.371 (11) |
C8A—C4 | 1.523 (15) | C11—C16 | 1.403 (11) |
C8A—H8A1 | 0.9700 | C12—C13 | 1.398 (11) |
C8A—H8A2 | 0.9700 | C12—H12 | 0.9300 |
N1B—C8B | 1.469 (10) | C13—C14 | 1.392 (11) |
N1B—H1B1 | 0.8900 | C13—H13 | 0.9300 |
N1B—H1B2 | 0.8900 | C14—C15 | 1.372 (11) |
N1B—H1B3 | 0.8900 | C14—C18 | 1.504 (10) |
C8B—C4 | 1.510 (15) | C15—C16 | 1.384 (11) |
C8B—H8B1 | 0.9700 | C15—H15 | 0.9300 |
C8B—H8B2 | 0.9700 | C16—H16 | 0.9300 |
N2—C18 | 1.474 (10) | C17—H17A | 0.9600 |
N2—H1N | 0.8900 | C17—H17B | 0.9600 |
N2—H2N | 0.8900 | C17—H17C | 0.9600 |
N2—H3N | 0.8900 | C18—H18A | 0.9700 |
C1—C2 | 1.366 (10) | C18—H18B | 0.9700 |
C1—C6 | 1.369 (10) | ||
Cl1—Zn1—Cl3 | 107.25 (8) | C5—C4—C3 | 119.2 (7) |
Cl1—Zn1—Cl4 | 112.41 (10) | C5—C4—C8B | 110.5 (11) |
Cl3—Zn1—Cl4 | 109.72 (9) | C3—C4—C8B | 130.3 (11) |
Cl1—Zn1—Cl2 | 108.22 (8) | C5—C4—C8A | 129.8 (11) |
Cl3—Zn1—Cl2 | 110.50 (9) | C3—C4—C8A | 110.9 (11) |
Cl4—Zn1—Cl2 | 108.73 (11) | C4—C5—C6 | 122.0 (7) |
C1—O1—C7 | 117.6 (7) | C4—C5—H5 | 119.0 |
C11—O2—C17 | 117.9 (6) | C6—C5—H5 | 119.0 |
C8A—N1A—H1A1 | 109.5 | C1—C6—C5 | 118.5 (7) |
C8A—N1A—H1A2 | 109.5 | C1—C6—H6 | 120.7 |
H1A1—N1A—H1A2 | 109.5 | C5—C6—H6 | 120.7 |
C8A—N1A—H1A3 | 109.5 | O1—C7—H7A | 109.5 |
H1A1—N1A—H1A3 | 109.5 | O1—C7—H7B | 109.5 |
H1A2—N1A—H1A3 | 109.5 | H7A—C7—H7B | 109.5 |
N1A—C8A—C4 | 111.8 (14) | O1—C7—H7C | 109.5 |
N1A—C8A—H8A1 | 109.3 | H7A—C7—H7C | 109.5 |
C4—C8A—H8A1 | 109.3 | H7B—C7—H7C | 109.5 |
N1A—C8A—H8A2 | 109.3 | O2—C11—C12 | 124.6 (7) |
C4—C8A—H8A2 | 109.3 | O2—C11—C16 | 115.1 (6) |
H8A1—C8A—H8A2 | 107.9 | C12—C11—C16 | 120.3 (6) |
C8B—N1B—H1B1 | 109.5 | C11—C12—C13 | 119.0 (7) |
C8B—N1B—H1B2 | 109.5 | C11—C12—H12 | 120.5 |
H1B1—N1B—H1B2 | 109.5 | C13—C12—H12 | 120.5 |
C8B—N1B—H1B3 | 109.5 | C14—C13—C12 | 121.7 (7) |
H1B1—N1B—H1B3 | 109.5 | C14—C13—H13 | 119.1 |
H1B2—N1B—H1B3 | 109.5 | C12—C13—H13 | 119.1 |
N1B—C8B—C4 | 110.6 (15) | C15—C14—C13 | 117.7 (7) |
N1B—C8B—H8B1 | 109.5 | C15—C14—C18 | 121.2 (7) |
C4—C8B—H8B1 | 109.5 | C13—C14—C18 | 120.9 (7) |
N1B—C8B—H8B2 | 109.5 | C14—C15—C16 | 122.3 (8) |
C4—C8B—H8B2 | 109.5 | C14—C15—H15 | 118.9 |
H8B1—C8B—H8B2 | 108.1 | C16—C15—H15 | 118.9 |
C18—N2—H1N | 109.5 | C15—C16—C11 | 119.0 (7) |
C18—N2—H2N | 109.5 | C15—C16—H16 | 120.5 |
H1N—N2—H2N | 109.5 | C11—C16—H16 | 120.5 |
C18—N2—H3N | 109.5 | O2—C17—H17A | 109.5 |
H1N—N2—H3N | 109.5 | O2—C17—H17B | 109.5 |
H2N—N2—H3N | 109.5 | H17A—C17—H17B | 109.5 |
O1—C1—C2 | 114.5 (6) | O2—C17—H17C | 109.5 |
O1—C1—C6 | 124.9 (7) | H17A—C17—H17C | 109.5 |
C2—C1—C6 | 120.6 (7) | H17B—C17—H17C | 109.5 |
C1—C2—C3 | 120.6 (7) | N2—C18—C14 | 112.9 (7) |
C1—C2—H2 | 119.7 | N2—C18—H18A | 109.0 |
C3—C2—H2 | 119.7 | C14—C18—H18A | 109.0 |
C4—C3—C2 | 119.1 (7) | N2—C18—H18B | 109.0 |
C4—C3—H3 | 120.5 | C14—C18—H18B | 109.0 |
C2—C3—H3 | 120.5 | H18A—C18—H18B | 107.8 |
Cg1 and Cg2 are the centroids of the C11–C16 and C1–C6 rings, respectively |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A1···Cl3 | 0.89 | 2.32 | 3.19 (2) | 164 |
N1A—H1A2···Cl2i | 0.89 | 2.75 | 3.26 (2) | 118 |
N1A—H1A3···Cl4i | 0.89 | 2.64 | 3.34 (2) | 137 |
C8A—H8A2···Cl4ii | 0.97 | 2.77 | 3.72 (2) | 168 |
N1B—H1B1···Cl4ii | 0.89 | 2.78 | 3.61 (3) | 154 |
N1B—H1B2···Cl2i | 0.89 | 2.66 | 3.33 (2) | 133 |
N1B—H1B3···Cl3 | 0.89 | 2.80 | 3.45 (2) | 131 |
C8B—H8B2···Cl1ii | 0.97 | 2.82 | 3.60 (2) | 138 |
N2—H1N···Cl1iii | 0.89 | 2.65 | 3.364 (7) | 138 |
N2—H1N···Cl2iii | 0.89 | 2.75 | 3.336 (7) | 125 |
N2—H2N···Cl3iv | 0.89 | 2.45 | 3.279 (8) | 156 |
N2—H3N···Cl1iv | 0.89 | 2.72 | 3.331 (7) | 127 |
N2—H3N···Cl2 | 0.89 | 2.71 | 3.452 (7) | 141 |
C2—H2···Cg1 | 0.93 | 2.62 | 3.432 (8) | 146 |
C6—H6···Cg2i | 0.93 | 2.86 | 3.579 (8) | 135 |
Symmetry codes: (i) −x, y−1/2, −z; (ii) −x, y+1/2, −z; (iii) −x+1, y+1/2, −z; (iv) x, y+1, z. |
Acknowledgements
We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.
References
Brammer, L., Swearingen, J. K., Bruton, E. Z. & Sherwood, P. (2002). Proc. Nat. Acad. Sci. USA, 99, 4956–4961. CSD CrossRef PubMed CAS Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Evans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511–522. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Green, K. A., Cifuentes, M. P., Samoc, M. & Humphrey, M. G. (2011). Coord. Chem. Rev. 255, 2530–2541. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kefi, R., Maher, E. G., Zeller, M., Lefebvre, F. & Ben Nasr, C. (2011). Private communication (refcode XASKEJ). CCDC, Cambridge, England. Google Scholar
Keller, E. (1999). SCHAKAL. University of Freiburg, Germany. Google Scholar
Maury, O. & Le Bozec, H. (2005). Acc. Chem. Res. 38, 691–704. CrossRef PubMed CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.