research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(benzoato-κO)di­butyl­tin(IV), nBu2Sn(bzo)2

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany, and bDepartamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carerra 30 No 45-03, Bogotá, Colombia
*Correspondence e-mail: hreuter@uos.de

Edited by M. Zeller, Purdue University, USA (Received 25 May 2016; accepted 28 May 2016; online 3 June 2016)

The title compound, [Sn(C4H9)2(C6H5COO)2], was synthesized in order to study the inter­action between di-n-butyl­tin(IV) oxide and some carb­oxy­lic acids. Di-n-butyl­tin(IV) dibenzoate, nBu2Sn(obz)2, exhibits the same structural features as other diorganotin(IV) dibenzoates characterized by an unsymmetrical bidentate bonding mode [Δ(Sn—O) ≃ 0.4 Å] of the two benzoate groups to tin. In a first approximation, the coordination sphere at tin resulting from the two stronger bonded O atoms [2.1227 (17) and 2.1405 (16) Å] and the two α-C atoms of the n-butyl groups [2.125 (3) and 2.129 (2) Å] is compressed to a tetra­gonal disphenoid [〈(C—Sn—C) = 148.2 (1)° and 〈(O—Sn—O) = 82.01 (6)°]. This coordination sphere is expanded by the less strongly bonded two O atoms [2.507 (2) and 2.485 (2) Å] to a substanti­ally distorted octa­hedron and by a weak inter­molecular Sn⋯O inter­action [2.943 (2) Å] to a penta­gonal bipyramid with the formation of centrosymmetric dimers. The unbranched butyl groups adopt two different conformations: anti–gauche [torsion angles: 166.0 (2)–63.9 (4)°] and gauche–gauche [65.0 (3)–56.3 (3)°]. Inter­molecular inter­actions between the dimers are restricted to O⋯H—C contacts (2.64 Å) and van der Waals inter­actions.

1. Chemical context

Organotin(IV) complexes have been studied extensively because of the diversity of structures that such compounds can form and their potential biological activities as well as their wide industrial and agricultural applications (Davies & Smith, 1982[Davies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by Wilkinson, G., Gordon, F., Stone, A. & Abel, E. W., pp. 519-616. New York: Pergamon Press.]). As part of our inter­est in this type of complex (Cortés et al., 2011[Cortés, L., Okio, C. K. Y. A. & Brandão, P. F. B. (2011). Phosphorus Sulfur Silicon, 186, 1356-1360.]), we describe here the synthesis of the di-n-butyl­tin(IV) title complex with benzoic anions as ligands. The structures of some di-n-butyl­tin carboxyl­ates have been reported previously by Kemmer et al. (2000[Kemmer, M., Dalil, H., Biesemans, M., Martins, J. C., Mahieu, B., Horn, E., de Vos, D., Tiekink, E. R. T., Willem, R. & Gielen, M. (2000). J. Organomet. Chem. 608, 63-70.]) and Win et al. (2015[Win, Y.-F., Choong, C. S., Dang, J.-C., Iqbal, M. A., Quah, C. K., Kanuparth, S. R., Haque, R. A., Ahamed, M. B. K. & Teoh, S.-G. (2015). CR Chimie 18, 137-148.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) consists of one mol­ecule of the title compound with all atoms in general positions. The two Sn—C bonds are of equal length within the limits of standard deviations [2.125 (3), 2.129 (2) Å, mean value: 2.127 (2) Å]. Within the n-butyl groups, the C—C bond lengths are in the range 1.480 (4)–1.527 (4) Å [mean value 1.52 (2) Å] in the first group [C111–C114] and 1.523 (3)–1.528 (3) Å [mean value: 1.523 (3) Å] in the second [C211–C214]. While the C—C bonds of the latter n-butyl group correspond very well with the value [1.524 (14) Å] calculated for Csp3—Csp3 bonds by Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), the somewhat shorter C—C bonds of the first n-butyl group are strongly influenced by some larger anisotropic displacement ellipsoids of the carbon atoms as a result of thermal motion or unresolved static disorder. Bond angles at the carbon atoms of the n-butyl groups range from 114.1 (2)–115.0 (3)°, and 114.0 (2)–116.0 (2)°, respectively. The two n-butyl groups, however, adopt different conformations: anti–gauche [166.0 (2)–63.9 (4)°] for the first one [n = 1] and gauche–gauche [65.0 (3)–56.3 (3)°] for the second one [n = 2], both with respect to the Cn11—Cn12 and Cn12—Cn13 bonds.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-labeling scheme and displacement ellipsoids for the non-H atoms at the 50% probability level.

The two carboxyl­ate ligands coordinate to the SnIV atom asymmetrically. One oxygen atom of each carboxyl­ate group reveals a very strong/short Sn—O bond of 2.122 (17) and 2.1405 (16) Å, respectively, which are of similar strength as the Sn—C bonds. With respect to these four strong bonds, the coordination polyhedron at the tin atom is compressed to a tetra­gonal disphenoid (Fig. 2[link]) with a bond angle of 148.2 (1)° between the two α-carbon atoms of the n-butyl groups and of 82.01 (6)° between the two oxygen atoms of the benzoate groups. On the carboxyl­ate side, the corresponding C—O bonds are long [1.299 (3)/1.287 (3) Å] in accordance with localized single bonds. The second oxygen atom of each carboxyl­ate group exhibits a much weaker coordination to the tin atom [2.485 (2)/2.507 (2) Å], giving rise to a strongly distorted octa­hedral coordination with the n-butyl groups in the trans-position. Besides, its corresponding C—O bonds are significantly shorter [1.238 (3)/1.244 (3) Å], indicating a C=O double bond.

[Figure 2]
Figure 2
Polyhedron model of the coordination sphere of the tin atom; n-butyl groups have been omitted for clarity, weak Sn⋯O inter­actions are indicated by dashed lines. Displacement ellipsoids are shown at the 50% probability level.

The phenyl groups are almost planar with mean C—C bond lengths of 1.387 (5) Å and bond angles of 120.0 (5)°. Again, the bond lengths are in good agreement with the literature data (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) of 1.387 (10) Å for Car—Car. The phenyl rings subtend dihedral angles of 6.7 (2) and 6.4 (3)° with the planes formed by the three atoms of the carboxyl­ate groups, while the dihedral angle between the phenyl rings is 17.7 (1)°. As usual, the C—C single bonds between the carboxyl­ate and phenyl groups are somewhat shorter [1.489 (3), 1.487 (3) Å] than the C—C single bonds between sp3-hybridized carbon atoms (see above).

3. Supra­molecular features

Besides the described intra­molecular Sn—O inter­actions responsible for the distorted octa­hedral coordination of the tin atom, some weak inter­molecular Sn⋯O inter­actions of 2.943 (2) Å exist and lead to the formation of centrosymmetric dimers and hence the coordination sphere of the tin atom is expanded from six, octa­hedral to seven, penta­gonal–biypramidal (Fig. 3[link]). Once the coordination sphere of the tin atom is completed, the solid-state packing of these dimers is due exclusively to inter­molecular O⋯H—C contacts [O11⋯H23i = 2.64 Å; symmetry code: (i) 1 − x, 1 − y, 1 − z] and van der Waals inter­actions (Fig. 4[link]), respectively, while ππ stacking can be excluded (Fig. 5[link]).

[Figure 3]
Figure 3
Centrosymmetric (center of symmetry = black dot) dimers of the title compound resulting from weak inter­molecular Sn⋯O inter­actions (grey dashed lines). [Symmetry code: (′) 2 − x, 1 − y, 1 − z.]
[Figure 4]
Figure 4
C—H⋯O inter­actions (blue dashed lines) between neighboring dimers responsible for their chain-shaped arrangement along the a axis.
[Figure 5]
Figure 5
Perspective view of the crystal structure of the title compound viewed down the a axis.

4. Database survey

Structures of diorganotin(IV) di­carboxyl­ates, R2Sn(O2CR′)2, have been intensively studied, including di-n-butyl ones (R = n-Bu) (i.e. Kemmer et al., 2000[Kemmer, M., Dalil, H., Biesemans, M., Martins, J. C., Mahieu, B., Horn, E., de Vos, D., Tiekink, E. R. T., Willem, R. & Gielen, M. (2000). J. Organomet. Chem. 608, 63-70.]; Win et al., 2015[Win, Y.-F., Choong, C. S., Dang, J.-C., Iqbal, M. A., Quah, C. K., Kanuparth, S. R., Haque, R. A., Ahamed, M. B. K. & Teoh, S.-G. (2015). CR Chimie 18, 137-148.]), but up to now only the structures of two dibenzoates (R′ = Ph), with R = Me (Tiekink, 1991[Tiekink, E. R. T. (1991). J. Organomet. Chem. 408, 323-327.]) and R = Et,Ph (Amini et al., 2009[Amini, M. M., Azadmehr, A., Alijani, V., Khavasi, H. R., Hajiashrafi, T. & Kharat, A. N. (2009). Inorg. Chim. Acta, 362, 355-360.]), were known. Both exhibit the same structural features as the title compound but some differences arise with respect to bond lengths and angles (Et,Ph/Me): d(Sn—C) = 2.128 (3), 2.124 (4) Å/2.10 (2), 2.10 (2) Å]; d(Sn—O)strong: 2.150 (2), 2.153 (2)/2.156 (9), 2.128 (8) Å; 〈(C—Sn—C): 154.9 (1)/147.2 (7)°, 〈(O—Sn—O): 84.44 (7)/84.4 (4)°; d(Sn—O)weak: 2.400 (2), 2.551 (2)/2.51 (1), 2.510 (9) Å; d(Sn⋯O)inter­molecular: 2.812 (2)/2.955 (10) Å.

5. Synthesis and crystallization

The title compound was obtained by reacting 0.300 g (1.2 mmol) of di-n-butyl­tin oxide with 0.94 g (2.4 mmol) of benzoic acid in ethanol under reflux for 3.5 h. Colourless crystals suitable for X-ray analysis were grown by slow solvent evaporation. Elemental analysis calculated/found (%): C 55.61/55.38, H 5.94/5.66, 1H NMR (250 MHz, CDCl3), δ (p.p.m.): 8.19 (2Hortho, D, 7.25 Hz), 7.62 (1Hpara, T, 7.3 Hz), 7.50 (2Hmeta, T, 7.3 Hz), 1.89–1.72 (2Hα + 2Hβ, multiplets not resolved), 1.45 (2Hγ, Hex, 7.25 Hz), 0.92 (3Hδ, T, 7.25 Hz); {1H}-13C NMR (250 MHz, CDCl3), δ (p.p.m.), nJ(13C–119/117Sn) (Hz): 176.07 (–COO), 133.10 (Cpara), 130.50 (Cortho), 130.12 C(ipso) 128.28 (Cmeta), 26.68 (Cβ) 35.3 (2J), 26.32 (Cγ) 100.0/95.4 (3J), 25.47 (Cα) 584.2/558.6 (1J), 13.48 (Cδ), IR (ATR) ν (cm−1): 2965 (m), 2929 (m), 2865 (w), 1599 (s), 1556 (s), 1493 (m), 1450 (m), 1368 (vs, br), 1302 (m), 1251 (m), 1174 (m), 1134 (m), 1070 (m), 1024 (m), 861 (s), 717 (vs), 683 (vs), 541 (m), 449 (s), Raman ν (cm−1): 3071 (m), 2976 (w), 2935 (m), 2875 (m), 2859 (m), 1603 (s), 1567 (w), 1495 (w), 1451 (m), 1389 (m, br), 1180 (w), 1161 (m), 1137 (w), 1027 (w), 1003 (s), 869 (m), 616 (m), 519 (m), 409 (w), 282 (w), 216 (m), 161 (w), 84 (vs).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms were clearly identified in difference Fourier syntheses. Their positions were calculated assuming idealized geometries and allowed to ride on the carbon atoms with C-H = 0.98 Å (–CH3), 0.99 Å (–CH2–), and 0.95 Å (C—Harom) using one common isotropic displacement parameter for each n-butyl and phenyl group.

Table 1
Experimental details

Crystal data
Chemical formula [Sn(C4H9)2(C7H5O2)2]
Mr 475.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.6801 (5), 8.1098 (3), 22.6345 (8)
β (°) 98.736 (2)
V3) 2119.14 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.23
Crystal size (mm) 0.38 × 0.37 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.654, 0.782
No. of measured, independent and observed [I > 2σ(I)] reflections 148965, 5116, 4751
Rint 0.058
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.20
No. of reflections 5116
No. of parameters 250
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −0.83
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(benzoato-κO)dibutyltin(IV) top
Crystal data top
[Sn(C4H9)2(C7H5O2)2]F(000) = 968
Mr = 475.13Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.6801 (5) ÅCell parameters from 8832 reflections
b = 8.1098 (3) Åθ = 2.3–28.1°
c = 22.6345 (8) ŵ = 1.23 mm1
β = 98.736 (2)°T = 100 K
V = 2119.14 (14) Å3Bloc, colourless
Z = 40.38 × 0.37 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
4751 reflections with I > 2σ(I)
φ and ω scansRint = 0.058
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 28.0°, θmin = 2.3°
Tmin = 0.654, Tmax = 0.782h = 1515
148965 measured reflectionsk = 1010
5116 independent reflectionsl = 2929
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0242P)2 + 3.7196P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.003
5116 reflectionsΔρmax = 1.25 e Å3
250 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.85118 (2)0.41711 (2)0.42877 (2)0.01431 (6)
C1110.9080 (2)0.6348 (3)0.38974 (11)0.0221 (5)
H1110.90840.72660.41860.055 (4)*
H1120.98860.61820.38240.055 (4)*
C1120.8348 (3)0.6837 (4)0.33200 (14)0.0329 (7)
H1130.75210.67330.33660.055 (4)*
H1140.84970.60580.30040.055 (4)*
C1130.8566 (2)0.8591 (3)0.31174 (13)0.0279 (6)
H1150.79960.88440.27590.055 (4)*
H1160.84240.93650.34370.055 (4)*
C1140.9743 (3)0.8894 (4)0.29746 (16)0.0412 (8)
H1170.98800.81770.26440.055 (4)*
H1181.03170.86560.33270.055 (4)*
H1190.98111.00500.28590.055 (4)*
C2110.8942 (2)0.1842 (3)0.46968 (11)0.0194 (5)
H2110.88230.09830.43830.029 (3)*
H2120.97770.18490.48630.029 (3)*
C2120.8263 (2)0.1349 (3)0.51951 (11)0.0215 (5)
H2130.83670.22190.55050.029 (3)*
H2140.86020.03210.53810.029 (3)*
C2130.6965 (2)0.1076 (3)0.50023 (12)0.0236 (5)
H2150.66180.07220.53540.029 (3)*
H2160.66040.21380.48620.029 (3)*
C2140.6678 (2)0.0201 (3)0.45088 (13)0.0265 (6)
H2170.71290.12050.46160.029 (3)*
H2180.68720.02410.41330.029 (3)*
H2190.58500.04610.44590.029 (3)*
C110.6734 (2)0.2748 (3)0.26476 (10)0.0177 (5)
C120.7197 (2)0.2006 (3)0.21811 (11)0.0237 (5)
H120.79930.17110.22300.036 (4)*
C130.6481 (3)0.1703 (4)0.16446 (12)0.0308 (6)
H130.67890.11910.13250.036 (4)*
C140.5326 (3)0.2137 (4)0.15702 (12)0.0310 (6)
H140.48410.19060.12030.036 (4)*
C150.4874 (2)0.2905 (4)0.20272 (12)0.0280 (6)
H150.40830.32270.19710.036 (4)*
C160.5574 (2)0.3210 (3)0.25696 (11)0.0216 (5)
H160.52620.37320.28860.036 (4)*
C170.7499 (2)0.3071 (3)0.32243 (10)0.0176 (5)
O110.70125 (15)0.3642 (2)0.36615 (7)0.0180 (3)
O120.85583 (15)0.2840 (2)0.32918 (8)0.0208 (4)
C210.7408 (2)0.6684 (3)0.56956 (10)0.0149 (4)
C220.6211 (2)0.6786 (3)0.56612 (11)0.0181 (5)
H220.57200.62770.53390.025 (4)*
C230.5736 (2)0.7631 (3)0.60976 (11)0.0222 (5)
H230.49200.76780.60830.025 (4)*
C240.6458 (2)0.8408 (3)0.65557 (12)0.0251 (5)
H240.61320.90070.68500.025 (4)*
C250.7647 (2)0.8325 (4)0.65901 (12)0.0251 (5)
H250.81340.88670.69050.025 (4)*
C260.8129 (2)0.7444 (3)0.61626 (11)0.0203 (5)
H260.89470.73610.61890.025 (4)*
C270.7927 (2)0.5767 (3)0.52329 (10)0.0156 (4)
O210.72511 (14)0.5203 (2)0.47756 (7)0.0170 (3)
O220.89909 (15)0.5548 (2)0.52750 (8)0.0187 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01604 (8)0.01393 (8)0.01351 (8)0.00007 (6)0.00406 (6)0.00020 (6)
C1110.0236 (12)0.0225 (12)0.0194 (12)0.0090 (10)0.0008 (9)0.0034 (10)
C1120.0312 (15)0.0229 (14)0.0400 (16)0.0061 (12)0.0097 (12)0.0138 (12)
C1130.0294 (14)0.0190 (12)0.0350 (15)0.0017 (11)0.0042 (11)0.0082 (11)
C1140.0306 (15)0.0429 (19)0.051 (2)0.0022 (14)0.0093 (14)0.0224 (16)
C2110.0193 (11)0.0160 (11)0.0227 (12)0.0016 (9)0.0026 (9)0.0022 (9)
C2120.0245 (12)0.0203 (12)0.0188 (11)0.0028 (10)0.0007 (9)0.0040 (9)
C2130.0242 (12)0.0211 (13)0.0267 (13)0.0036 (10)0.0076 (10)0.0031 (10)
C2140.0265 (13)0.0182 (12)0.0331 (14)0.0034 (10)0.0008 (11)0.0023 (11)
C110.0245 (12)0.0121 (11)0.0163 (11)0.0047 (9)0.0027 (9)0.0012 (8)
C120.0327 (14)0.0172 (12)0.0214 (12)0.0015 (10)0.0050 (10)0.0024 (10)
C130.0514 (18)0.0213 (13)0.0194 (12)0.0006 (13)0.0047 (12)0.0061 (10)
C140.0442 (17)0.0250 (14)0.0203 (12)0.0076 (12)0.0058 (11)0.0018 (11)
C150.0271 (13)0.0277 (14)0.0272 (14)0.0054 (11)0.0020 (11)0.0028 (11)
C160.0228 (12)0.0224 (12)0.0201 (12)0.0049 (10)0.0042 (9)0.0001 (10)
C170.0241 (12)0.0118 (10)0.0176 (11)0.0033 (9)0.0054 (9)0.0018 (8)
O110.0199 (8)0.0189 (8)0.0160 (8)0.0032 (7)0.0055 (6)0.0021 (7)
O120.0234 (9)0.0192 (9)0.0202 (8)0.0006 (7)0.0045 (7)0.0003 (7)
C210.0173 (10)0.0132 (10)0.0155 (10)0.0007 (8)0.0063 (8)0.0034 (8)
C220.0167 (11)0.0184 (11)0.0194 (11)0.0006 (9)0.0037 (9)0.0019 (9)
C230.0189 (11)0.0242 (13)0.0255 (12)0.0061 (10)0.0102 (9)0.0046 (10)
C240.0314 (14)0.0237 (13)0.0233 (12)0.0042 (11)0.0143 (11)0.0012 (10)
C250.0278 (13)0.0279 (14)0.0208 (12)0.0053 (11)0.0077 (10)0.0052 (10)
C260.0191 (11)0.0235 (12)0.0192 (11)0.0020 (10)0.0057 (9)0.0004 (10)
C270.0193 (11)0.0126 (10)0.0156 (10)0.0002 (9)0.0051 (8)0.0037 (8)
O210.0170 (8)0.0165 (8)0.0179 (8)0.0019 (7)0.0036 (6)0.0019 (6)
O220.0172 (8)0.0210 (9)0.0187 (8)0.0030 (7)0.0052 (6)0.0002 (7)
Geometric parameters (Å, º) top
Sn1—O112.1227 (17)C214—H2190.9800
Sn1—C1112.125 (3)C11—C161.390 (4)
Sn1—C2112.129 (2)C11—C121.394 (3)
Sn1—O212.1405 (16)C11—C171.489 (3)
Sn1—O222.4846 (17)C12—C131.388 (4)
Sn1—O122.5071 (17)C12—H120.9500
Sn1—C172.669 (2)C13—C141.379 (4)
C111—C1121.502 (4)C13—H130.9500
C111—H1110.9900C14—C151.380 (4)
C111—H1120.9900C14—H140.9500
C112—C1131.527 (4)C15—C161.390 (4)
C112—H1130.9900C15—H150.9500
C112—H1140.9900C16—H160.9500
C113—C1141.480 (4)C17—O121.238 (3)
C113—H1150.9900C17—O111.299 (3)
C113—H1160.9900C21—C261.391 (3)
C114—H1170.9800C21—C221.392 (3)
C114—H1180.9800C21—C271.487 (3)
C114—H1190.9800C22—C231.385 (3)
C211—C2121.528 (3)C22—H220.9500
C211—H2110.9900C23—C241.385 (4)
C211—H2120.9900C23—H230.9500
C212—C2131.528 (4)C24—C251.381 (4)
C212—H2130.9900C24—H240.9500
C212—H2140.9900C25—C261.389 (3)
C213—C2141.523 (4)C25—H250.9500
C213—H2150.9900C26—H260.9500
C213—H2160.9900C27—O221.244 (3)
C214—H2170.9800C27—O211.287 (3)
C214—H2180.9800
O11—Sn1—C11199.70 (8)C212—C213—H215108.8
O11—Sn1—C211103.14 (8)C214—C213—H216108.8
C111—Sn1—C211148.17 (10)C212—C213—H216108.8
O11—Sn1—O2182.01 (6)H215—C213—H216107.7
C111—Sn1—O2199.92 (9)C213—C214—H217109.5
C211—Sn1—O21104.93 (8)C213—C214—H218109.5
O11—Sn1—O22137.87 (6)H217—C214—H218109.5
C111—Sn1—O2287.63 (8)C213—C214—H219109.5
C211—Sn1—O2290.07 (8)H217—C214—H219109.5
O21—Sn1—O2255.87 (6)H218—C214—H219109.5
O11—Sn1—O1256.01 (6)C16—C11—C12120.2 (2)
C111—Sn1—O1286.17 (8)C16—C11—C17120.5 (2)
C211—Sn1—O1288.47 (8)C12—C11—C17119.3 (2)
O21—Sn1—O12137.95 (6)C13—C12—C11119.1 (3)
O22—Sn1—O12165.78 (6)C13—C12—H12120.4
O11—Sn1—C1728.66 (7)C11—C12—H12120.4
C111—Sn1—C1791.51 (8)C14—C13—C12120.7 (3)
C211—Sn1—C1797.98 (9)C14—C13—H13119.7
O21—Sn1—C17110.51 (7)C12—C13—H13119.7
O22—Sn1—C17165.85 (7)C13—C14—C15120.2 (3)
O12—Sn1—C1727.45 (7)C13—C14—H14119.9
C112—C111—Sn1114.12 (17)C15—C14—H14119.9
C112—C111—H111108.7C14—C15—C16120.1 (3)
Sn1—C111—H111108.7C14—C15—H15119.9
C112—C111—H112108.7C16—C15—H15119.9
Sn1—C111—H112108.7C15—C16—C11119.7 (2)
H111—C111—H112107.6C15—C16—H16120.2
C111—C112—C113114.1 (2)C11—C16—H16120.2
C111—C112—H113108.7O12—C17—O11120.3 (2)
C113—C112—H113108.7O12—C17—C11122.5 (2)
C111—C112—H114108.7O11—C17—C11117.2 (2)
C113—C112—H114108.7O12—C17—Sn168.98 (13)
H113—C112—H114107.6O11—C17—Sn151.62 (11)
C114—C113—C112115.0 (3)C11—C17—Sn1166.98 (18)
C114—C113—H115108.5C17—O11—Sn199.72 (14)
C112—C113—H115108.5C17—O12—Sn183.58 (14)
C114—C113—H116108.5C26—C21—C22120.2 (2)
C112—C113—H116108.5C26—C21—C27119.5 (2)
H115—C113—H116107.5C22—C21—C27120.3 (2)
C113—C114—H117109.5C23—C22—C21119.8 (2)
C113—C114—H118109.5C23—C22—H22120.1
H117—C114—H118109.5C21—C22—H22120.1
C113—C114—H119109.5C24—C23—C22119.7 (2)
H117—C114—H119109.5C24—C23—H23120.2
H118—C114—H119109.5C22—C23—H23120.2
C212—C211—Sn1116.01 (17)C25—C24—C23120.9 (2)
C212—C211—H211108.3C25—C24—H24119.6
Sn1—C211—H211108.3C23—C24—H24119.6
C212—C211—H212108.3C24—C25—C26119.8 (2)
Sn1—C211—H212108.3C24—C25—H25120.1
H211—C211—H212107.4C26—C25—H25120.1
C211—C212—C213115.5 (2)C25—C26—C21119.6 (2)
C211—C212—H213108.4C25—C26—H26120.2
C213—C212—H213108.4C21—C26—H26120.2
C211—C212—H214108.4O22—C27—O21119.6 (2)
C213—C212—H214108.4O22—C27—C21121.8 (2)
H213—C212—H214107.5O21—C27—C21118.6 (2)
C214—C213—C212114.0 (2)C27—O21—Sn199.65 (14)
C214—C213—H215108.8C27—O22—Sn184.80 (14)
C111—C112—C113—C11463.9 (4)Sn1—C111—C112—C113166.0 (2)
C211—C212—C213—C21456.3 (3)Sn1—C211—C212—C21365.0 (3)
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by Deutsche Forschungsgemeinschaft (DFG) and Open Access Publishing Fund of Osnabrück University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmini, M. M., Azadmehr, A., Alijani, V., Khavasi, H. R., Hajiashrafi, T. & Kharat, A. N. (2009). Inorg. Chim. Acta, 362, 355–360.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCortés, L., Okio, C. K. Y. A. & Brandão, P. F. B. (2011). Phosphorus Sulfur Silicon, 186, 1356–1360.  Google Scholar
First citationDavies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by Wilkinson, G., Gordon, F., Stone, A. & Abel, E. W., pp. 519–616. New York: Pergamon Press.  Google Scholar
First citationKemmer, M., Dalil, H., Biesemans, M., Martins, J. C., Mahieu, B., Horn, E., de Vos, D., Tiekink, E. R. T., Willem, R. & Gielen, M. (2000). J. Organomet. Chem. 608, 63–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). J. Organomet. Chem. 408, 323–327.  CSD CrossRef CAS Web of Science Google Scholar
First citationWin, Y.-F., Choong, C. S., Dang, J.-C., Iqbal, M. A., Quah, C. K., Kanuparth, S. R., Haque, R. A., Ahamed, M. B. K. & Teoh, S.-G. (2015). CR Chimie 18, 137–148.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds