research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of [2,7,12-tri­methyl-3,7,11,17-tetra­aza­bi­cyclo­[11.3.1]hepta­deca-1(17),13,15-triene-κ4N]copper(II) bis­­(perchlorate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines, Manila 1000, Philippines, bDepartment of Chemistry, Tufts University, Medford, Massachusetts 02155, USA, and cBruker AXS Inc., 5465 E. Cheryl Parkway, Madison, WI 53711, USA
*Correspondence e-mail: vgorgano@up.edu.ph

Edited by M. Zeller, Purdue University, USA (Received 9 June 2016; accepted 15 June 2016; online 21 June 2016)

The title copper(II) complex of a pyridine-containing macrocycle (PyMAC), [Cu(C16H28N4)](ClO4)2, has been prepared. The crystal structure reveals the CuII atom to be octahedrally coordinated by a tetradentate aminopyridine macrocyclic ligand surrounding the metal cation in a square-planar geometry. Two weakly bound perchlorate counter-ions occupy the axial sites above and below the macrocyclic plane. The crystal studied was refined as a two-component pseudo-merohedral twin; the refined fractional contribution of the minor component is 38.77 (8)%

1. Chemical context

There have been several studies of the macrocycles synthesized from 2,6-di­acetyl­pyridine and polyamines. One of the first examples, reported by Karn & Busch (1966[Karn, J. L. & Busch, D. H. (1966). Nature, 211, 160-162.]), involved a nickel(II)-templated condensation of 2,6-di­acetyl­pyridine and bis­(3-amino­prop­yl)amine. Their pioneering work enabled subsequent syntheses of various pyridine-containing macrocycles (Rezaeivala & Keypour, 2014[Rezaeivala, M. & Keypour, H. (2014). Coord. Chem. Rev. 280, 203-253.]), including a family of complexes with appended arms (PyMACs) (Organo et al., 2009[Organo, V. G., Filatov, A. S., Quartararo, J. S., Friedman, Z. M. & Rybak-Akimova, E. V. (2009). Inorg. Chem. 48, 8456-8468.]; Herrera et al., 2003[Herrera, A. M., Kalayda, G. V., Disch, J. S., Wikstrom, J. P., Korendovych, I. V., Staples, R. J., Campana, C. F., Nazarenko, A. Y., Haas, T. E. & Rybak-Akimova, E. V. (2003). Dalton Trans. pp. 4482-4492.]) as shown in Fig. 1[link].

[Figure 1]
Figure 1
Pyridine-containing macrocycles (PyMACs).

Various metal ions have been incorporated into PyMAC ligands, and the resulting complexes often showed inter­esting catalytic properties. For example, NiII–PyMAC complexes have been found to exhibit peroxidase-like activity, with NiLCOOH (Fig. 1[link]) being most active (Organo et al., 2009[Organo, V. G., Filatov, A. S., Quartararo, J. S., Friedman, Z. M. & Rybak-Akimova, E. V. (2009). Inorg. Chem. 48, 8456-8468.]). FeII–LMe (Fig. 1[link]) was also found to have catalytic use in epoxidation reactions of cyclo­octene with hydrogen peroxide (Ye et al., 2012[Ye, W., Staples, R. J. & Rybak-Akimova, E. V. (2012). J. Inorg. Biochem. 115, 1-12.]). A similar CuII–PyMAC complex but without methyl groups at the macrocyclic ring was reported by Fernandes et al. (2007[Fernandes, A. S., Gaspar, J., Cabral, M. F., Caneiras, C., Guedes, R., Rueff, J., Castro, M., Costa, J. & Oliveira, N. G. (2007). J. Inorg. Biochem. 101, 849-858.]) to scavenge superoxide.

Pyridine-containing metallomacrocycles have also found utility beyond synthetic chemistry. For example, Cu–macrocyclic complexes have become increasingly important in radiopharmaceutical applications as contrast agents in positron emission tomographic (PET) imaging (Boros et al., 2014[Boros, E., Rybak-Akimova, E., Holland, J. P., Rietz, T., Rotile, N., Blasi, F., Day, H., Latifi, R. & Caravan, P. (2014). Mol. Pharm. 11, 617-629.]).

While there are known Cu–pyridine macrocycles, only a few have been characterized structurally (Caira et al., 1975[Caira, M. R., Nassimbeni, L. R. & Wooley, P. R. (1975). Acta Cryst. B31, 1334-1338.]; Lindoy et al., 2001[Lindoy, L. F., Rambusch, T., Skelton, B. W. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 1857-1862.]; Herrera et al., 2003[Herrera, A. M., Kalayda, G. V., Disch, J. S., Wikstrom, J. P., Korendovych, I. V., Staples, R. J., Campana, C. F., Nazarenko, A. Y., Haas, T. E. & Rybak-Akimova, E. V. (2003). Dalton Trans. pp. 4482-4492.]; Autzen et al., 2003[Autzen, S., Korth, H.-G., Boese, R., Groot, H. & Sustmann, R. (2003). Eur. J. Inorg. Chem. pp. 1401-1410.]). Here, we report the synthesis and crystal structure of a CuII–PyMAC perchlorate compound.

[Scheme 1]

2. Structural commentary

The title compound has the CuII atom in a distorted octahedral coordination, with the tetradentate amino­pyridine macro­cyclic ligand surrounding the metal atom in a square-planar geometry (Fig. 2[link]). Two perchlorate counter-ions occupy the axial sites perpendicular to the macrocyclic plane. The macrocyclic ligand incorporates a 2,6-substituted pyridine unit that is connected on both sides to an aliphatic chain of 11 atoms, including two secondary amines and a tertiary amine bearing a methyl group. When coordinated to the CuII atom, the macrocycle exhibits approximate mol­ecular mirror symmetry with respect to the plane that bis­ects the pyridine and tertiary amine nitro­gen atoms, and is perpendicular to the macrocyclic plane. The Cu—N distances between CuII and secondary amine nitro­gen atoms [2.0417 (14) and 2.0445 (15) Å] are similar to each other; the distance between CuII and the tertiary amine N atom [2.0108 (13) Å] is slightly shorter. In contrast, the Cu—Npy bond length [1.9316 (13) Å] is much shorter than the Cu—Namine bonds. Both perchlorate anions are only weakly bound, with Cu—O6 and Cu—O3 distances of 2.6478 (13) and 2.4736 (13) Å, respectively.

[Figure 2]
Figure 2
An ORTEP diagram of the mol­ecular structure of CuLMe(ClO4)2 [LMe = 2,7,12-trimethyl-3,7,11,17-tetra­aza­bicyclo­[11.3.1]hepta­deca-1(17),13,15-triene, see Fig. 1[link]], showing the atom-labeling scheme, with ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

An intra­molecular contact (N4—H4⋯O5) occurs between a perchlorate O atom and the tertiary amine NH group. The N⋯O distance [3.423 (2) Å] is longer than the sum of van der Waals radii of the two atoms (2.94 Å), suggesting this is a weaker inter­action comparing to normal hydrogen-bonding interactions.

3. Supra­molecular features

In the crystal of the complex (see Fig. 3[link]), several N—H⋯O and Cpy—H⋯O hydrogen bonds have longer DA distances than the van der Waals radii of the corresponding pairs of atoms (3.25 Å for C⋯O). The resulting geometry is a chain along [010]. Numerical details are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O7i 0.83 (2) 2.94 (2) 3.536 (2) 130.6 (18)
N4—H4⋯O4ii 0.86 (2) 2.45 (2) 3.1619 (19) 140.2 (18)
N4—H4⋯O5 0.86 (2) 2.77 (2) 3.423 (2) 134.1 (17)
C2—H2A⋯O5iii 0.93 2.70 3.587 (2) 161
C3—H3⋯O1iv 0.93 2.68 3.585 (2) 165
C4—H4A⋯O1v 0.93 2.64 3.518 (2) 158
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x, -y+1, -z+1.
[Figure 3]
Figure 3
Crystal packing of the title complex viewed approximately down the a axis. Hydrogen atoms, except those involved in hydrogen bonds, are omitted for clarity.

4. Synthesis and crystallization

The procedure for the synthesis of the title compound was adapted from Karn & Busch (1966[Karn, J. L. & Busch, D. H. (1966). Nature, 211, 160-162.]) with subsequent reduction using NaBH4. 10 mmol of 2,6-di­acetyl­pyridine were dissolved in 160 ml of absolute ethanol, and the resulting solution was mixed with 10 mmol of Cu(ClO4)2·6H2O in 240 ml of water. The reaction mixture was heated to 338 K and 10 mmol of N,N-bis­(3-amino­prop­yl)methyl­amine were added. Subsequently, glacial acetic acid was added to the mixture until the pH was about 4. The mixture was heated to reflux of the solvent for 12 h; a color change from blue to dark blue occurred during that period. After reflux, the mixture was cooled to room temperature and 40 mmol of NaBH4 were added. The mixture was left to stir for 12 h for complete reduction. Perchloric acid was added until the remaining NaBH4 was consumed.

The deep-blue solution was concentrated to about a tenth of its original volume by rotary evaporation. The solution was then cooled slowly to room temperature and refrigerated. Dark-purple needle-like crystals formed upon cooling. The crystals were filtered, washed with absolute ethanol and diethyl ether, and allowed to dry. Light-purple crystals were recrystallized from hot water. Single crystals were obtained by dissolving the compound in aceto­nitrile followed by slow ether diffusion.

UV–Vis data: λmax = 552 nm in methanol, molar extinction coefficient: 209.47 M−1·cm−1. IR: 1619 cm−1 (C=N of pyridine), 1113 and 600 cm−1 (ClO4 bands) and 3400 cm−1 (N—H).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal structure was refined as a two-component pseudo-merohedral twin (twin operation: [\overline 1]00, 0[\overline 1]0, 001); the refined fractional contribution of the minor component is 38.77 (8)%. All H atoms bonded to C atoms were placed at calculated positions using a riding model, with C—H distances of 0.98 Å for CH, 0.97 Å for CH2, 0.96 Å for CH3, and 0.93 Å for aromatic CH, and with Uiso(H) = 1.2Ueq(C) for all but CH3 where Uiso(H) = 1.5Ueq(C). H2 and H4 connected to N2 and N4 were located in the difference density Fourier synthesis maps and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C16H28N4)](ClO4)2
Mr 538.86
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.6918 (12), 12.0588 (16), 20.068 (3)
β (°) 90.153 (3)
V3) 2103.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.35
Crystal size (mm) 0.24 × 0.21 × 0.21
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.414, 0.454
No. of measured, independent and observed [I > 2σ(I)] reflections 36478, 5284, 5054
Rint 0.030
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.06
No. of reflections 5284
No. of parameters 292
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 and Bruker Instrument Service (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

[2,7,12-Trimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene-κ4N]copper(II) bis(perchlorate) top
Crystal data top
[Cu(C16H28N4)](ClO4)2F(000) = 1116
Mr = 538.86Dx = 1.702 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.6918 (12) ÅCell parameters from 9732 reflections
b = 12.0588 (16) Åθ = 2.9–30.6°
c = 20.068 (3) ŵ = 1.35 mm1
β = 90.153 (3)°T = 100 K
V = 2103.4 (5) Å3Clear dark blue cube, clear dark blue
Z = 40.24 × 0.21 × 0.21 mm
Data collection top
Bruker D8 QUEST
diffractometer
5284 independent reflections
Radiation source: sealed tube5054 reflections with I > 2σ(I)
Detector resolution: 1.024 pixels mm-1Rint = 0.030
φ and ω scansθmax = 29.2°, θmin = 2.9°
Absorption correction: multi-scan
(Krause et al., 2015)
h = 1111
Tmin = 0.414, Tmax = 0.454k = 1616
36478 measured reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.027P)2 + 0.369P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5284 reflectionsΔρmax = 0.50 e Å3
292 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19755 (3)0.24103 (2)0.38162 (2)0.01124 (5)
N10.00263 (15)0.31793 (10)0.38014 (7)0.0121 (2)
N20.14981 (17)0.22614 (12)0.48078 (7)0.0131 (3)
H20.131 (3)0.1590 (18)0.4820 (11)0.016 (5)*
N30.40687 (15)0.17015 (10)0.38456 (7)0.0133 (2)
N40.16917 (17)0.24951 (11)0.28059 (7)0.0133 (3)
H40.126 (2)0.1870 (18)0.2721 (10)0.014 (5)*
C10.05040 (19)0.35796 (13)0.32233 (8)0.0132 (3)
C20.1787 (2)0.42658 (14)0.32010 (8)0.0158 (3)
H2A0.21620.45380.27990.019*
C30.24897 (18)0.45302 (14)0.37997 (9)0.0169 (3)
H30.33390.49990.38030.020*
C40.1932 (2)0.40991 (13)0.43957 (8)0.0160 (3)
H4A0.24070.42680.47980.019*
C50.06452 (19)0.34082 (13)0.43793 (8)0.0126 (3)
C60.00692 (19)0.28859 (13)0.49932 (8)0.0135 (3)
H60.03630.34830.52990.016*
C70.1071 (2)0.21384 (15)0.53495 (9)0.0191 (3)
H7A0.13040.15100.50730.029*
H7B0.19980.25440.54380.029*
H7C0.06300.18880.57620.029*
C80.2787 (2)0.24911 (14)0.52748 (9)0.0162 (4)
H8A0.24510.23600.57280.019*
H8B0.30860.32640.52380.019*
C90.4161 (2)0.17602 (15)0.51239 (8)0.0186 (3)
H9A0.38240.09930.51210.022*
H9B0.49060.18420.54810.022*
C100.4954 (2)0.20050 (14)0.44663 (8)0.0159 (3)
H10A0.51830.27920.44500.019*
H10B0.59270.16110.44600.019*
C110.3963 (2)0.04734 (13)0.38084 (10)0.0193 (3)
H11A0.34230.01990.41910.029*
H11B0.49790.01620.37990.029*
H11C0.34180.02650.34110.029*
C120.5038 (2)0.21068 (15)0.32814 (9)0.0174 (3)
H12A0.60370.17500.33110.021*
H12B0.52000.28970.33370.021*
C130.4389 (2)0.19068 (15)0.25850 (9)0.0177 (3)
H13A0.52130.19890.22640.021*
H13B0.40230.11480.25580.021*
C140.3084 (2)0.26795 (13)0.23923 (8)0.0164 (3)
H14A0.34220.34410.24440.020*
H14B0.28250.25640.19270.020*
C150.04536 (19)0.33025 (14)0.26215 (8)0.0142 (3)
H150.09670.39890.24840.017*
C160.0511 (2)0.29131 (16)0.20309 (8)0.0216 (4)
H16A0.01510.27580.16600.032*
H16B0.12290.34830.19090.032*
H16C0.10610.22530.21510.032*
Cl10.31018 (5)0.52884 (3)0.37452 (2)0.01419 (7)
O10.40486 (16)0.60559 (10)0.41159 (6)0.0200 (2)
O20.15073 (13)0.55835 (10)0.38070 (7)0.0214 (2)
O30.33372 (15)0.41828 (10)0.40105 (7)0.0221 (3)
O40.35382 (17)0.53023 (11)0.30525 (6)0.0254 (3)
Cl20.09242 (5)0.01135 (3)0.35753 (2)0.01541 (8)
O50.14975 (19)0.09033 (13)0.30953 (8)0.0323 (4)
O60.05744 (15)0.04607 (11)0.38012 (8)0.0289 (3)
O70.1936 (2)0.00640 (14)0.41356 (8)0.0373 (4)
O80.08306 (17)0.09626 (11)0.32766 (7)0.0249 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01167 (8)0.01105 (8)0.01101 (8)0.00167 (6)0.00066 (9)0.00045 (6)
N10.0128 (6)0.0102 (5)0.0133 (6)0.0014 (4)0.0012 (5)0.0002 (5)
N20.0142 (6)0.0122 (6)0.0130 (6)0.0025 (5)0.0011 (5)0.0005 (5)
N30.0126 (6)0.0100 (5)0.0173 (6)0.0007 (5)0.0024 (5)0.0011 (5)
N40.0152 (8)0.0105 (6)0.0144 (6)0.0008 (5)0.0011 (5)0.0002 (4)
C10.0128 (7)0.0127 (7)0.0141 (7)0.0009 (5)0.0001 (6)0.0001 (6)
C20.0154 (8)0.0162 (7)0.0156 (7)0.0016 (6)0.0027 (6)0.0016 (6)
C30.0140 (6)0.0167 (7)0.0201 (7)0.0034 (5)0.0009 (6)0.0001 (7)
C40.0144 (7)0.0185 (7)0.0151 (7)0.0023 (6)0.0018 (6)0.0011 (6)
C50.0136 (7)0.0123 (7)0.0121 (7)0.0014 (6)0.0006 (5)0.0005 (5)
C60.0151 (8)0.0129 (7)0.0124 (7)0.0017 (6)0.0004 (6)0.0001 (6)
C70.0206 (8)0.0182 (8)0.0185 (8)0.0021 (7)0.0052 (7)0.0038 (6)
C80.0149 (10)0.0211 (8)0.0126 (7)0.0006 (6)0.0029 (6)0.0000 (6)
C90.0173 (8)0.0214 (8)0.0170 (8)0.0015 (7)0.0028 (6)0.0033 (6)
C100.0136 (7)0.0173 (8)0.0167 (7)0.0000 (6)0.0031 (6)0.0001 (6)
C110.0196 (7)0.0119 (7)0.0264 (8)0.0012 (6)0.0035 (7)0.0011 (7)
C120.0131 (8)0.0208 (8)0.0182 (8)0.0005 (6)0.0011 (6)0.0015 (6)
C130.0167 (8)0.0188 (8)0.0176 (8)0.0026 (6)0.0034 (6)0.0024 (6)
C140.0171 (8)0.0175 (7)0.0147 (7)0.0001 (7)0.0037 (7)0.0007 (5)
C150.0162 (8)0.0142 (7)0.0122 (7)0.0033 (6)0.0014 (6)0.0020 (5)
C160.0247 (9)0.0277 (9)0.0124 (7)0.0078 (7)0.0030 (6)0.0000 (7)
Cl10.01690 (16)0.01039 (15)0.01528 (15)0.00062 (12)0.00114 (15)0.00024 (12)
O10.0203 (6)0.0171 (6)0.0225 (6)0.0045 (5)0.0008 (5)0.0051 (5)
O20.0157 (5)0.0206 (6)0.0280 (6)0.0019 (4)0.0006 (5)0.0012 (5)
O30.0252 (7)0.0109 (5)0.0303 (6)0.0007 (5)0.0027 (5)0.0048 (5)
O40.0359 (8)0.0230 (7)0.0175 (6)0.0010 (6)0.0083 (5)0.0005 (5)
Cl20.01338 (16)0.01372 (16)0.01913 (17)0.00071 (13)0.00050 (15)0.00212 (13)
O50.0370 (9)0.0249 (7)0.0349 (8)0.0108 (6)0.0117 (6)0.0023 (6)
O60.0200 (6)0.0197 (6)0.0470 (8)0.0074 (5)0.0096 (7)0.0012 (6)
O70.0401 (9)0.0351 (8)0.0368 (8)0.0028 (7)0.0230 (8)0.0050 (6)
O80.0283 (7)0.0176 (6)0.0287 (7)0.0024 (5)0.0031 (6)0.0091 (5)
Geometric parameters (Å, º) top
Cu1—N11.9316 (13)C8—H8B0.9700
Cu1—N22.0417 (14)C8—C91.515 (3)
Cu1—N32.0108 (13)C9—H9A0.9700
Cu1—N42.0444 (15)C9—H9B0.9700
Cu1—O32.4736 (13)C9—C101.519 (2)
Cu1—O62.6478 (13)C10—H10A0.9700
N1—C11.337 (2)C10—H10B0.9700
N1—C51.329 (2)C11—H11A0.9600
N2—H20.83 (2)C11—H11B0.9600
N2—C61.500 (2)C11—H11C0.9600
N2—C81.485 (2)C12—H12A0.9700
N3—C101.507 (2)C12—H12B0.9700
N3—C111.4857 (19)C12—C131.525 (2)
N3—C121.496 (2)C13—H13A0.9700
N4—H40.86 (2)C13—H13B0.9700
N4—C141.486 (2)C13—C141.517 (3)
N4—C151.497 (2)C14—H14A0.9700
C1—C21.389 (2)C14—H14B0.9700
C1—C151.506 (2)C15—H150.9800
C2—H2A0.9300C15—C161.524 (2)
C2—C31.386 (2)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C3—C41.390 (2)C16—H16C0.9600
C4—H4A0.9300Cl1—O11.4436 (13)
C4—C51.395 (2)Cl1—O21.4365 (12)
C5—C61.515 (2)Cl1—O31.4498 (12)
C6—H60.9800Cl1—O41.4421 (13)
C6—C71.520 (2)Cl2—O51.4423 (15)
C7—H7A0.9600Cl2—O61.4403 (13)
C7—H7B0.9600Cl2—O71.4308 (15)
C7—H7C0.9600Cl2—O81.4317 (13)
C8—H8A0.9700
N1—Cu1—N282.92 (6)H8A—C8—H8B108.0
N1—Cu1—N3176.39 (5)C9—C8—H8A109.4
N1—Cu1—N481.79 (6)C9—C8—H8B109.4
N1—Cu1—O390.40 (5)C8—C9—H9A108.6
N1—Cu1—O691.30 (5)C8—C9—H9B108.6
N2—Cu1—N4161.21 (6)C8—C9—C10114.84 (14)
N2—Cu1—O391.20 (5)H9A—C9—H9B107.5
N2—Cu1—O680.69 (6)C10—C9—H9A108.6
N3—Cu1—N296.91 (6)C10—C9—H9B108.6
N3—Cu1—N499.04 (6)N3—C10—C9116.03 (14)
N3—Cu1—O386.00 (5)N3—C10—H10A108.3
N3—Cu1—O692.23 (5)N3—C10—H10B108.3
N4—Cu1—O399.76 (5)C9—C10—H10A108.3
N4—Cu1—O688.79 (5)C9—C10—H10B108.3
O3—Cu1—O6171.44 (5)H10A—C10—H10B107.4
C1—N1—Cu1119.14 (11)N3—C11—H11A109.5
C5—N1—Cu1118.27 (11)N3—C11—H11B109.5
C5—N1—C1122.07 (14)N3—C11—H11C109.5
Cu1—N2—H299.0 (15)H11A—C11—H11B109.5
C6—N2—Cu1111.60 (10)H11A—C11—H11C109.5
C6—N2—H2108.8 (16)H11B—C11—H11C109.5
C8—N2—Cu1116.33 (11)N3—C12—H12A108.3
C8—N2—H2108.1 (15)N3—C12—H12B108.3
C8—N2—C6111.95 (13)N3—C12—C13115.72 (14)
C10—N3—Cu1112.38 (10)H12A—C12—H12B107.4
C11—N3—Cu1111.48 (10)C13—C12—H12A108.3
C11—N3—C10108.37 (13)C13—C12—H12B108.3
C11—N3—C12108.83 (13)C12—C13—H13A108.7
C12—N3—Cu1110.52 (10)C12—C13—H13B108.7
C12—N3—C10105.00 (12)H13A—C13—H13B107.6
Cu1—N4—H4101.8 (14)C14—C13—C12114.27 (14)
C14—N4—Cu1117.72 (11)C14—C13—H13A108.7
C14—N4—H4112.3 (14)C14—C13—H13B108.7
C14—N4—C15110.53 (13)N4—C14—C13112.03 (13)
C15—N4—Cu1111.25 (10)N4—C14—H14A109.2
C15—N4—H4101.8 (14)N4—C14—H14B109.2
N1—C1—C2121.18 (15)C13—C14—H14A109.2
N1—C1—C15115.19 (14)C13—C14—H14B109.2
C2—C1—C15123.48 (14)H14A—C14—H14B107.9
C1—C2—H2A121.2N4—C15—C1110.16 (13)
C3—C2—C1117.68 (15)N4—C15—H15106.9
C3—C2—H2A121.2N4—C15—C16112.66 (14)
C2—C3—H3119.8C1—C15—H15106.9
C2—C3—C4120.40 (15)C1—C15—C16112.84 (14)
C4—C3—H3119.8C16—C15—H15106.9
C3—C4—H4A120.6C15—C16—H16A109.5
C3—C4—C5118.75 (15)C15—C16—H16B109.5
C5—C4—H4A120.6C15—C16—H16C109.5
N1—C5—C4119.91 (14)H16A—C16—H16B109.5
N1—C5—C6116.31 (14)H16A—C16—H16C109.5
C4—C5—C6123.77 (15)H16B—C16—H16C109.5
N2—C6—C5110.17 (13)O1—Cl1—O3108.70 (8)
N2—C6—H6108.1O2—Cl1—O1110.21 (8)
N2—C6—C7111.11 (13)O2—Cl1—O3109.36 (8)
C5—C6—H6108.1O2—Cl1—O4109.67 (9)
C5—C6—C7111.28 (14)O4—Cl1—O1109.77 (8)
C7—C6—H6108.1O4—Cl1—O3109.11 (8)
C6—C7—H7A109.5Cl1—O3—Cu1132.04 (8)
C6—C7—H7B109.5O6—Cl2—O5109.19 (9)
C6—C7—H7C109.5O7—Cl2—O5109.90 (10)
H7A—C7—H7B109.5O7—Cl2—O6108.79 (11)
H7A—C7—H7C109.5O7—Cl2—O8109.08 (9)
H7B—C7—H7C109.5O8—Cl2—O5109.81 (9)
N2—C8—H8A109.4O8—Cl2—O6110.05 (9)
N2—C8—H8B109.4Cl2—O6—Cu1132.63 (8)
N2—C8—C9111.04 (14)
Cu1—N1—C1—C2171.12 (12)C3—C4—C5—N10.4 (2)
Cu1—N1—C1—C154.49 (19)C3—C4—C5—C6179.88 (15)
Cu1—N1—C5—C4170.68 (12)C4—C5—C6—N2175.87 (15)
Cu1—N1—C5—C69.09 (18)C4—C5—C6—C760.4 (2)
Cu1—N2—C6—C52.44 (16)C5—N1—C1—C20.5 (2)
Cu1—N2—C6—C7126.24 (12)C5—N1—C1—C15176.06 (14)
Cu1—N2—C8—C956.21 (16)C6—N2—C8—C9173.83 (13)
Cu1—N3—C10—C955.43 (16)C8—N2—C6—C5134.81 (14)
Cu1—N3—C12—C1358.20 (16)C8—N2—C6—C7101.40 (16)
Cu1—N4—C14—C1348.28 (16)C8—C9—C10—N370.04 (19)
Cu1—N4—C15—C115.39 (16)C10—N3—C12—C13179.61 (15)
Cu1—N4—C15—C16142.35 (12)C11—N3—C10—C968.21 (18)
N1—C1—C2—C30.6 (2)C11—N3—C12—C1364.54 (18)
N1—C1—C15—N47.8 (2)C12—N3—C10—C9175.62 (15)
N1—C1—C15—C16134.62 (15)C12—C13—C14—N466.11 (19)
N1—C5—C6—N23.89 (19)C14—N4—C15—C1148.11 (14)
N1—C5—C6—C7119.80 (16)C14—N4—C15—C1684.93 (17)
N2—C8—C9—C1067.86 (19)C15—N4—C14—C13177.62 (13)
N3—C12—C13—C1475.39 (19)C15—C1—C2—C3174.60 (15)
C1—N1—C5—C41.0 (2)O1—Cl1—O3—Cu1169.81 (9)
C1—N1—C5—C6179.27 (14)O2—Cl1—O3—Cu149.44 (13)
C1—C2—C3—C41.2 (2)O4—Cl1—O3—Cu170.51 (12)
C2—C1—C15—N4176.75 (15)O5—Cl2—O6—Cu122.21 (15)
C2—C1—C15—C1649.9 (2)O7—Cl2—O6—Cu197.73 (14)
C2—C3—C4—C50.7 (3)O8—Cl2—O6—Cu1142.81 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O7i0.83 (2)2.94 (2)3.536 (2)130.6 (18)
N4—H4···O4ii0.86 (2)2.45 (2)3.1619 (19)140.2 (18)
N4—H4···O50.86 (2)2.77 (2)3.423 (2)134.1 (17)
C2—H2A···O5iii0.932.703.587 (2)161
C3—H3···O1iv0.932.683.585 (2)165
C4—H4A···O1v0.932.643.518 (2)158
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x, y+1, z+1.
 

Acknowledgements

Financial support by the National Science Foundation (CHE14129090 and CHE1229426) and the UP System Emerging Interdisciplinary Research Program (OVPAA-EIDR 12-001-121102) is greatly acknowledged.

References

First citationAutzen, S., Korth, H.-G., Boese, R., Groot, H. & Sustmann, R. (2003). Eur. J. Inorg. Chem. pp. 1401–1410.  CSD CrossRef Google Scholar
First citationBoros, E., Rybak-Akimova, E., Holland, J. P., Rietz, T., Rotile, N., Blasi, F., Day, H., Latifi, R. & Caravan, P. (2014). Mol. Pharm. 11, 617–629.  CrossRef CAS PubMed Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaira, M. R., Nassimbeni, L. R. & Wooley, P. R. (1975). Acta Cryst. B31, 1334–1338.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernandes, A. S., Gaspar, J., Cabral, M. F., Caneiras, C., Guedes, R., Rueff, J., Castro, M., Costa, J. & Oliveira, N. G. (2007). J. Inorg. Biochem. 101, 849–858.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHerrera, A. M., Kalayda, G. V., Disch, J. S., Wikstrom, J. P., Korendovych, I. V., Staples, R. J., Campana, C. F., Nazarenko, A. Y., Haas, T. E. & Rybak-Akimova, E. V. (2003). Dalton Trans. pp. 4482–4492.  CSD CrossRef Google Scholar
First citationKarn, J. L. & Busch, D. H. (1966). Nature, 211, 160–162.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLindoy, L. F., Rambusch, T., Skelton, B. W. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 1857–1862.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOrgano, V. G., Filatov, A. S., Quartararo, J. S., Friedman, Z. M. & Rybak-Akimova, E. V. (2009). Inorg. Chem. 48, 8456–8468.  CSD CrossRef PubMed CAS Google Scholar
First citationRezaeivala, M. & Keypour, H. (2014). Coord. Chem. Rev. 280, 203–253.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, W., Staples, R. J. & Rybak-Akimova, E. V. (2012). J. Inorg. Biochem. 115, 1–12.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds